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Abstract

In wireless cooperative networks, the asynchronism between the relays can be a source of diversity

which is similar in its essence to the multipath diversity offrequency selective channels. In this

context, an asynchronous two-relay cooperative wireless network is studied for Decode-and-Forward

(DF) and Amplify-and-Forward (AF) protocols. The outage probability in the high Signal to Noise Ratio

(SNR) regime is derived and the impact of the relative delay between the two relays on this outage

probability is evaluated. It is shown that for a sufficientlyhigh relative delay, the outage probability

performance becomes independent from the relative delay and approaches from the synchronous protocol

performance. Besides, an optimization of the power distribution between the transmitting nodes of the

network is carried out in the high SNR regime based on the outage probability minimization. Moreover,

the Diversity Multiplexing Tradeoff (DMT) of the network ischaracterized for the two cooperative

protocols DF and AF. The DMT curve does not depend on the relative delay as long as the latter is

non-zero.

Keywords: Asynchronous Relay Channel, Cooperative Diversity, Cooperative Wireless Networks,

Diversity-Multiplexing Tradeoff, Outage Probability.
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I. I NTRODUCTION

In wireless communications, the signal transmission is hampered by several attenuation factors

such as channel fading, shadowing, and path loss. It is well known that Multiple Input Multiple

Output (MIMO) techniques improve the reliability and/or the data rate. However, in some

devices, it is not possible to implement many antennas due tosize, hardware limitations, or

cost constraints. Therefore, the idea of cooperation between the nodes of a network, in a manner

to create a virtual MIMO system, has attracted attention as an efficient way to allow these

single-antenna devices to benefit of spatial diversity [1] [2]. Many cooperation protocols exist,

and three main protocol classes are the Amplify-and-Forward (AF), the Decode-and-Forward

(DF) and the Compress-and-Forward (CF) protocols. In general, a cooperation protocol consists

in two phases. In the first one, the source broadcasts its message in the network. During the

second phase, the relay nodes retransmit the source information to the destination, after a special

processing that depends upon the cooperation protocol.

So far, most existing research on cooperative diversity assumes perfect synchronization among

cooperative nodes [2]–[6]. Under this assumption, distributed space-time-coded cooperative di-

versity approach achieves diversity gains in the order of the number of available transmitting

nodes in a relay network. However, this assumption is difficult to satisfy in distributed networks

like ad-hoc and sensor networks [7]. The lack of perfect synchronization between relay nodes

has been recently considered in some works. Space-Time codes and Space-Frequency codes were

used in [8]–[11] to combat the imperfect synchronization and to tolerate the delay asynchronism

in the cooperative networks.

In other contributions, asynchronism is considered as beneficial: when the relays transmit delayed

replicas of a given message towards the destination, a diversity effect similar to multipath diver-

sity comes into play. In this line of thought, the author of [7] derived the Diversity Multiplexing

Tradeoff (DMT) curve of two asynchronous cooperative schemes using the DF protocol and

showed that they achieve the same performance as the synchronous Space-Time coded scheme.

In [12], the authors considered two different models of asynchronous cooperative relay networks
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and propose a variant of the Slotted Amplify and Forward (SAF) protocol which asymptotically

achieves the transmit diversity bound for both these models.

In this paper, we study the outage probability of an asynchronous two-relay two-hop wireless

network with single-antenna nodes for the DF and the AF protocols, in the absence of a direct

link between source and destination. The exact evaluation of the outage probabilityPo for any

value of the Signal to Noise Ratio (SNR)ρ is known to be a difficult task. A simpler problem

is to study the behavior ofPo at high values ofρ. Usually, there exists an integerd > 0 for

which ρdPo converges asρ → ∞ to a positive value, in which cased is precisely the diversity

gain of the relaying scheme. The constantξ = lim
ρ→∞

ρdPo provides very useful information on the

behavior ofPo. For instance, it can be used to compare the performance of two protocols having

the same diversity gain or to optimize the power distribution among the transmitting nodes. This

has been done in [13] and in [14], two papers devoted to synchronous protocols. In [13],ξ is

called “outage gain”. In this paper, we shall extend the definition of the outage gain as follows:

assume there exists a real functionf > 0 such that lim
ρ→∞

f(ρ)Po = ξ > 0, then ξ is called the

outage gain associated withf . In most of the paper,f will take the formf(ρ) = ρ2 (there exists

a diversity gain of2) except for one case with the AF protocol in Section IV-A3.

In this work we derive the outage gain for the different asynchronous scenarios introduced

above, and we minimize it with respect to the power distribution. Our simulation results show

in particular that the asynchronous DF protocol using the same codebook for the two relays has

approximately the same outage probability performance as the DF protocol requiring accurate

time synchronization with two different codebooks employed by the relays. For the asynchronous

AF protocol, we remarked that in the most general case, the outage gain is very difficult to

evaluate. However, we give closed form expressions and/or simulations for the outage gain in

three pertinent situations which we believe are interesting to study.

The outage gain is a pertinent performance criterion in the frequent situations where data rate is

fixed independently of the SNR. In the case where the rate is assumed to grow with the SNR, the

widely used performance measure is the DMT. Complementing [7] in which an asynchronous
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two-relay network using DF protocol with a direct source-destination link was considered, we

also evaluate the DMT of the considered network for both DF and AF cooperative protocols.

Contrary to [7], our DMT derivation is valid for any non zero relative delay between the two

relays.

The contributions of this paper can be summarized as follows:

• A general formalism to calculate the outage gain for asynchronous relay networks using

Decode-and-Forward or Amplify-and-Forward cooperative protocol, which have not been

done so far to the best of our knowledge.

• A power allocation optimization based on the minimization of the outage gain factor for

asynchronous relay networks.

• A derivation of the DMT for both asynchronous DF and AF protocols with no particular

assumption on the transmission model (all channels are random fading channels) and for

any delay profile (non-zero relative delay between the two relays).

The paper is organized as follows. In Section II, the system model is described. In Sections III

and IV, the outage gain is derived for the DF and AF protocols respectively. For the DF protocol,

the outage gain is derived for a general class of radio channels, but in the AF protocol case, it is

calculated in some particular configurations of the networkchannels because of the mathematical

complexity in the general case. Section V describes the power optimization method. The DMT

expression of the network is given in Section VI. Numerical results are provided in Section VII.

Finally, some conclusions are drawn in Section VIII.

II. SYSTEM MODEL, ASSUMPTIONS ANDNOTATIONS

We consider a wireless network that consists in a sourceS, two relay nodesR1 andR2, and

a destinationD as shown in Figure 1. All nodes have a single antenna. The relays operate in

the half-duplex mode, which prohibits them from transmitting and receiving at the same time

[3]. We assume that there is no direct link between the sourceand the destination because the

channel gain between these two nodes is practically zero duefor instance to the large distance

separating these two nodes.



