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Abstract

In wireless cooperative networks, the asynchronism betwiee relays can be a source of diversity
which is similar in its essence to the multipath diversity fafquency selective channels. In this
context, an asynchronous two-relay cooperative wireletwark is studied for Decode-and-Forward
(DF) and Amplify-and-Forward (AF) protocols. The outagelmbility in the high Signal to Noise Ratio
(SNR) regime is derived and the impact of the relative delaywben the two relays on this outage
probability is evaluated. It is shown that for a sufficientligh relative delay, the outage probability
performance becomes independent from the relative deldwapproaches from the synchronous protocol
performance. Besides, an optimization of the power distidm between the transmitting nodes of the
network is carried out in the high SNR regime based on thegeupaobability minimization. Moreover,
the Diversity Multiplexing Tradeoff (DMT) of the network isharacterized for the two cooperative
protocols DF and AF. The DMT curve does not depend on theivelakelay as long as the latter is

non-zero.
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I. INTRODUCTION

In wireless communications, the signal transmission isgexed by several attenuation factors
such as channel fading, shadowing, and path loss. It is welvk that Multiple Input Multiple
Output (MIMO) techniques improve the reliability and/oretldata rate. However, in some
devices, it is not possible to implement many antennas dusize&, hardware limitations, or
cost constraints. Therefore, the idea of cooperation katviee nodes of a network, in a manner
to create a virtual MIMO system, has attracted attention raeficient way to allow these
single-antenna devices to benefit of spatial diversity P]] Many cooperation protocols exist,
and three main protocol classes are the Amplify-and-FaitwaF), the Decode-and-Forward
(DF) and the Compress-and-Forward (CF) protocols. In genareboperation protocol consists
in two phases. In the first one, the source broadcasts itsagess the network. During the
second phase, the relay nodes retransmit the source irtforma the destination, after a special
processing that depends upon the cooperation protocol.

So far, most existing research on cooperative diversityrass perfect synchronization among
cooperative nodes [2]-[6]. Under this assumption, digteld space-time-coded cooperative di-
versity approach achieves diversity gains in the order ef tbmber of available transmitting
nodes in a relay network. However, this assumption is difficusatisfy in distributed networks
like ad-hoc and sensor networks [7]. The lack of perfect bymmization between relay nodes
has been recently considered in some works. Space-Times endeSpace-Frequency codes were
used in [8]-[11] to combat the imperfect synchronizatiod &mtolerate the delay asynchronism
in the cooperative networks.

In other contributions, asynchronism is considered asfimale when the relays transmit delayed
replicas of a given message towards the destination, asitiyeffect similar to multipath diver-
sity comes into play. In this line of thought, the author of §érived the Diversity Multiplexing
Tradeoff (DMT) curve of two asynchronous cooperative soberasing the DF protocol and
showed that they achieve the same performance as the syocisr&pace-Time coded scheme.

In [12], the authors considered two different models of asyanous cooperative relay networks



and propose a variant of the Slotted Amplify and Forward (pgetocol which asymptotically
achieves the transmit diversity bound for both these models

In this paper, we study the outage probability of an asynubwe two-relay two-hop wireless
network with single-antenna nodes for the DF and the AF pa#) in the absence of a direct
link between source and destination. The exact evaluatidheooutage probability”, for any
value of the Signal to Noise Ratio (SNR)is known to be a difficult task. A simpler problem
is to study the behavior oP, at high values ofp. Usually, there exists an integer> 0 for
which p?P, converges ag — oo to a positive value, in which caseis precisely the diversity
gain of the relaying scheme. The constant ph_f?o p P, provides very useful information on the
behavior ofP,. For instance, it can be used to compare the performanceoopteiocols having
the same diversity gain or to optimize the power distribu@enong the transmitting nodes. This
has been done in [13] and in [14], two papers devoted to spncius protocols. In [13[ is
called “outage gain”. In this paper, we shall extend the d@&im of the outage gain as follows:
assume there exists a real functign> 0 such that/}Lrgo f(p)P, =& >0, then¢ is called the
outage gain associated with In most of the paperf will take the formf(p) = p? (there exists
a diversity gain of2) except for one case with the AF protocol in Section IV-A3.
In this work we derive the outage gain for the different asypnoous scenarios introduced
above, and we minimize it with respect to the power distidutOur simulation results show
in particular that the asynchronous DF protocol using theesaodebook for the two relays has
approximately the same outage probability performanceénasDi= protocol requiring accurate
time synchronization with two different codebooks emplbyg the relays. For the asynchronous
AF protocol, we remarked that in the most general case, tlt@geugain is very difficult to
evaluate. However, we give closed form expressions andiaulations for the outage gain in
three pertinent situations which we believe are intergstinstudy.
The outage gain is a pertinent performance criterion in teguent situations where data rate is
fixed independently of the SNR. In the case where the rate isreess to grow with the SNR, the

widely used performance measure is the DMT. Complementihgn[¥which an asynchronous



two-relay network using DF protocol with a direct sourcestéieation link was considered, we
also evaluate the DMT of the considered network for both D& AR cooperative protocols.
Contrary to [7], our DMT derivation is valid for any non zerdatve delay between the two
relays.

The contributions of this paper can be summarized as follows

« A general formalism to calculate the outage gain for asymubus relay networks using
Decode-and-Forward or Amplify-and-Forward cooperativetqcol, which have not been
done so far to the best of our knowledge.

« A power allocation optimization based on the minimizatidntite outage gain factor for
asynchronous relay networks.

