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Abstract

In a companion paper (see Resource Allocation for DownlieHutar OFDMA Systems: Part | —
Optimal Allocation), we characterized the optimal reseuetlocation in terms of power control and
subcarrier assignment, for a downlink sectorized OFDMAe@ysimpaired by multicell interference. In
our model, the network is assumed to be one dimensionalaflirfer the sake of analysis. We also
assume that a certain part of the available bandwidth idylitee be reused by different base stations
while that the other part of the bandwidth is shared in anagtimal way between these base stations.
The optimal resource allocation characterized in Part Ibigimed by minimizing the total power spent
by the network under the constraint that all users’ rate irequents are satisfied. It is worth noting that
when optimal resource allocation is used, any user receiagseither in the reused bandwidth or in the
protected bandwidth, but not in both (except for at most ametjuser in each cell). We also proposed
an algorithm that determines the optimal values of use®uece allocation parameters.

As a matter of fact, the optimal allocation algorithm progadsn Part | requires a large number of
operations. In the present paper, we propose a distribusedigal resource allocation algorithm with low
complexity. We study the asymptotic behavior of both thimpified resource allocation algorithm and
the optimal resource allocation algorithm of Part | as thenber of users in each cell tends to infinity.
Our analysis allows to prove that the proposed simplifiecbrtigm is asymptotically optimal.e., it
achieves the same asymptotic transmit power as the optilgatithm as the number of users in each

cell tends to infinity. As a byproduct of our analysis, we duaerize the optimal value of the frequency
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reuse factor. Simulations sustain our claims and show thiastantial performance improvements are

obtained when the optimal value of the frequency reuse rfastased.

Index Terms

OFDMA, Multicell Resource Allocation, Distributed ResaerAllocation, Asymptotic Analysis.

. INTRODUCTION

In a companion paper [1], we introduced the problem of jomer control and subcarrier assignment
in the downlink of a one-dimensional sectorized two-celIMA system. Resource allocation parameters
have been characterized in such a way thahe total transmit power of the network is minimum and
i) all users’ rate requirements are satisfied. Similarly tq 2 investigate the case where the channel
state information at the Base Station (BS) side is limiteddme channel statistics. However, contrary
to [2], our model assumes that the available bandwidth igldd/into two bands: the first one is reused
by different base stations (and is thus subject to multioédirference) while the second one is shared in
an orthogonal way between the adjacent base stations (dhdsigrotected from multicell interference).
The number of subcarriers in each band is directly relataieédrequency reuse factor. We also assume
that each user is likely to modulate subcarriers in each @gehwo bands and thus we do not assame
priori a geographical separation of users modulating in the twferdifit bands. The solution to the above
resource allocation problem is given in the first part of thi@k. This solution turns out to be “binary™
except for at most one pivot-user, users in each cell mustibded into two groups, the nearest users
modulating subcarriers only in the reused band and thedsirihsers modulating subcarriers only in the
protected band. An algorithm that determines the optimklesaof users’ resource allocation parameters
is also proposed in the first part.

It is worth noting that this optimal allocation algorithm ssll computationally demanding, especially
when the number of users in each cell is large. One of the ctatipnally costliest operations involved
in the optimal allocation is the determination of the piuser in each cell. In the present paper, we
propose a distributed simplified resource allocation atlyor with low computational complexity, and
we discuss its performance as compared to the optimal resallocation algorithm of Part I. This
simplified algorithm assumes a pivot-distance that is fixeddvance prior to the resource allocation
process. Of course, this predefined pivot-distance shoellcelevantly chosen. For that sake, we show
that when the fixed pivot-distance of the simplified algaritts chosen according to a certain asymptotic