5

In this work, we consider orthogonal cooperative protocolswhich are generally divided into

two phases, each with durationT/2 channel uses. During Phase I, the source broadcasts its

message towards the relays. During Phase II, the source stops transmitting and the active relays

forward the source information to the destination. For the DF protocol, only the relays that

succeed in decoding the source message transmit in the second phase. Denote byD(s) the

set of relays that succeed in decoding the source message. The cardinality of this set satisfies

|D(s)| ∈ {0, 1, 2}. When the two relays succeed in decoding the source message (|D(s)| = 2),

it is assumed for implementation simplicity reasons as in [7] that the relays employ the same

Gaussian codebook to transmit in Phase II. For the AF protocol, the two relays transmit in Phase

II the amplified versions of the message broadcasted by the source in Phase I.

Due to the distributed nature of the network, a different time delay is introduced on each relay-

destination path; we denote byτ1 and τ2 the delays of the signals received by the destination

from relaysR1 andR2 respectively.

In this paper, the parameterρ will represent a certain power budget of the network and so itwill

be proportional to the transmitted powers of the network nodes (S, R1 andR2), or equivalently

ρ will be proportional to the Signal to Noise Ratio (SNR).

Let us assume that the sourceS transmits the Gaussian codeword(x(k))
T/2
k=1 ∈ C

T/2 during

Phase I. Denote byβ0ρ the power of the source whereβ0 ∈ (0, 1) is a power coefficient given

to the source. The amplitude gain applied tox(k) is
√

β0ρ. The signalyi(k) received by relay

Ri (i = 1, 2) at the output of this relay’s matched filter is

yi (k) =
√

β0ρ H0i x(k) + ni(k), i = 1, 2.

Assuming channels are frequency flat fading channels, the complex random variableH0i is the

channel gain between the sourceS and the relayRi, and ni is the Additive White Gaussian

Noise (AWGN) atRi.

For the DF protocol, if the relayRi succeeds to decodex(k), this relay transmits the same

codeword in Phase II. The continuous time signalyDF received by the destinationD during
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Phase II is:

yDF (t) =
∑

i:Ri∈D(s)

√
βiρ Hi3

∑

k

x(k)Φ(t − τi − k) + n3(t) (1)

whereβiρ is the power of relayRi, Hi3 is the channel between relayRi and D, n3(t) is the

AWGN at D, andΦ(t) is the equivalent transmitter receiver filter.

In the AF case, the relayRi simply transmits the signal
√

Aiyi(k) towards the destination where

Ai is the power gain applied byRi. The signal received by the destinationD is

yAF (t) =
∑

i=1,2

√
AiHi3

∑

k

yi(k)Φ(t − τi − k) + n3(t)

=
∑

i=1,2

(
√

AiHi3

∑

k

(√
β0ρH0ix(k) + ni(k)

)
Φ(t − τi − k)

)
+ n3(t). (2)

Our assumptions and notations are the following. The complex channel gainsHij, available

only at the receivers, are assumed to be independent random variables. We assume that the joint

densityfHij
(x, y) of (Re(Hij), Im(Hij)) is continous and positive at(0, 0), and we denote by

bij = fHij
(0, 0) its value at zero. All AWGN at relays and at destination are independent with

unit variance. The delaysτi are also known to the destination. Without loss of generality, we

consider thatτ2 ≥ τ1 so that the relative delay between the two relays is∆ = τ2−τ1 ≥ 0. Finally,

the filter Φ(t) is assumed to be a perfect low pass filter with a transfer function 1[−1/2,1/2](f)

where1A is the indicator function of setA.

The outage gain derivations below often make use of the powerchannel gainsGij = |Hij|2. We

shall denote byfGij
the density ofGij. The following lemma will be useful:

Lemma 1: AssumingfHij
is continuous at(0, 0), the densityfGij

is right continuous at zero,

and cij = fGij
(0+) satisfiescij = πbij.

This lemma is proven in Appendix A. As an example, assume theHij are complex Gaussian

circular with EHij = 0, andE|Hij|2 = σ2
ij (Rayleigh channels). In this case, one can check that

bij = 1/(πσ2
ij) andcij = 1/σ2

ij.

III. O UTAGE GAIN OF THE DF PROTOCOL

The outage probability of our protocol isPo = P [I ≤ R] whereI is the mutual information

between the source and the destination (to be specified below) andR is the source transmission
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rate in nats per channel use. We shall show that the outage gain ξDF > 0 of this protocol is

associated with the functionf(ρ) = ρ2, i.e., our protocol has a diversity gain of2. To show that

ρ2Po converges and to derive the expression ofξDF , we divide the outage probability into three

components:

Po = P [|D(s)| = 0] + P [|D(s)| = 1] P [I ≤ R / |D(s)| = 1]

+ P [|D(s)| = 2] P [I ≤ R / |D(s)| = 2]

= Po,0 + Po,1 + Po,2. (3)

Based on this decomposition, we obtain the following proposition which is the main result of

this section:

Proposition 1: Consider the asynchronous two-relay two-hop network and a DF protocol as

described in Section II above. For a given rateR, the outage probabilityPo satisfiesρ2Po −−−→
ρ →∞

ξDF = ξ0 + ξ1 + ξ2 where

ξ0 =
c01c02

β2
0

(
e2R − 1

)2
(4)

ξ1 =

(
c13c02

β1β0

+
c23c01

β2β0

)(
e2R − 1

)2
(5)

ξ2 =
c13c23

π2β1β2

∫

{(z1,z2)∈C2, I(z1,z2,∆)≤R}
dz1 dz2 (6)

with I(z1, z2, ∆) =
1

2

∫ 1

2

− 1

2

log
(
1 + |z1 + z2 exp (−2ıπf∆)|2

)
df . Here it is understood thatdzi =

dxi dyi wherezi = xi + ıyi with ı2 = −1. For positive integer values of∆, ξ2 is given by

ξ2 =
c13c23

β1β2

e2R
(
e2R − 2R − 1

)
. (7)

More generally,ξ2 satisfies

c13c23

β1β2

e2R ∆

⌈∆⌉

(
e2R ∆

⌈∆⌉ − 2R
∆

⌈∆⌉ − 1

)
≤ ξ2 ≤

c13c23

β1β2

e2R ∆

⌊∆⌋

(
e2R ∆

⌊∆⌋ − 2R
∆

⌊∆⌋ − 1

)
(8)

where⌈∆⌉ (resp.⌊∆⌋) is the smallest integer≥ ∆ (resp. largest integer≤ ∆) and ∆ ≥ 1 for

the upper bound.