« A derivation of the DMT for both asynchronous DF and AF praiscwith no particular
assumption on the transmission model (all channels areomarfdding channels) and for
any delay profile (non-zero relative delay between the tWays).

The paper is organized as follows. In Section Il, the systesdehis described. In Sections 1l
and 1V, the outage gain is derived for the DF and AF protoce$pectively. For the DF protocol,
the outage gain is derived for a general class of radio chsnimet in the AF protocol case, it is
calculated in some particular configurations of the netwabr&knnels because of the mathematical
complexity in the general case. Section V describes the poptmization method. The DMT
expression of the network is given in Section VI. Numerieults are provided in Section VII.

Finally, some conclusions are drawn in Section VIII.

II. SYSTEM MODEL, ASSUMPTIONS ANDNOTATIONS

We consider a wireless network that consists in a soSrdsvo relay nodes?; and R,, and
a destinationD as shown in Figure 1. All nodes have a single antenna. Thgs@perate in
the half-duplex mode, which prohibits them from transmdgtiand receiving at the same time
[3]. We assume that there is no direct link between the soanckthe destination because the
channel gain between these two nodes is practically zerdatuastance to the large distance

separating these two nodes.



In this work, we consider orthogonal cooperative protosatsch are generally divided into
two phases, each with duratidfi/2 channel uses. During Phase |, the source broadcasts its
message towards the relays. During Phase II, the source stopsmitting and the active relays
forward the source information to the destination. For the [@otocol, only the relays that
succeed in decoding the source message transmit in the dsgd@se. Denote bP(s) the
set of relays that succeed in decoding the source messagecartlinality of this set satisfies
|D(s)| € {0,1,2}. When the two relays succeed in decoding the source mesgage|(= 2),
it is assumed for implementation simplicity reasons as intlat the relays employ the same
Gaussian codebook to transmit in Phase II. For the AF prattoe two relays transmit in Phase
Il the amplified versions of the message broadcasted by thieason Phase |I.

Due to the distributed nature of the network, a differentetidelay is introduced on each relay-
destination path; we denote by and r, the delays of the signals received by the destination
from relaysR; and R, respectively.

In this paper, the parametemill represent a certain power budget of the network and sallit
be proportional to the transmitted powers of the networkesod, R; and R;), or equivalently
p Wwill be proportional to the Signal to Noise Ratio (SNR).

Let us assume that the sourSetransmits the Gaussian codewo(rﬁ(k))ff1 € CT/2 during
Phase |. Denote by,p the power of the source wherg € (0, 1) is a power coefficient given
to the source. The amplitude gain applied:«t@) is v/Gop. The signaly;(k) received by relay

R; (i = 1,2) at the output of this relay’s matched filter is

yi (k) = \/Bop Hoi (k) + ns(k), i=1,2.

Assuming channels are frequency flat fading channels, thgplax random variabldéiy; is the
channel gain between the sourSeand the relayR;, andn; is the Additive White Gaussian
Noise (AWGN) atR;.

For the DF protocol, if the relay?; succeeds to decodgk), this relay transmits the same

codeword in Phase Il. The continuous time signal- received by the destinatio during



Phase Il is:

ypr (t Z Bip Hiz Zl’(k)@(t -7, —k) + 713(?5) (1)

:R,€D(s) k
where j3;p is the power of relayR;, H;3 is the channel between reldy;, and D, ns(t) is the

AWGN at D, and®(t) is the equivalent transmitter receiver filter.
In the AF case, the relai; simply transmits the signal/A,y;(k) towards the destination where

A; is the power gain applied bf;. The signal received by the destinatiéhis

yAF Z \/_H’?’Zy’ t—TZ—]{?) + TL3(t)

1=1,2

-y (\/_HZ;;Z(\/ﬁTHOZ )+ k) <I>(t—7,»—k:)> +ons(t). ()

1=1,2
Our assumptions and notations are the following. The complennel gainsf;;, available

only at the receivers, are assumed to be independent randoables. We assume that the joint
density fu,;(x,y) of (Re&(H;;),Im(H;;)) is continous and positive db,0), and we denote by
bij = fu,;(0,0) its value at zero. All AWGN at relays and at destination areepehdent with
unit variance. The delays, are also known to the destination. Without loss of genegtahie
consider that, > 7; so that the relative delay between the two relayA is ,—7; > 0. Finally,
the filter ®(¢) is assumed to be a perfect low pass filter with a transfer fomat;_, /2 /2(f)
where1l 4 is the indicator function of set.
The outage gain derivations below often make use of the pohannel gaings,;; = |H;;|*. We
shall denote byfs,; the density ofGG;;. The following lemma will be useful:

Lemma 1: Assumingy,; is continuous at0,0), the densityfs,; is right continuous at zero,
andc;; = fg,,(07) satisfiesc;; = 7b;.
This lemma is proven in Appendix A. As an example, assumeHheare complex Gaussian
circular withEH;; = 0, andE|H;;|* = a - (Rayleigh channels). In this case, one can check that

bij = 1/(71'0'22]) andCZ‘j = ]./0'27

II. OUTAGE GAIN OF THEDF PrOTOCOL

The outage probability of our protocol 8, = P[Z < R] whereZ is the mutual information

between the source and the destination (to be specified paloh? is the source transmission



rate in nats per channel use. We shall show that the outagefgai > 0 of this protocol is
associated with the functiofi(p) = p?, i.e,, our protocol has a diversity gain af To show that
p?P, converges and to derive the expressiorf gf, we divide the outage probability into three

components:
P, =P[ID(s)| = 0] + P[D(s)| =1] BZ <R/ [D(s)| = 1]
+ PD(s)| =21 PZ <R/ [D(s)| =2]
= 15,0 + Po,l + P0,2- (3)