analysis of the optimal allocation scheme, the performasfcthe simplified algorithm is close to the
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optimal one, provided that the number of users in the netvimrlarge enough. Therefore, following
the approach of [2], we propose to characterize the limithef tbtal transmit power which results from
the optimal resource allocation policy as the number of uisereach cell tends to infinity. Several
existing works on resource allocation resorted to this lahdsymptotic analysis, principally in order to
get tractable formulations of the optimization problemttban be solved analytically. For example, the
asymptotic analysis was used in [3] and [4] in the context @fulink and uplink single cell OFDMA
systems respectively, as well as in [5] in the contex€Cofle Division Multiple AcceSCDMA) systems
with fading channels. Another application of the asymgta@tnalysis can be found in [6]. The authors
of the cited work addressed the optimization of the sum ratéopmance in a multicell network. In this
context, the authors proposed a decentralized algorittanrttaximizes an upperbound on the network
sum rate. Interestingly, this upperbound is proved to & fiythe asymptotic regime when the number of
users per cell is allowed to grow to infinity. However, the gpweed algorithm does not guaranty fairness
among the different users.

In this paper, we use the asymptotic analysis in order toiml@ecompact form of the (asymptotic)
power transmitted by the network for the optimal resourdecation algorithm, and we use this result
to propose relevant values of the fixed pivot-distance astatwith the simplified allocation algorithm.
We prove in particular that when this fixed pivot-distancecli®sen equal to the asymptotic optimal
pivot-distance, then the power transmitted when using ttopgsed simplified resource allocation is
asymptotically equivalent to the minimum power associatétth the optimal algorithm. This limiting
expression no longer depends on the particular network guanafiion, but on an asymptotic, or “aver-
age”, state of the network. More precisely, the asymptatiogmit power depends on the average rate
requirement and on the density of users in each cell. It atgmedds on the value of the frequency
reuse factor. As a byproduct of our asymptotic analysis, wetlaerefore able to determine an optimal
value of the latter reuse factor. This optimal value is defias the value ofx which minimizes the
asymptotic power.

The rest of this paper is organized as follows. In Section &l ngcall the system model as well as
the joint resource allocation problem. In Section Ill, wepsse a novel suboptimal distributed resource
allocation algorithm. Section IV is devoted to the asymiptahalysis of the performance of this simplified
allocation algorithm as well as the performance of the ogtirasource allocation scheme of Part | when
the number of users tends to infinity. Theorem 1 charactefize asymptotic behavior of the optimal
joint allocation scheme. The results of this theorem ara useSubsection 1V-D in order to determine

relevant values of the fixed pivot-distances associatel thi¢ simplified allocation algorithm. Provided
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that these relevant values are used, Proposition 2 staeghi simplified algorithm is asymptotically
optimal. Section VI addresses the selection of the besuéecy reuse factor. Finally, Section VIl is

devoted to the numerical illustrations of our results.

Il. SYSTEM MODEL AND PREVIOUS RESULTS

A. System Model

We consider a sectorized downlink OFDMA cellular networke Wcus on two neighboring one-

dimensional (linear) cells, say Cell and Cell B, as illustrated by Figure 1. Denote @y the radius of
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Figure 1. Two-Cell System model

each cell. We denote bi 4 the number of users of Cell and byK? the number of users of Ceft. The
total number of available subcarriers in the system is dehby N. For a given usek € 1,2,..., K¢
in Cell ¢ (c € {A, B}), we denote by, the distance that separates him/her from 8&nd byN, the
set of indices corresponding to the subcarriers modulagekl BNy, is a subset of0,1,..., N —1}. The

signal received by user at thenth subcarrier € N;) and at themth OFDM block is given by
yk(nvm) = Hk(n7m)3k(nvm) +wk(nvm)> (1)

wheresg(n, m) represents the data symbol transmitted by B®rocessuy(n, m) is an additive noise
which encompasses the thermal noise and the possible elultiterference. Coefficient{y(n, m) is
the frequency response of the channel at the subcatrend the OFDM blockn. Random variables