The parametersc01, c02, c13 and c23 in Equations(4)-(8) represent the values at zero of the

densitiesfG01
, fG02

, fG13
and fG23

respectively.
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Proof: The proof will show thatξl = lim
ρ →∞

ρ2Po,l for l = 0, 1, 2. We shall treat in turnPo,0,

Po,1 andPo,2.

Let us begin withPo,0. We have

ρ2Po,0 = ρ2

2∏

i=1

P

[
1

2
log (1 + ρβ0G0i) ≤ R

]
= ρ2

2∏

i=1

∫

1

2
log(1+ρβ0xi)≤R

fG0i
(xi) dxi.

By making the variable changesui = ρβ0xi, we obtain

ρ2Po,0 =
1

β2
0

2∏

i=1

∫

1

2
log(1+ui)≤R

fG0i

(
ui

ρβ0

)
dui.

We now letρ → ∞. By applying Lebesgue’s Dominated Convergence Theorem and byrelying

on the right continuity of thefG0i
at zero [13] with lim

ρ→∞
fG0i

( ui

ρβ0
) = fG0i

(0+) = c0i, we obtain

lim
ρ →∞

ρ2Po,0 =
c01c02

β2
0

(∫

1

2
log(1+u)≤R

du

)2

= Right Hand Side (RHS) of (4).

We now turn toPo,1. Let Pi(ρ) = P[1
2
log(1+ρβ0G0i) ≤ R] be the outage probability of relay

Ri. The probabilityPo,1 writes

Po,1 = P[D fails / D(s) = {1}](1−P1(ρ))P2(ρ)+P[D fails / D(s) = {2}](1−P2(ρ))P1(ρ) . (9)

The derivation made forPo,0 above showed thatPi(ρ) ∼ 1
ρ

c0i

β0
(exp(2R)−1) asρ → ∞. In partic-

ular, this shows that1−Pi(ρ) ∼ 1 asρ → ∞. Moreover, when relayRi is the sole active relay, the

associated delayτi has no influence on the conditional outage probabilityP[D fails / D(s) = {i}],

which writes P[D fails / D(s) = {i}] = P
[

1
2
log (1 + ρβiGi3) ≤ R

]
∼ 1

ρ
ci3

βi
(exp(2R) − 1).

Getting back to Eq. (9) we deduce from these observations that lim
ρ →∞

ρ2Po,1 = RHS of (5).

We now considerPo,2. This probability writes

Po,2 = P[D fails / D(s) = {1, 2}](1 − P1(ρ))(1 − P2(ρ)) ∼ρ→∞ P[D fails / D(s) = {1, 2}].

When the two relays successfully decode the source message, they send this message on the

equivalent multipath channel with the frequency selectivetransfer functionG (f) defined as (see

Eq. (1))

G (f) =
(√

β1ρH13e
−2ıπfτ1 +

√
β2ρH23e

−2ıπfτ2
)

1[−1/2,1/2](f).
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The mutual informationI(
√

β1ρH13,
√

β2ρH23, ∆) associated with this channel is given by

I(
√

β1ρH13,
√

β2ρH23, ∆) =
1

2

∫ 1

2

− 1

2

log
(
1 + |G (f)|2

)
df (10)

=
1

2

∫ 1

2

− 1

2

log

(
1 +

∣∣∣
√

β1ρH13 +
√

β2ρH23e
−2ıπf∆

∣∣∣
2
)

df. (11)

Now we have

ρ2
P[D fails / D(s) = {1, 2}] = ρ2

∫

{(z1,z2)∈C2: I(
√

β1ρz1,
√

β2ρz2,∆)≤R}
fH13

(Re(z1), Im(z1)) fH23
(Re(z2), Im(z2)) dz1 dz2

=
1

β1β2

∫

{(u1,u2)∈C2: I(u1,u2,∆)≤R}
fH13

(Re(u1)/
√

β1ρ, Im(u1)/
√

β1ρ)×

fH23
(Re(u2)/

√
β2ρ, Im(u2)/

√
β2ρ) du1 du2

−−−→
ρ →∞

b13b23

β1β2

∫

{(u1,u2)∈C2: I(u1,u2,∆)≤R}
du1 du2

= RHS of (6) by Lemma1.

We now prove thatξ2 is given by Eq. (7) when∆ is a non-zero positive integer∆ ∈ N
∗ (assuming

without loss of generality that the symbol periodTs is equal to one). WritingHi3 =
√

Gi3e
2ıπθi3,

the mutual informationI given by Eq. (11) becomes:

I =
1

2

∫ 1

2

− 1

2

log

(
1 +

∣∣∣
√

β1ρG13 +
√

β2ρG23e
−2ıπ((θ13−θ23)+f∆)

∣∣∣
2
)

df. (12)

As the integrand is periodic and spans an integer number of periods on the integration interval

[−1/2, 1/2], we can assume thatθ13 − θ23 = 0. Moreover, by making the change of variables

t = f∆, we obtain

I =
1

2∆

∫ ∆/2

−∆/2

log
(
1 + β1ρG13 + β2ρG23 + 2ρ

√
β1β2G13G23 cos (2πt)

)
dt

=
1

2

∫ 1/2

−1/2

log
(
1 + β1ρG13 + β2ρG23 + 2ρ

√
β1β2G13G23 cos (2πt)

)
dt.

By referring to [15, page 526], this integral admits a closed form solutionI = I int(β1ρG13, β2ρG23)

where functionI int is defined overR2
+ as

I int(x1, x2) =
1

2
log


1 + x1 + x2 +

√
(1 + x1 + x2)

2 − 4x1x2

2


 . (13)
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The outage gain for non-zero positive integer∆ is then derived as

ξ2 = lim
ρ →∞

ρ2

∫

{(u1,u2)∈R2
+: I int(β1ρu1,β2ρu2)≤R}

fG13
(u1) fG23

(u2) du1 du2 (14)

= lim
ρ →∞

1

β1β2

∫

{(x1,x2)∈R2
+: I int(x1,x2)≤R}

fG13

(
x1

β1ρ

)
fG23

(
x2

β2ρ

)
dx1 dx2

=
c13c23

β1β2

∫

{(x1,x2)∈R2
+: I int(x1,x2)≤R}

dx1 dx2 ,

becauselim
ρ→∞

fG13
( x1

β1ρ
) = fG13

(0+) = c13 and lim
ρ→∞

fG23
( x2

β2ρ
) = fG23

(0+) = c23.

After some simple derivations, we can show that the integration (compact) set{(x1, x2) ∈ R
2
+ :

I int(x1, x2) ≤ R} is described by the following equations:




0 ≤ x1 ≤ e2R − 1

0 ≤ x2 ≤ e2R x1 + 1 − e2R

x1 − e2R
.