Based on this decomposition, we obtain the following propmsiwhich is the main result of
this section:
Proposition 1: Consider the asynchronous two-relay two-hopvaogk and a DF protocol as

described in Section Il above. For a given rdtethe outage probability?, satisfiesp? P, ——

Eor =& + & + & Where p oo
€ = 002?2 (€2R B 1)2 "
o= (5 ) " .
== ;21;?252 /{(zl,zQ)e@,I(zl,ZQ,A)gR} dzidz (6)

. 1 [ .
With Z(zy, 20, A) = = /2 log (1 + |21 + 2o exp (—2ur fA)|?) df . Here it is understood thatz; =
_1

2
2
dx; dy; wherez; = x; + 1y; with »> = —1. For positive integer values af, &, is given by
C13€23  9oR ( 2R
= e“t(et—=2R—1) . 7
@ 5132 ( ) (7)

More generally&, satisfies

C13C23 2R A 2R-A_ A ) C13C23 2R A ( 2R-&- A )
eTTAT [ 7' TAT —2R—— — 1) <& < e Al | eTA] —2R—— — 1 8
55 ( N A (®)

where [A] (resp.|A]) is the smallest integer A (resp. largest integeK A) and A > 1 for
the upper bound.
The parameters:;, co2, c13 and co3 in Equations(4)-(8) represent the values at zero of the

densitiesfs,,, fay., fas and fq,, respectively.
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Proof: The proof will show that;, = lim ,ozPo,l for I =0,1,2. We shall treat in turnP, o,
p —00
P,; and P, .

Let us begin withP,,. We have

2

p*P,o = p? HP[ log (14 pBoGoi) < R} = H/ fao, (z:) da;.

i—1 Y 3 log(1+pBoxi)<R

By making the variable changes = pgyx;, we obtain

2
1 U
2 )
p POO / fG i <_> duz
ﬁo H Llog(1+ui)<R “\ pbo

We now letp — oo. By applying Lebesgue’s Dominated Convergence Theorem armélipyg

on the right continuity of thefc,, at zero [13] with lim fe,, (%) = fa,,(07) = coi, We obtain
p—00

54
We now turn toF, ;. Let P;(p) = IP[% log(1+ pBeGoi) < R] be the outage probability of relay

2
lim p2P, = 0102 / du| = Right Hand Side (RHS) of (4)
p =0 log(14+u)<R

R;. The probabilityP, ; writes
P, = P[D fails / D(s) = {1}](1~Pi(p))Pa(p)+P[D fails / D(s) = {2}](1-Pa(p)) Pi(p) . (9)

The derivation made foP, , above showed tha®;(p) ~ %%(exp(QR) —1) asp — oo. In partic-
ular, this shows that— P;(p) ~ 1 asp — oo. Moreover, when relay?; is the sole active relay, the
associated delay has no influence on the conditional outage probalfty fails / D(s) = {i}],
which writes P[D fails / D(s) = {i}] = P [3log (1 + pfiGis) < R] ~ % (exp(2R) — 1).
Getting back to Eq. (9) we deduce from these observatiorts liha o> P, ; = RHS of (5).

p —00

We now consider, ,. This probability writes
P2 = P[D fails / D(s) = {1,2}](1 — Pi(p))(1 — P2(p)) ~poc P[D fails / D(s) = {1,2}].

When the two relays successfully decode the source messamesend this message on the
equivalent multipath channel with the frequency selediigasfer functiong (f) defined as (see
Eq. (1))

= (\/ BipHyze ™™ 4 y/ ﬂz,OH23€_2WfTQ> L_1/2,19(f).



The mutual informatiorZ (v/31pHis, / f2pHas, A) associated with this channel is given by

T(v/GupHia, /FapHs ) = 5 [ og (1416 (7)) df (10)
/2 log <1 + ‘\/ BipHiz + v/ 52PH23€_2MM’2) df.  (11)

Now we have

2IP’[D fails / D(s) ={1,2}] = pz/ frs (Re(z1),IM(21)) fr,s(RE(22),IM(22)) dzy dzo
{(21,22)€C2: Z(\/B1pz1,v/ Bapz2,A) <R}

! / Frnny (Re(uy)//Fop, IM(us) )/ Fap) %
(u1,u2)eC2: I(

5152 T(ur,u2,A)<R}

Frzs (RE(u) [/ Bap, 1M (uz) [/ B2p) duy dus

b13b23/
_
p—00 5152 {(u1,u2)€C?: T(uy,u2,A)<R}

du1 d'LL2
= RHS of (6) by Lemmal.