Thus we have after a simple derivation
∫

{(x1,x2)∈R2
+:I int(x1,x2)≤R}

dx1 dx2 = e2R
(
e2R − 2R − 1

)
, (15)

which leads to Eq. (7).

It remains to prove the Inequalities (8) useful in the general case∆ ∈ R
∗
+. Getting back to

the expression (11) of the mutual informationI associated with channelG (f), and making the

change of variablet = f∆, we obtain

I =
1

2∆

∫ ∆/2

−∆/2

log

(
1 +

∣∣∣
√

β1ρH13 +
√

β2ρH23e
−2ıπt

∣∣∣
2
)

dt =
1

2∆

∫ ∆/2

−∆/2

ϕ(t) dt.

As the integrandϕ(t) is nonnegative, we have

1

2∆

∫ ⌊∆⌋/2

−⌊∆⌋/2

ϕ(t) dt ≤ I ≤ 1

2∆

∫ ⌈∆⌉/2

−⌈∆⌉/2

ϕ(t) dt . (16)

By making the change of variableu = t/⌊∆⌋ and by using the same argument as the one that

follows Eq. (12), we obtain

1

2∆

∫ ⌊∆⌋/2

−⌊∆⌋/2

ϕ(t) dt =
⌊∆⌋
2∆

∫ 1/2

−1/2

ϕ(⌊∆⌋u) du =
⌊∆⌋
∆

I int (β1ρG13, β2ρG23) .

Similarly, the upper bound in (16) is equal to⌈∆⌉
∆

I int (β1ρG13, β2ρG23). By applying to these

two bounds the same argument as the one that follows (14) (theintegration sets being{I int ≤

(∆/⌈∆⌉)R} and{I int ≤ (∆/⌊∆⌋)R}) we obtain imediately the bounds specified by (8).

Proposition 1 is proven.
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Comments on Proposition 1:When the two relays use the same codebook, Proposition 1

shows that introducing a delay between the two relays is beneficial in terms of diversity. This

proposition shows in particular that the outage gain does not depend on the relative delay∆

when∆ is a non-zero integer. In the general situation where∆ ∈ R
∗
+, the bounds provided by

Inequalities (8) become quite close to each other and to the integer delay outage gain when∆ is

of the order of a few symbol periods. We note that another lower bound for real relative delays

was derived in [16].

Another point is that, using the same codebook, we have a diversity of two only when the

delay between the relays is non zero and the diversity becomes equal to one if∆ = 0. To see

this, assume thatτ1 = τ2 = τ whereτ is a given common delay in Eq. (1). In the case where

both relays succeed in decoding (Ds = {R1, R2}), the signal received by the destination during

the second time slot becomes

yDF (t) =
√

ρ
(√

β1 H13 +
√

β2 H23

)
x(k)Φ(t − τ − k) + n3(t) .

The equivalent channel
(√

β1 H13 +
√

β2 H23

)
generates a diversity of one only. This can be

easily seen ine.g. the Rayleigh case. The lost of diversity for∆ = 0 can also be seen by

simulations in Figure 2.

It is interesting to compare the outage gain of this asynchronous DF protocol with the more

classical synchronous DF protocol where the two relays use independent codebooks. In Section

VII, it is shown by simulation that the two protocols have nearly the same performance.

To better explain the difference between the two DF protocols above, let us consider a simple

example. Suppose that the sourceS transmits the following N-symbol frame[S1, S2, ..., SN ]

using the codebookC and that the relaysR1 and R2 successfully decode the entire frame. In

the asynchronous DF protocol,R1 andR2 use the same codebookC ′ to decode the frame in the

second phase; so the two relays send[S ′
1, S

′
2, ..., S

′
N ] to the destinatonD with a delay∆ between

the two transmissions. On the contrary, for the classical synchronous DF protocol, relaysR1 and

R2 use respectively the codebooksC1 andC2 for example to decode in the second phase and

they send respectively the frames[S1
1 , S

1
2 , ..., S

1
N ] and [S2

1 , S
2
2 , ..., S

2
N ] synchronously toD.
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IV. OUTAGE GAIN OF THE AF PROTOCOL

We now consider the AF protocol. We begin with some observations about the choice of the

power gainsAi (see Eq.(2)) used by the relays. Two strategies exist: either a fixed gain strategy

is chosen whereAi is set to a predetermined valueAi = βi, or a variable gain strategy is adopted

whereAi depends onG0i according toAi =
βiρ

β0ρ G0i + 1
. The latter strategy guarantees that the

power spent by the relay is equal toβiρ whatever is the value ofG0i [17]. The two strategies

will be considered herein.

Let us begin by providing the general expression of the outage gain ξAF , which is given

as in the DF case byξAF = lim
ρ→∞

ρ2Po. Due to the different time delays of the relay signals,

an equivalent multipath fading channel appears between therelays and the destination. The

associated mutual information isIAF =

∫ 1/2

−1/2

log

(
1 +

Sx(f)

Sn

)
df where Sx(f) is the Power

Spectral Density (PSD) of the information signal received by the destination andSn is the noise

PSD at the destination; Using Eq. (2), these two quantities are given by:

Sx(f) =
∣∣∣
√

A1β0ρH01H13e
−2ıπfτ1 +

√
A2β0ρH02H23e

−2ıπfτ2
∣∣∣
2

,

Sn = A1G13 + A2G23 + 1.

In order to studyξAF , we restrict ourselves in most of this section to the case where ∆ =

τ2 − τ1 ∈ N
∗. In the case∆ ∈ R

∗
+ results similar to the DF case will be given succinctly at

the end of this section. By a derivation similar to the DF case above for ∆ integer (argument

developed between Eqs (12) and (13)), the mutual information IAF writes

IAF =
1

2

∫ 1

2

− 1

2

log
(
1 +

∣∣√x1 +
√

x2 e2ıπf∆
∣∣2
)

df

=
1

2

∫ 1

2

− 1

2

log (1 + x1 + x2 + 2
√

x1x2 cos (2πf)) df = I int(x1, x2)

with

x1 =
A1β0ρ G01G13

A1 G13 + A2 G23 + 1
, x2 =

A2β0ρ G02G23

A1G13 + A2G23 + 1
(17)

and I int(x1, x2) is given by Eq. (13). We denote byFfix(G01, G02, G13, G23, ρ) the function

Ffix(G01, G02, G13, G23, ρ) = I int(x1, x2) where (x1, x2) are replaced with their values in (17)
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andAi = βi. Similarly, we letFvar(G01, G02, G13, G23, ρ) = I int(x1, x2) where this time theAi

are the variable gainsAi = βiρ/(β0ρG0i + 1). With these notations,ξAF can be written as

ξAF = lim
ρ→∞

ρ2

∫

Ffix or Fvar(u1,u2,u3,u4,ρ)≤R

fG01
(u1) fG02

(u2) fG13
(u3) fG23

(u4) du1du2du3du4. (18)

To derive this expression, we have to delineate the domain ofvariation of the four parameters

(u1, u2, u3, u4) for large ρ then solve a complicated integral. In general, this task shows to be

very difficult. In order to simplify the problem, we shall consider three interesting particular

cases for which this limit is tractable. We shall consider inturn 1) The case where the source-

relay channels are Gaussian, 2) The case where the relay-destination channels are Gaussian, and

finally 3) The performance bound obtained when the relays arenoiseless.

A. Outage gain for some particular cases

1) Gaussian source-relay links:We consider that the channels from the source to the relays

S → R1 and S → R2 are Gaussian channels, in other words,H01 and H02 are deterministic.

This case corresponds to a downlink mobile communication with fixed position relays and the

existence of a line of sight between the Base Station (the source) and the two relays. In the

sequel, we shall denote the power gains of the deterministicchannels by lower case letters.

Hence the power gains of theS → R1 and andS → R2 channels will be denotedg01 and g02

respectively.

Proposition 2: Consider the asynchronous network and the AF protocol described in Section

II. For Gaussian source-relay links, given a rateR and assuming a fixed gain strategy, the outage

probability Po satisfies

ρ2Po −−−→
ρ →∞

ξAF =
c13c23

β2
0β1β2g01g02

e2R
(
e2R − 2R − 1

)
. (19)

Assuming a variable gain strategy, the following holds true:

ρ2Po −−−→
ρ →∞

ξAF =
c13c23

β1β2

e2R
(
e2R − 2R − 1

)
. (20)

Sketch of proof: In the setting of this proposition, the RHS of (18) writes

lim
ρ→∞

ρ2Po = lim
ρ→∞

∫

Ffix or Fvar(g01,g02,u/ρ,v/ρ,ρ)≤R

fG13
(u/ρ) fG23

(v/ρ) du dv.
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Let us begin with the fixed gain relays case (Ai = βi). The idea of the proof is the following:

for largeρ, we havex1 ∼ β0β1g01ρu andx2 ∼ β0β2g02ρv in (17). Furthermore,fG13
(u/ρ) ∼ c13

andfG23
(v/ρ) ∼ c23, hence one expects that

lim
ρ→∞

ρ2Po = c13c23

∫

I int(β0β1g01u,β0β2g02v)≤R

du dv =
c13c23

β2
0β1β2g01g02

∫

I int(u,v)≤R

du dv = RHS of (19)

by Eq. (15). Heuristically, these derivations show that an outage event occurs when both gains

G13 andG23 are small (of order1/ρ).

A rigorous proof for (19) involves a rather lengthy Dominated Convergence Theorem argument

which role is to justify the exchange betweenlim
ρ →∞

and
∫

. These details are omitted for lack of

space.

In the variable gain relays case, we havex1 ∼ β1ρ u and x2 ∼ β2ρ v for large ρ. A similar

derivation to the fixed gain case gives (20).

2) Gaussian relay-destination links:Here, we consider that the channels from the relays to

the destinationR1 → D andR2 → D are Gaussian channels; thusH13 andH23 are deterministic

and we denote the gainsG13 andG23 as g13 and g23 respectively. This case corresponds to an

uplink mobile communication with fixed position relays and the existence of a line of sight

between the relays and the Base Station (the destination).

For fixed gain relays, we have

x1 =
β1β0ρ g13G01

β1g13 + β2g23 + 1
, x2 =

β2β0ρ g23G02

β1g13 + β2g23 + 1
.

Similarly to the previous section, the RHS of (18) writes

lim
ρ→∞

ρ2Po = lim
ρ→∞

∫

Ffix(g13,g23,u/ρ,v/ρ,ρ)≤R

fG01
(u/ρ) fG02

(v/ρ) du dv

=
(β1g13 + β2g23 + 1)2 c01c02

β2
0β1β2 g13g23

∫

I int(u,v)≤R

du dv

=
(β1g13 + β2g23 + 1)2 c01c02

β2
0β1β2 g13g23

e2R
(
e2R − 2R − 1

)
. (21)

In the variable gain relays case, it is difficult to obtain simple closed form expressions for the

outage gain. This case will be treated by simulations in Section VII.
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3) Noiseless relay bound:Now, we consider that the noise at the relays level is null (n1 (t) =

n2 (t) = 0). Moreover, we assume that all channels are Rayleigh channels (Hij ∼ CN (0, σ2
ij)).

Clearly, the outage gain in this case is a lower bound of the general case. Let us focus on the

fixed gain relays case. In this case, it is clear thatx1 = β1β0ρG01G13 andx2 = β2β0ρG02G23,

which leads us to consider the density function of the product of two independent exponential

random variables. Such densities are considered in [17]. Asdemonstrated in Appendix B, the

densitiesfG01G13
andfG02G23

satisfy in a neighborhood ofρ = ∞ :

fG01G13
(u/ρ) ∼ c01c13 ln ρ; fG02G23

(v/ρ) ∼ c02c23 ln ρ.

Due to the ln ρ factor in these equations,f(ρ)Po does not converge to a finite value when

f(ρ) = ρ2. In order to obtain a meaningful definition of the outage gainin this case, we need

to takef(ρ) = ( ρ
ln(ρ)

)2 instead. With this definition, we have

ξn
AFfix

= lim
ρ→∞

ρ2

(ln ρ)2

∫

Ffix(u,v,ρ)≤R

fG01G13
(u) fG02G23

(v) du dv

=
c01c13c02c23

β2
0β1β2

∫

I int(u,v)≤R

du dv

=
c01c13c02c23

β2
0β1β2

e2R
(
e2R − 2R − 1

)
. (22)

In the variable gain relays case, we havex1 = β0β1ρ2G01G13

β0ρG01+1
and x2 = β0β2ρ2G02G23

β0ρG02+1
. The

densities of these two random variables are continuous at0+ with a limit independent ofρ:

fG01G13
(u/ρ) ∼ c13 and fG02G23

(v/ρ) ∼ c23 (see Appendix B). In this situation, the outage

gain ξn
AFvar

is associated with the usualf(ρ) = ρ2, i.e., ξn
AFvar

= lim
ρ→∞

ρ2Po. After some similar

derivations like for the fixed gain relays, we obtain

ξn
AFvar

=
c13c23

β2
0β1β2

e2R
(
e2R − 2R − 1

)
. (23)

B. Real relative delays

In Section IV-A, we can notice that the outage gains (19), (20), (21), (22) and (23) calculated

for ∆ ∈ N
∗ are independent from the value of∆. In this section, we give lower and upper bounds

for the outage gains of the AF protocol particular cases for non-zero positive real relative delays.
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Similarly to the DF protocol in Section III, to obtain lower and upper bounds of the outage

gains for the AF particular cases considered above, we use the same derivations as in the proof of

Equation (8) in Proposition 1. Therefore, to obtain lower bounds for∆ ∈ R
∗
+ we replace, in the

expressions of the outage gains obtained for integer relative delays in Section IV-A (Equations

(19), (20), (21), (22) and (23)),R with R ∆
⌈∆⌉ and to obtain upper bounds for real∆ ≥ 1 we

replaceR with R ∆
⌊∆⌋ in the same expressions of outage gains.