We now prove thaf; is given by Eq. (7) when\ is a non-zero positive integéy € N* (assuming
without loss of generality that the symbol peridgis equal to one). Writing7;; = /G 5?3,

the mutual informatior¥ given by Eq. (11) becomes:

1
1= 3 / . log (1 + )\/ﬁlpr + \/ BapGoge 2 (Br3=023) 7 2) ‘ ) df. (12)

As the integrand is periodic and spans an integer number ragdgseon the integration interval
[—1/2,1/2], we can assume th@i; — 0,3 = 0. Moreover, by making the change of variables

t = fA, we obtain

A/2
= 5A / log 1 + B1pGrs + BapGas + 2p/ 1 82G13G 23 cos (27t) ) dt

A/Q
=3 / log ( + B1pG13 + BapGaz + 2py/ B1P2G13G o3 cos (27t) ) dt.
~1/2

By referring to [15, page 526], this integral admits a closadnfsolutionZ = ZM(3,pG 13, 32pGa3)

where functionZ™ is defined oveiR? as

int 1 1+ZL’1+CL’2+\/(1+ZL’1+I2)2—4[E11’2
IT"™(x1,29) = = log . (13)

2 2
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The outage gain for non-zero positive integeris then derived as

& = lim p2 fors(U1) fags (ug) duy dus (24)

peo /{<u1,u2)eR1:Ii“t(ﬁlpul,ﬁzpua)gl%}

1
= lim / fG1 ( > fG2 (—) dxy dx
p 00 61ﬁ2 {(z1 xg)ERi:Iim@l,xz)SR} ’ 51 ° 62 ! 2

_ G13C23

61&2 \/Il IQ ERQ I'”t(arl 1‘2)<R}
becausehm fG13< ) fGlS (O+> =C13 and hm szs( ) fGQS( ) = C23.

dl’l dl’g s

After some simple derivations, we can show that the intégmaicompact) sef(z;, z2) € R :

T™(xy,2,) < R} is described by the following equations:

Thus we have after a simple derivation

dry dxy = 2% (2 —2R — 1) (15)
/{(:pl,xz)GRi:Iim(xl,xQ)gR} ( )

which leads to Eq. (7).
It remains to prove the Inequalities (8) useful in the gehesse A ¢ R*. Getting back to
the expression (11) of the mutual informati@rassociated with channél(f), and making the

change of variable = fA, we obtain

1 A/Q oyt 2 1 A/Q
= 5A log (1 + ‘\/ BrpHyz + \/ PapHoze =" > dt = ﬂ/ p(t)dt.
—A/2 —A/2
As the integrandy(t) is nonnegative, we have
1 [A]/2 o) [A]/z
— Hdt <T < — / (16)
28 J a2 a2

By making the change of variable= ¢/|A| and by using the same argument as the one that

follows Eg. (12), we obtain

Lo A] [ [A] i
ﬁ INY ¥ E 12 SO(LAJU) du = TI (61pG137ﬁ2pG23) )

Similarly, the upper bound in (16) is equal @11‘”‘ (B1pG1s, B2pGa3). By applying to these
two bounds the same argument as the one that follows (14)ir{tegration sets beingZ™ <
(A/[A)R} and {Z™ < (A/|A])R}) we obtain imediately the bounds specified by (8).

Proposition 1 is proven. [ |
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Comments on Proposition 1When the two relays use the same codebook, Proposition 1
shows that introducing a delay between the two relays is fimslein terms of diversity. This
proposition shows in particular that the outage gain dodsdepend on the relative delak
when A is a non-zero integer. In the general situation whare R* , the bounds provided by
Inequalities (8) become quite close to each other and tontieger delay outage gain whénis
of the order of a few symbol periods. We note that another tdveaind for real relative delays
was derived in [16].

Another point is that, using the same codebook, we have asitiyeof two only when the
delay between the relays is non zero and the diversity bes@geal to one ifA = 0. To see
this, assume that, = » = 7 wherer is a given common delay in Eq. (1). In the case where
both relays succeed in decodin@s(= { R, R>}), the signal received by the destination during

the second time slot becomes

ypr (t) = \/p (\/E Hys + /B2 Hoy ) 2(B)B(t —7 — k) + nalt) .

The equivalent channe(l\/E Hys + \/EHQ?,) generates a diversity of one only. This can be
easily seen ire.g.the Rayleigh case. The lost of diversity fdf = 0 can also be seen by
simulations in Figure 2.

It is interesting to compare the outage gain of this asynatuwe DF protocol with the more
classical synchronous DF protocol where the two relays ndepiendent codebooks. In Section
VII, it is shown by simulation that the two protocols have rgdhe same performance.

To better explain the difference between the two DF pro®eadiove, let us consider a simple
example. Suppose that the sourgetransmits the following N-symbol framg5;, Ss, ..., Sn|
using the codebook’ and that the relay$?; and R, successfully decode the entire frame. In
the asynchronous DF protocdt; and R, use the same codebodK to decode the frame in the
second phase; so the two relays sé#id .S, ..., Sy to the destinatorD with a delayA between
the two transmissions. On the contrary, for the classicatisgonous DF protocol, relays; and

R, use respectively the codebooks8 and C? for example to decode in the second phase and

they send respectively the framgg, S, ..., Sy and[S?, S, ..., S%] synchronously taD.
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IV. OUTAGE GAIN OF THEAF PROTOCOL

We now consider the AF protocol. We begin with some obseraatiabout the choice of the
power gainsA; (see Eq.(2)) used by the relays. Two strategies exist: reitixed gain strategy

is chosen wherel; is set to a predetermined valug = 3;, or a variable gain strategy is adopted

where A; depends ortry; according toA; = % The latter strategy guarantees that the
0P Lo

power spent by the relay is equal ty whatever is the value of7o; [17]. The two strategies
will be considered herein.