V. POWER DISTRIBUTION OPTIMIZATION

This section is devoted for the optimization of the power ditribution between the source and

the two relays based on the mimimization of the outage gain. Let us begin by evaluating the

total average power expenditure in the DF case, the AF case with variable gains and the AF

case with fixed gain. Choosingβ0 + β1 + β2 = 1 and recalling that any node is active at most

half of the time, the total average power in the DF case is

β0ρ

2
+

β1ρ

2
P [R1 ∈ D(s)] +

β2ρ

2
P [R2 ∈ D(s)] .

ρ

2
at high SNR

becauseP [Ri ∈ D(s)] ≈ 1 at high SNR. In the AF case with variable relay gain, the total

transmitted power is simply
1

2
(β0 + β1 + β2) ρ =

ρ

2
with β0 + β1 + β2 = 1. In the AF case with

fixed gain, the transmitted power is

1

2
[β0ρ + β1 (ρEG01 + 1) + β2 (ρEG02 + 1)] <

ρ

2
[β0 + β1EG01 + β2EG02] .

Our purpose is to minimizeξ with respect to(β0, β1, β2). In all the considered cases, the outage

gain ξ = ξ(β0, β1, β2) is a convex function. This is due to the fact that it is a sum of functions

of the typef(β0, β1, β2) = Kβ−a
0 β−b

1 β−c
2 wherea, b, c andK are non negative constants (see for

instance Eqs (4)-(6)). By deriving the Hessian matrix, such functions can be shown to be convex.

The constraint set ine.g. the DF case and the AF with variable gain case is{(β0, β1, β2) ∈ R
3
+ :

β0 +β1 +β2 = 1} and therefore is also convex. The minimization can be done easily for instance

with the help of a descent method.

Some examples of channel distributions and delay profiles are considered in Section VII; in

these examples, we include a discussion on the power optimization and on the SNR gain that
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comes out of this optimization in comparison with the equal power distribution. Also, some

insights on the optimal power allocation are given.

VI. D IVERSITY MULTIPLEXING TRADEOFF

The Diversity-Multiplexing Tradeoff (DMT) reveals a fundamental relationship between the

diversity gain which characterizes the asymptotic rate of decoding error approaching zero as

SNR increases, and the multiplexing gain which characterizes the asymptotic spectral efficiency

in the large SNR regime [18]. The DMT functiond(r) is associated with the outage probability

Po asd (r) = − lim
ρ→∞

log Po(R)

log ρ
whereR is the data rate, assumed to increase with the SNRρ

asR = r log ρ. Hered(r) is called the diversity gain and the factorr is called the multiplexing

gain.

Proposition 3: The DMT of the considered asynchronous two-relay two-hop wireless network

for the DF and AF protocols forr ∈
[
0, 1

2

)
is

d (r) = 2 (1 − 2 r)1[0,1/2](r) . (24)

Proof: Let us consider the DF protocol. Recall that the general form of the outage prob-

ability for this protocol is given by Eq. (3). Here the DMT function is given byd(r) =

min(d0(r), d1(r), d2(r)) wheredi(r) = − limρ log Po,i(R)/ log ρ for i = 0, 1, 2. By a standard

derivation [3], we haved0(r) = d1(r) = 2 (1 − 2r)1[0,1/2](r).

Let us considerd2(r) = limρ log P [I ≤ r log ρ / |D(s)| = 2] / log ρ whereI is given by Eq.

(11). As log is a concave function, we have (see Eq. (12))

I ≤ 1

2
log

∫ 1

2

− 1

2

(
1 +

∣∣∣
√

β1ρG13 +
√

β2ρG23e
−2ıπ((θ13−θ23)+f∆)

∣∣∣
2
)

df

≤ 1

2
log (1 + 2 (ρβ1G13 + ρβ2G23)) .

By deriving the DMT on the RHS of this expression [3], we obtaind2(r) ≤ 2 (1 − 2r)1[−1/2,1/2](r).

We now look for a lower bound ond2(r). The derivations are inspired by those made by Grokop

and Tse for the Inter Symbol Interference channel [19], [20]. The starting point is the expression
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(10) of I. Let ‖G‖2 =
∫ 1/2

−1/2
|G(f)|2df , and writeG̃(f) = G(f)

‖G‖ . Fixing ǫ > 0, we have:

log
(
1 + |G (f)|2

)
= log

(
1 + ‖G‖2

∣∣∣G̃ (f)
∣∣∣
2
)

= log

(
1 + ‖G‖2

∣∣∣G̃ (f)
∣∣∣
2
)
× 1|G̃(f)|≥ǫ + log

(
1 + ‖G‖2

∣∣∣G̃ (f)
∣∣∣
2
)
× 1|eG(f)|<ǫ .

Hence

I =
1

2

∫ 1

2

− 1

2

log
(
1 + |G (f)|2

)
df ≥ 1

2

∫ 1

2

− 1

2

log

(
1 + ‖G‖2

∣∣∣G̃ (f)
∣∣∣
2
)
× 1|eG(f)|≥ǫ df

≥ 1

2

∫ 1

2

− 1

2

log
(
1 + ‖G‖2 ǫ2

)
× 1|eG(f)|≥ǫ df =

1

2

(
1 −

∣∣∣U
(
G̃, ǫ
)∣∣∣
)

log
(
1 + ‖G‖2 ǫ2

)

with U
(
G̃, ǫ
)

=
{

f ∈
[
−1

2
, 1

2

)
:
∣∣∣G̃(f)

∣∣∣ < ǫ
}

and |U| is the Lebesgue measure ofU .