Let us begin by providing the general expression of the autgain {4, which is given
as in the DF case by.r = plgrolo pQPO. Due to the different time delays of the relay signals,
an equivalent multipath fading channel appears betweernrdlags and the destination. The

1/2

associated mutual information B, = /
—1/2

Spectral Density (PSD) of the information signal receivgdte destination and, is the noise

log (1 + %) df where S,(f) is the Power

n

PSD at the destination; Using EqQ. (2), these two quantitiesgaven by:

2

9

Se(f) = ’\/ A1 BopHor Hize ™™ + \/ Ay BopHoo Hoze >™™
Sn - A1G13 + A2G23 + 1
In order to study¢,r, we restrict ourselves in most of this section to the caserevhe =
7, — 71 € N*. In the caseA € R’ results similar to the DF case will be given succinctly at

the end of this section. By a derivation similar to the DF cdseva for A integer (argument

developed between Eqgs (12) and (13)), the mutual informafig- writes

1
1 (2
Tar = 5/ log (1 + ‘\/ZL‘I + VT2 62””%{2) df

NI

=

/ log (14 21 + o9 4+ 2y/2125 cos (27 f)) df = T™(zy, 25)

N —

N

with
_ A15op Go1Gas o AsBop GoaGas
AL Gz + Ay Gos +17 2 AGiz + AgGas + 1

(17)

T

and Z"(z,, z,) is given by Eq. (13). We denote b (Gor, Goz, G13, Gas, p) the function

f}ix(Gm, Gog, Glg,ng,p) = Iim(l'l,zg) where ($17$2) are replaced with their values in (17)
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and Az = ﬁz Slmllarly, we |et.7:var(G01, GQQ, Glg, Ggg,p) = Iint(l'l, .1'2) where this time the41

are the variable gaind; = (3;p/(BopGoi + 1). With these notations{,» can be written as

fAF = lim p2/ ( fG01 (ul) fG02 (UQ) fG13 (Ug) fG23 (U4> dU1dU2dU3dU4. (18)
Fiix or Fuar

p=00 u1,u2,u3,us,p) <R

To derive this expression, we have to delineate the domawvaoétion of the four parameters
(u1,u9,us, uy) for large p then solve a complicated integral. In general, this taskvshio be
very difficult. In order to simplify the problem, we shall cider three interesting particular
cases for which this limit is tractable. We shall considetum 1) The case where the source-
relay channels are Gaussian, 2) The case where the relagadies channels are Gaussian, and

finally 3) The performance bound obtained when the relaysargeless.

A. Outage gain for some particular cases

1) Gaussian source-relay linkstVe consider that the channels from the source to the relays
S — R; and S — R, are Gaussian channels, in other words; and Hy, are deterministic.
This case corresponds to a downlink mobile communicatiah ¥ixed position relays and the
existence of a line of sight between the Base Station (thecepwand the two relays. In the
sequel, we shall denote the power gains of the determintstasinels by lower case letters.
Hence the power gains of the — R; and andS — R, channels will be denotegy; and gg,
respectively.

Proposition 2: Consider the asynchronous network and the Aftoppl described in Section
Il. For Gaussian source-relay links, given a rakeand assuming a fixed gain strategy, the outage
probability P, satisfies

C13C23
5851 B2901902

Assuming a variable gain strategy, the following holds true:

2

p°P, — Ear = e (e —2R—1). (19)

p’P, —— Eap = 2t (62R — 2R — 1) : (20)
p—
Sketch of proof:In the setting of this proposition, the RHS of (18) writes

lim p?P, = lim fous(u/p) faus(v/p) dudv.

p=ee P00 J Fix o Fuar(go1,902,u/pv/p.p)<R
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Let us begin with the fixed gain relays casé& & ;). The idea of the proof is the following:
for large p, we haver; ~ (o5 go1pu andxs ~ Byfagoepv in (17). Furthermorefq,, (u/p) ~ c13

and fq,,(v/p) ~ co3, hence one expects that

lim p?P, = 013023/ dudv = 201&/ du dv = RHS of (19)
p—=oo TNt (BoB1901u,80829020) <R 505152901902 T (uv)<R

by Eg. (15). Heuristically, these derivations show that atage event occurs when both gains
G13 and Gy are small (of ordei /p).
A rigorous proof for (19) involves a rather lengthy Domirdi€onvergence Theorem argument
which role is to justify the exchange betwegi_m& and [. These details are omitted for lack of
space.
In the variable gain relays case, we haxve~ [ip u andxz, ~ [Byp v for large p. A similar
derivation to the fixed gain case gives (20). [ |

2) Gaussian relay-destination linkddere, we consider that the channels from the relays to
the destinatiol?; — D and R, — D are Gaussian channels; this; and Hy3 are deterministic
and we denote the gaing;; and G,3 as g3 and g3 respectively. This case corresponds to an
uplink mobile communication with fixed position relays art texistence of a line of sight

between the relays and the Base Station (the destination).

For fixed gain relays, we have

_ B1Bop 913Go1 i B280p g23Go2
Bigis + Bagas + 17 ? Bigis + Bagas + 1

T

Similarly to the previous section, the RHS of (18) writes

lim pQPo = lim fGOl (u/p) fGoz (U/p) du dv
p=eo P20 J Fix(g13,923,u/pv/p.p) <R
_ (Brg1s + B2g23 + 1)2 C01Co2 / dudv
535152 913923 Tint(y,v)<R
1)?
_ (Brg13 4—252923 +1)" corco ¢ (2% _ 2R —1). 21)
505152 913923

In the variable gain relays case, it is difficult to obtain gienclosed form expressions for the

outage gain. This case will be treated by simulations iniSectIl.
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3) Noiseless relay bound\ow, we consider that the noise at the relays level is nul({) =
ny (t) = 0). Moreover, we assume that all channels are Rayleigh chsutHgl ~ CN (0, 07))).
Clearly, the outage gain in this case is a lower bound of thergértase. Let us focus on the
fixed gain relays case. In this case, it is clear that= 5, 6,pGo1G13 and xy = [B560pGo2Gas,
which leads us to consider the density function of the prodfidwo independent exponential
random variables. Such densities are considered in [17]deksonstrated in Appendix B, the

densitiesf,, ¢, and foo,c,, Satisfy in a neighborhood gf = oo :
fGo1G13 (u/p) ~ cp1c13 In P; fG()QG23 (U/IO) ~ Co2C23 In p-

Due to thelnp factor in these equations,(p)P, does not converge to a finite value when
f(p) = p?. In order to obtain a meaningful definition of the outage dairhis case, we need

to take f(p) = (ﬁ)2 instead. With this definition, we have

pQ
e = i
5AFflx 91—{20 (ln p)2

C01C13Cp2C23 / du dv
2 .
ﬁOﬁlﬁ? Int(u,w)<R

Ot o (2R _gp ). (22)

356152

i i _ BoB1p*Go1Gis __ BoB2p?Go2Gas
In the variable gain relays case, we have = e and z, = S rcrn The

/ fG01G13 (u) fGoszs (U) du dv
}‘fix (U,U,p)SR

densities of these two random variables are continuous™awvith a limit independent of:

feoncis(u/p) ~ c13 and fao,c..(V/p) ~ co3 (See Appendix B). In this situation, the outage

gain &% is associated with the usudlp) = p?, i.e, 4y = lim p*P,. After some similar
p—00

derivations like for the fixed gain relays, we obtain

n C13C23 2R 2R
19 Foar = e et —2R—1). 23
AL 635162 ( ) ( )

B. Real relative delays

In Section IV-A, we can notice that the outage gains (19)),(21), (22) and (23) calculated
for A € N* are independent from the value &f In this section, we give lower and upper bounds

for the outage gains of the AF protocol particular cases ¢or-pero positive real relative delays.
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Similarly to the DF protocol in Section lll, to obtain lowen@ upper bounds of the outage
gains for the AF particular cases considered above, we essatine derivations as in the proof of
Equation (8) in Proposition 1. Therefore, to obtain loweuihds forA € R we replace, in the
expressions of the outage gains obtained for integer velaklays in Section IV-A (Equations
(29), (20), (21), (22) and (23))R with R% and to obtain upper bounds for real > 1 we
replaceR with Rﬁ in the same expressions of outage gains.

V. POWERDISTRIBUTION OPTIMIZATION

This section is devoted for the optimization of the powerilittion between the source and
the two relays based on the mimimization of the outage ga@t.us begin by evaluating the
total average power expenditure in the DF case, the AF casewariable gains and the AF
case with fixed gain. Choosing, + 5, + . = 1 and recalling that any node is active at most

half of the time, the total average power in the DF case is

% n %]p [R; € D(s)] + %P [R2 € D(s)] <

NI

at high SNR

becauseP [R; € D(s)] ~ 1 at high SNR. In the AF case with variable relay gain, the total

: . 1 . :
transmitted power is S|mp|§ (Bo+Br+B2)p= g with Gy + 61 + 52 = 1. In the AF case with
fixed gain, the transmitted power is

% [Bop + B1 (PEGo1 + 1) + B2 (pPEGo2 + 1)] < g [Bo + FLEGo + o2EGos] .

Our purpose is to minimiz€ with respect ta 5y, 41, 32). In all the considered cases, the outage
gain & = £(fo, 41, 2) is a convex function. This is due to the fact that it is a sumufctions
of the typef (5o, 51, F2) = Kﬁo‘“ﬁl‘bﬁgc wherea, b, c and K are non negative constants (see for
instance Eqgs (4)-(6)). By deriving the Hessian matrix, sugitcfions can be shown to be convex.
The constraint set ie.g.the DF case and the AF with variable gain cas¢(i%, 5, 3.) € R3 :
Bo-+ 1+ 2 = 1} and therefore is also convex. The minimization can be dos#year instance
with the help of a descent method.

Some examples of channel distributions and delay profilescansidered in Section VII; in

these examples, we include a discussion on the power ogtilmizand on the SNR gain that
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comes out of this optimization in comparison with the equalver distribution. Also, some

insights on the optimal power allocation are given.

VI. DIVERSITY MULTIPLEXING TRADEOFF

The Diversity-Multiplexing Tradeoff (DMT) reveals a funaental relationship between the
diversity gain which characterizes the asymptotic rate edadling error approaching zero as
SNR increases, and the multiplexing gain which charaasrihe asymptotic spectral efficiency
in the large SNR regime [18]. The DMT functiaf{r) is associated with the outage probability
PF,asd(r)=— lim log Fo(R)

p—oo  logp
as R = rlogp. Hered(r) is called the diversity gain and the factoiis called the multiplexing

where R is the data rate, assumed to increase with the $NR

gain.
Proposition 3: The DMT of the considered asynchronous tvi@yrevo-hop wireless network

for the DF and AF protocols for € [0, 1) is

d (’I") =2 (1 -2 T) 1[071/2} (’f’) . (24)

Proof: Let us consider the DF protocol. Recall that the general fofrthe outage prob-
ability for this protocol is given by Eq. (3). Here the DMT fetion is given byd(r) =
min(dy(r), d1(r),dz2(r)) whered;(r) = —lim,log P,;(R)/logp for i = 0,1,2. By a standard
derivation [3], we havely(r) = di(r) = 2 (1 — 2r) 19,19 (7).

Let us considewdy(r) = lim,logP [Z <rlogp / |D(s)| =2|/logp whereZ is given by Eq.