By consequence, the outage probabilityP [I ≤ r log ρ / |D(s)| = 2] satisfies

P [I ≤ r log ρ / |D(s)| = 2] ≤ P


log

(
1 + ‖G‖2 ǫ2

)
≤ 2r log ρ

1 −
∣∣∣U
(
G̃, ǫ
)∣∣∣


 . (25)

By a technique similar to [20, pages 56-57], it is possible to show that

∀ǫ > 0,∃µ > 0 such that sup
eG(f):‖eG‖≤1

∣∣∣U
(
G̃, ǫ
)∣∣∣ < µ ,

which results in

sup
eG(f):‖eG‖≤1

2r log ρ

1 −
∣∣∣U
(
G̃, ǫ
)∣∣∣

<
2r log ρ

1 − µ
. (26)

Moreover, we have

‖G‖2 = ρ

∫ 1

2

− 1

2

∣∣∣
√

β1H13 +
√

β2H23e
−2ıπf∆

∣∣∣
2

df

= ρ

(
β1|H13|2 + β2|H23|2 + 2

√
β1β2

sin π∆

π∆
Re(H13H

∗
23)

)

= ρ

((
1 − sin π∆

π∆

)(
β1|H13|2 + β2|H23|2

)
+

sin π∆

π∆

∣∣∣
√

β1H13 +
√

β2H23

∣∣∣
2
)

≥ ρ

(
1 −

∣∣∣∣
sin π∆

π∆

∣∣∣∣
) (

β1|H13|2 + β2|H23|2
)

= ρK(∆) (β1G13 + β2G23) (27)

whereK(∆) > 0 for ∆ > 0. Plugging Inequalities (26) and (27) into (25), we obtain

P [I ≤ r log ρ / |D(s)| = 2] ≤ P

[
log
(
1 + ρǫ2K(∆) (β1G13 + β2G23)

)
≤ 2r log ρ

1 − µ

]
.
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Hence the bound isd2(r) ≥ 2
(
1 − 2r

1−µ

)
. Letting µ → 0, we obtaind2(r) ≥ 2(1 − 2r).

Combining with the upper bound, we end up withd2(r) = 2(1− 2r), which proves (24) for the

DF protocol.

The DMT derivation for the AF protocol can be done similarly.

VII. N UMERICAL RESULTS AND INTERPRETATIONS

Our first simulation results (Fig. 2) concern the performance of the DF protocol. In this figure,

all channels are Rayleigh fading with unit variance(σ2
ij = 1), and the data rate has been set to

R = 1. Moreover, all nodes have the same power. In this figure, the outage approximationPo ≈

ξDF ρ−2 given by Prop. 1 is plotted for integer values of∆. Simulation results for different values

of ∆ are also shown. One can notice a very good fit between the approximation Po ≈ ξDF ρ−2

and the simulation results for high SNR regime. For comparison purposes, we test on the same

figure the outage probability of a synchronous DF protocol which uses independent codebooks

at the relays (see comments after Prop. 1). We notice that theperformance of the asynchronous

DF protocol is quite comparable to the performance of the synchronous one. We can also remark

that the outage gain becomes invariant and equal to the case of an integer relative delay when

∆ is sufficiently high. Therefore, to insure good outage probability performance, the relays can

introduce additional random delays before transmitting inthe second phase.

The AF protocol is tested in Figures 3 and 4. The simulation conditions are identical to those

of Figure 2 as concerns the rate, the powers and the Rayleigh channels. In Figure 3, we plot the

outage probability for the first two particular cases considered in Section IV-A: Gaussian source-

relay channels and Gaussian relay-destination channels. Fixed gains as well as variable gains

have been considered at the relays. For the case where the source-relay channels are Gaussian,

we takeg01 = 0.6 andg02 = 1 while for the Gaussian relay-destination channels case, weassume

thatg13 = 0.6 andg23 = 1. We can notice that the outage performance in the Gaussian S-R case

is better than the Gaussian R-D case for the two types of relayswhich is obvious because in

the first case the signals received by the relays are not attenuated.

In Figure 4, the outage probabilities for the AF protocol in the “all Rayleigh” case is simulated
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and compared to the noiseless relay bound (Section IV-A3). In these schemes, all the channels in

phase I and phase II are Rayleigh fading with unit variances. Although for the noiseless case the

outage performance is better for the variable gain relays asconcluded in Section IV-A3, in the

general case with the presence of noise at the relays level, the outage probability of fixed gain

relays outperforms the variable gain relays one. This result is due to the high noise amplification

in the case of variable gain relays when the source-relay channels are weak.

In Figure 5, we compare the outage probability performancesof the DF and AF protocols for

fixed gain relays in the general case (all the channels are Rayleigh fading with unit variance) and

for Gaussian source-relay links(g01 = g02 = 1) with equal power distribution. We can notice

that the DF protocol outperforms the AF protocol in the general case. But, in the particular

case of Gaussian source-relay channels and for high SNR values, the two protocols have the

same outage performance. So in this case we can use the AF protocol to reduce the hardware

complexity demanded at the relays for the DF protocol.

In Figure 6, we illustrate the SNR gain due to our power optimization approach for the

DF protocol. Rayleigh channels with variances(σ2
01, σ

2
02, σ

2
13, σ

2
23) = (0.5, 1, 5, 2) are adopted.

The lower and upper bounds and the simulations of the outage probability for R = 1 and

∆ = 1.8Ts are plotted for both equal and optimized power distribution. In this situation, the

power optimization results in a SNR gain of about1.2 dB. Figure 8 shows the SNR gain due

optimization of the outage gain in the DF case with respect tothe relative distance between

the relays and the source to the distance between the source and the destination. We adopt the

model of network shown in Figure 7 where the relaysR1 and R2 are located on the source-

destination link axis with the same distance to the source. Adelay of one symbol period is

introduced between the two relay signals. The channels are Rayleigh channels with the power

decay profileσij ∝ d−3
ij with dij is the distance between nodesi andj. The plain curve represents

the theoretical SNR gain obtained by optimizing theβis (based on outage gains) while the dashed

curve represents the SNR gain obtained by simulation for an outage probability set to10−3. We

notice that the optimization is all the more useful as the relays lie on the extremes of the S-D
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axis.

VIII. C ONCLUSIONS

In this paper, the outage gain of an asynchronous two-relay network using the Decode-and-

Forward and Amplify-and-Forward protocols is calculated for different values of relative delay

∆ between the two relays and for different source transmission rateR. Besides, the DMT of

the considered network model is proved to be equal tod(r) = 2(1 − 2r) for DF and AF

cases. Simulation results of the outage probability for different cases confirmed the theoretical

calculations and the merit of the power distribution optimization method is also illustrated.

APPENDIX A

PROOF OFLEMMA 1

Consider the family of functionsφǫ(x) = 1[0,ǫ](x). Denote byB(0,
√

ǫ) the ball ofR2 centered

at zero with radius
√

ǫ. We havelim
ǫ→0

1
ǫ
E[φǫ(|Hij|2)] = lim

ǫ→0

1
ǫ

∫
φǫ(x

2 + y2)fHij
(x, y)dx dy =

lim
ǫ→0

1
ǫ

∫
B(0,

√
ǫ)

fHij
(x, y)dx dy. As fHij

is continuous at the point(0, 0), we have

lim
ǫ→0

1

ǫ

∫

B(0,
√

ǫ)

fHij
(x, y)dx dy = fHij

(0, 0) lim
ǫ→0

Volume(B(0,
√

ǫ))

ǫ
= πbij .

We can also writeE[φǫ(|Hij|2)] = E[φǫ(Gij)] =
∫

φǫ(u)fGij
(u)du =

∫ ǫ

0
fGij

(u)du. As fGij
is

right continuous at zero, we havelim
ǫ→0

1
ǫ
E[φǫ(|Hij|2)] = lim

ǫ→0

1
ǫ

∫ ǫ

0
fGij

(u)du = fGij
(0+). Therefore,

cij = πbij.

APPENDIX B

BEHAVIOR OF THE PRODUCT CHANNEL DENSITY FUNCTION

Consider the fixed gain relay fading channelh = h1h2, with respective powersσ2
1 and σ2

2.

The probability density function (pdf) of the the squared envelopeGfix = |h|2 = G1G2 can be

deducted from [17] by a simple variable change:

fGfix (g) = 2c1c2 K0 (2
√

c1c2 g) , (28)
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wherec1 = σ−2
1 , c2 = σ−2

2 andK0(.) is the zeroth order modified Bessel function of the second

kind. Using the developpement of the functionK0 in [15, page 909], we obtain the value of

(28) whenρ → ∞:

fGfix

(
g ∝ 1

ρ

)
= fGfix

(
0+
)

= c1c2 ln ρ.

For a relay with variable gain, the pdf of the squared envelope of the overall relay channel

Gvar = ρG1G2

ρG1+1
can also be deducted from [17] by a simple variable change:

fGvar (g) = 2c2 e−c2g

[√
c1c2g

ρ
K1

(
2

√
c1c2g

ρ

)
+ c1K0

(
2

√
c1c2g

ρ

)]
, (29)

where K1(.) is the first-order modified Bessel function of the second kind.Using the devel-

oppement of the functionsK0 and K1 in [15, page 909], we obtain the value of (29) when

ρ → ∞:

fGvar

(
g ∝ 1

ρ

)
= fGvar

(
0+
)

= c2.

REFERENCES

[1] A. Sendonaris, E. Erkip, and B. Aashang, “User Coorperation Diveristy - Part I: System Description,”IEEE Transactions

on Communications, vol. 51, no. 11, November 2003.

[2] J. N. Laneman, D. Tse, and G. W. Wornell, “Cooperative Diversity in Wireless Networks: Efficient Protocols and Outage

Behaviour,” IEEE Transactions on Information Theory, vol. 50, no. 12, December 2004.

[3] K. Azarian, H. El Gamal, and P. Schniter, “On the Achievable Diversity-Multiplexing Tradeoff in Half-Duplex Cooperative

Channels,”IEEE Transactions on Information Theory, vol. 51, no. 12, pp. 4152–4172, December 2005.

[4] Andrej Stefanov and Elza Erkip, “Cooperative Space-Time Coding for Wireless Networks,” IEEE Transactions on

Communications, vol. 53, no. 11, pp. 1804–1809, November 2005.

[5] J. Nicholas Laneman and Gregory W. Wornell, “Distributed Space-Time-Coded Protocols for Exploiting Cooperative

Diversity in Wireless Networks,”IEEE Transactions on Information Theory, vol. 49, no. 10, pp. 2415–2425, October

2003.

[6] Yindi Jing and Babak Hassibi, “Distributed Space-Time Coding in Wireless Relay Networks,”IEEE Transactions on

Wireless Communications, vol. 5, no. 12, pp. 3524–3536, December 2006.

[7] Shuangqing Wei, “Diversity-Multiplexing Tradeoff of Asynchronous Cooperative Diversity in Wireless Networks,”IEEE

Transactions on Information Theory, vol. 53, no. 11, pp. 4150–4172, November 2007.

[8] X. Li, “Space-Time Coded Multi Transmission Among Distributed Transmitters Without Perfect Synchronization,”IEEE

Signal Processing Letters, vol. 11, no. 12, 2004.



23

[9] Fan Ng, Juite Hwu, Mo Chen, and Xiaohua Li, “Asynchronous Space-Time Cooperative Communications in Sensor and

Robotic Networks,”IEEE International Conference on Mechatronics and Automation, vol. 3, pp. 1624–1629, 2005.

[10] Yan Mei, Yingbo Hua, A.Swami, and B. Daneshrad, “Combating Synchronization Errors in Cooperative Relays,”IEEE

International Conference on Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP ’05)., vol. 3, pp.

iii/369– iii/372, March 2005.

[11] Yabo Li, Wei Zhang, and Xiang-Gen Xia, “Distributive High-Rate Full-Diversity Space-Frequency Codes for Asynchronous

Cooperative Communications,”IEEE International Symposium on Information Theory, 2006, pp. 2612–2616, July 2006.

[12] R. N. Krishnakumar, N. Naveen, and P. Vijay Kumar, “DiversityMultiplexing Tradeoff of Asynchronous Cooperative

Relay Networks,”[Online]. Available: http://arxiv.org/abs/0807.0204v1, July 2008.

[13] W. Hachem, P. Bianchi, and P. Ciblat, “Outage Probability-Based Power and Time Optimization for Relay Networks,”

IEEE Transactions on Signal Processing, vol. 57, no. 2, pp. 764–782, February 2009.

[14] R. Annavajjala, P.C. Cosman, and L.B. Milstein, “Statistical Channel Knowledge-Based Optimum Power Allocation for

Relaying Protocols in the High SNR Regime,”IEEE Journ. on Selected Areas in Communications, vol. 25, no. 2, pp.

292–305, February 2007.

[15] I. S. Gradshteyn and I. M. Ryzhik,Tables of Integrals, Series and Products, Alan Jeffrey and Daniel Zwillinger, sixth

edition, July 2000.

[16] M. Nahas, A. Saadani, and W. Hachem, “On the Outage Probability of Asynchronous Wireless Cooperative Networks,”

Proceedings IEEE Vehicular Technology Conference (VTC2008-Fall), Calgary, Canada, September 2008.
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Fig. 1. The asynchronous two-relay two-hop wireless network model.
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Fig. 2. Outage probability in the DF protocol case for different relative delay ∆ andR = 1.
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Fig. 3. Outage probability in the AF case of the particular cases with Gaussiansource-relay and relay-destination channels for

fixed and variable gain relays.
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and the Gaussian source-relay links case.
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Fig. 7. Network architecture for illustrating power optimization.
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