(11). Aslog is a concave function, we have (see Eq. (12))

1 3 ~ - 2
1< 3 10g/ (1 + ‘\/510013 + \/ﬂ2pG23€ 2 (013 923)+fA)‘ ) df

1
< 3 log (1 + 2 (pB1G13 + pBaGas)) .
By deriving the DMT on the RHS of this expression [3], we obt@i(v) < 2 (1 —27) 1_1/2.1/9(r).
We now look for a lower bound oi, (). The derivations are inspired by those made by Grokop

and Tse for the Inter Symbol Interference channel [19],.[2Df starting point is the expression
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(10) of Z. Let ||G||? = f_I{?Q G(f)|df, and writeG(f) = 9. Fixing e > 0, we have:

log (1+ G (f)) = log (1 + 191 \(5“)\2)

~ 2 ~ 2
= log (1 + G117 ‘g (f)‘ ) R + log (1 +G° ‘g (f)‘ ) X 1igp))<e -

Hence
1 % 2 1 2
L 5/_110g(1+|g(f)| Jdf =3 /110g (1+HQH ‘g ‘ ) X 1ig(p) e 4
1 [2
2 5/_élog( +1G]* € ?) x 1]@ (£)]ze df = (1 - ‘Z/l< ) ) log (1 + HQH2€2)
with u( > {f €l-33): ‘g ‘ } and || is the Lebesgue measure lgf

By consequence, the outage probabiltyZ < rlogp / |D(s)| = 2] satisfies
P[Z<rlogp/ |D(s)| =2 <P llog( +IG]1% ) < 2)7"1‘)(“ )] . (25)
By a technique similar to [20, pages 56-57], it is possiblerows that
Ve > 0,3u > 0 such that sup ‘u( >‘<M7

g(f):lgl<t

which results in

2rl 2rl
sup r ong <7 -1y (26)
g(nilg<1 1 — ‘Z/{ <g7 €> 1—p
Moreover, we have
1G|° :P/l vV Bi1H3 +\/BaHoze™ 2mfA‘ df
sinTtA

=p (51\H13’2+52!H23\2+2\/ B152 Re(H13H§3))

sin tA 9 sm7rA
=pl(1- A (Bi|His|” + Ba|Has|?) ’\/ H13+\/52H23‘

sinTtA
> (1 - | ') (B1 gl + Bl Hs?) = pEC(A) (51Gis + BaGis) (27)

where K (A) > 0 for A > 0. Plugging Inequalities (26) and (27) into (25), we obtain

2rlogp
1—p |

P[Z<rlogp/ |D(s)|=2] <P {log (1+ peK(A) (51G1s + 2Ga3)) <
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Hence the bound isly(r) > 2 (1 — f‘_—’"ﬂ) Letting 4 — 0, we obtaindy(r) > 2(1 — 2r).
Combining with the upper bound, we end up with(r) = 2(1 — 2r), which proves (24) for the
DF protocol.

The DMT derivation for the AF protocol can be done similarly. |

VII. NUMERICAL RESULTS ANDINTERPRETATIONS

Our first simulation results (Fig. 2) concern the perforneaatthe DF protocol. In this figure,
all channels are Rayleigh fading with unit variar(eéj = 1), and the data rate has been set to
R = 1. Moreover, all nodes have the same power. In this figure, thage approximatio®, ~
¢prp~2 given by Prop. 1 is plotted for integer valuesAf Simulation results for different values
of A are also shown. One can notice a very good fit between the xipmtion P, ~ £ppp 2
and the simulation results for high SNR regime. For comparigurposes, we test on the same
figure the outage probability of a synchronous DF protocoictvluses independent codebooks
at the relays (see comments after Prop. 1). We notice thgteéfermance of the asynchronous
DF protocol is quite comparable to the performance of thelssonous one. We can also remark
that the outage gain becomes invariant and equal to the ¢zm® integer relative delay when
A is sufficiently high. Therefore, to insure good outage philig performance, the relays can
introduce additional random delays before transmittinghi second phase.

The AF protocol is tested in Figures 3 and 4. The simulatiomdd®mns are identical to those
of Figure 2 as concerns the rate, the powers and the Rayleaimels. In Figure 3, we plot the
outage probability for the first two particular cases coesd in Section IV-A: Gaussian source-
relay channels and Gaussian relay-destination channidsd [gains as well as variable gains
have been considered at the relays. For the case where tteegelay channels are Gaussian,
we takegg; = 0.6 andgy, = 1 while for the Gaussian relay-destination channels cas@sseme
thatg;3 = 0.6 andge; = 1. We can notice that the outage performance in the GaussRut&se
is better than the Gaussian R-D case for the two types of reldysh is obvious because in
the first case the signals received by the relays are notugitiedh.

In Figure 4, the outage probabilities for the AF protocolhe tall Rayleigh” case is simulated
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and compared to the noiseless relay bound (Section IV-A3Xhdse schemes, all the channels in
phase | and phase Il are Rayleigh fading with unit variancéhofigh for the noiseless case the
outage performance is better for the variable gain relaysoasluded in Section IV-A3, in the
general case with the presence of noise at the relays Ié=butage probability of fixed gain
relays outperforms the variable gain relays one. This teswalue to the high noise amplification
in the case of variable gain relays when the source-relayraia are weak.

In Figure 5, we compare the outage probability performamméebe DF and AF protocols for
fixed gain relays in the general case (all the channels areeRg&ylading with unit variance) and
for Gaussian source-relay linKgo, = goo = 1) with equal power distribution. We can notice
that the DF protocol outperforms the AF protocol in the gahease. But, in the particular
case of Gaussian source-relay channels and for high SNRsalbhe two protocols have the
same outage performance. So in this case we can use the Adeqrtd reduce the hardware
complexity demanded at the relays for the DF protocol.

In Figure 6, we illustrate the SNR gain due to our power optation approach for the
DF protocol. Rayleigh channels with varianceg,, 0,, 0%;,02,) = (0.5,1,5,2) are adopted.
The lower and upper bounds and the simulations of the outageapility for R = 1 and
A = 1.8T; are plotted for both equal and optimized power distributibnthis situation, the
power optimization results in a SNR gain of abduz dB. Figure 8 shows the SNR gain due
optimization of the outage gain in the DF case with respedheorelative distance between
the relays and the source to the distance between the souticéhe destination. We adopt the
model of network shown in Figure 7 where the reladys and R, are located on the source-
destination link axis with the same distance to the sourcelely of one symbol period is
introduced between the two relay signals. The channels ay&eiBa channels with the power
decay profiler;; o d;f’ with d;; is the distance between nodeand;. The plain curve represents
the theoretical SNR gain obtained by optimizing the (based on outage gains) while the dashed
curve represents the SNR gain obtained by simulation foruage probability set ta0—3. We

notice that the optimization is all the more useful as thay®llie on the extremes of the S-D
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axis.

VIIl. CONCLUSIONS

In this paper, the outage gain of an asynchronous two-redédyark using the Decode-and-
Forward and Amplify-and-Forward protocols is calculated diifferent values of relative delay
A between the two relays and for different source transmmssite R. Besides, the DMT of
the considered network model is proved to be equalito = 2(1 — 2r) for DF and AF
cases. Simulation results of the outage probability fofed#int cases confirmed the theoretical

calculations and the merit of the power distribution opgation method is also illustrated.

APPENDIXA

PROOF OFLEMMA 1

Consider the family of functiong,(z) = 1;y ¢(z). Denote byB(0, v/¢) the ball of R* centered
at zero with radius,/e. We havelim 1E[o (| Hy|?)] = lir%%fqﬁe(xz + v?) fu,, (z, y)de dy =
Efgifmm fu,; (v, y)dz dy. As f,; is continuous at the poir(D, 0), we have

1 \olume(B
im [ (e g)dedy = fi, (0,0)lm QMBI _ oy -
e—0 € B(0,,/€) e—0 €

We can also writeE[¢(|H;;|*)] = E[¢(Gyj)] = [ dc(u)fa,,(w)du = [; fa,, (u)du. As fq,, is
right continuous at zero, we halien LK (|Hij|*)] = lir%%foe fa,(w)du = fg,, (07). Therefore,

Cij = 7Tbij.

APPENDIXB

BEHAVIOR OF THE PRODUCT CHANNEL DENSITY FUNCTION

Consider the fixed gain relay fading chanrelk= h,h,, with respective powers? and o3.
The probability density function (pdf) of the the squaredetope Gy = |h|2 = (G1G, can be

deducted from [17] by a simple variable change:

faw (9) = 2c102 Ko (24/cic2 g) (28)
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wherec, = 072, c; = 0,2 and K,(.) is the zeroth order modified Bessel function of the second
kind. Using the developpement of the functiéf in [15, page 909], we obtain the value of
(28) whenp — oc:

1
fGﬁx (g X ;) = foiX (OJr) = c1co Inp.

For a relay with variable gain, the pdf of the squared enwelopthe overall relay channel

Guar = 22252 can also be deducted from [17] by a simple variable change:

-2 [ () o ()]

where K (.) is the first-order modified Bessel function of the second kidding the devel-

oppement of the function®’, and K, in [15, page 909], we obtain the value of (29) when

p — 00:

feva (g x %) = fow (07) = ca.
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Fig. 1. The asynchronous two-relay two-hop wireless network model.
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Outage Probability in the DF case for different A and for R=1
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Fig. 2. Outage probability in the DF protocol case for different relatieagA and R = 1.
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Outage Probability in the AF case for integer A and R=1
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Fig. 3. Outage probability in the AF case of the particular cases with Gaussiane-relay and relay-destination channels for

fixed and variable gain relays.
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Outage Probability in the AF case for integer A and R=1

Direct link (without cooperation) | T™Ng =i SRS SRS ]

Outage Probability

—— Simu: FG Rel., Noiseless bound | ... 7SS0 ]
— — —Theo: FG Rel.,, Noiselessbound | "~ " yg
107" —7— Simu: VG Rel., Noiseless bound |: ::: oo iR 000
- - ~Theo: VG Rel, Noiselessbound| >
—A— Simu: FG Relays, Generalcase |~

_s| =—F— Simu: VG Relays, General case

12 14 16 18 20 22 24 26 28 30
SNR (dB)

Fig. 4. Outage probability in the AF case of the noiseless relay bound argetrezal case for fixed and variable gain relays.
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Outage Probability comparison between AF and DF protocols
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Fig. 5. Outage probability comparison between the DF protocol and therdtBqol for fixed gain relays in the general case

and the Gaussian source-relay links case.



Power optimization method for the DF protocol
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Fig. 6. Outage probability for both equal and optimized power distributioitis &% = 1.87s and R = 1.
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Fig. 7. Network architecture for illustrating power optimization.



Merit of the power optimization method
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Fig. 8. SNR gain (left) andi, values (right) after optimizations Source-Relays relative distance.
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