H(n,m) are assumed Rayleigh distributed with variange= E[|Hj(n, m)[?]. Channel coefficients
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are supposed to be perfectly known at the receiver side, akdown at the BS side. We assume that
pr vanishes with the distance, based on a given path loss model. The set of available sidrsais
partitioned into three subset$:containing the reused subcarriers shared by the two cRlsand Pp
containing the protected subcarriers only used by userslh L£and B respectively. Theeuse factor

o is defined as the ratio between the number of reused subsaamne the total number of subcarriers:

cardJ)

N

so that] containsa N subcarriers. If usek modulates a subcarrier € J, the additive noise contains both
thermal noise of variance® and interference. Therefore, the varianceof this noise-plus-interference
process depends dnand coincides withr? = E [|]:Ik(n,m)|2} QF + o2, where H,(n,m) represents
the channel between BB and userk of Cell A at frequencyn and OFDM blockm, and whereQ? =
ZkKjl fy,flP,fl is the average power transmitted by BSn the interference bandwidth The remaining
(1—«a)N subcarriers are shared by the two cells, Celind B , in an orthogonal way. If usér modulates
such a subcarrien € P., the additive noiseuv;(n,m) contains only thermal noise. In other words,
subcarriem does not suffer from multicell interference. Then we simpiyte E[|wy(n, m)|?] = o2. The
resource allocation parameters for useare: ¢, the power transmitted on each of the subcarriers of
the non protected barftlallocated to himp; ; his share ofl, P, the power transmitted on each of the

subcarriers of the protected bafid allocated to him andy , his share ofP.. In other words,
Vi = cardI N Ng) /N Vo = cardP. N Ng) /N .

As a consequencg,;’{;1 Y, =« and ZkK:CI Yoo = 1‘70‘ for each cellc. Moreover, letgy ; (resp. gy 2)
be the channel Gain to Noise Ratio (GNR) in bdr(cesp.P.), namelyg 1 = pi/o3 (resp.gr.a = pr/c?).

“Setting a resource allocation for cellmeans setting a value for parametés$ ,, v o, P 1, P o e=1... K-

B. Joint Resource Allocation for Celld and B

Assume that each usérhas a rate requirement &f; nats/s/Hz. In the first Part of this work [1], our
aim was to jointly optimize the resource allocation for th tcells which i) allows to satisfy all target
ratesRy of all users, and ii) minimizes the power used by the two béstoss in order to achieve these
rates. For each cell € {A, B}, denote by the adjacent cell{ = B and B = A). The ergodic capacity

associated with a usérin Cell ¢ is given by

Cr = 771 E [log (14 911 (QF)PE 1 Z)] 4 Vi oF [log (1 + gr2 P2 2Z)] (2)
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where Z is a standard Chi-Square distributed random variable with degrees of freedom, and where

coefficientgy 1 (Qf) is given by

9r1(Q7) = - P ; 3)
E [ y(n,m)P] @ + 02

where H;,(n,m) represents the channel between 88nd userk of Cell ¢ at frequencyn and OFDM
block m. Coefficientg 1(QS) represents the signal to interference plus noise ratio eniriterference
bandJ. We assume that users are numbered from the nearest to the Bfe farthest. As in [1],

the following problem will be referred to as the joint reswrallocatlon problem for Cellgl and B:

Minimize the total power spent by both base stat@ﬁg = Z Z (Ve Pra +7k.2 Pk 2) With respect

c=A,B k=1
to {1, Vo Pi1s By 2} e=A.B under the following constraint that all users’ rate requieats Rz, are
Ke

satisfiedi.e., for each usek in any celle, R, < Cg. The solution to this problem has been determined in
the first part of this work [1]. As a noticeable point, the i¢swf [1] indicate the existence in each cell
of a pivot-user that separates two groups of users: the épred” users and the “non protected” users.

The following proposition states this binary property oé tholution.

Proposition 1 ([1]). Any global solution to the joint resource allocation proivlés “binary” i.e., there
exists a usetl.® in each Cellc such thaty, o = 0 for closest userg < L¢, and~,; = 0 for farthest

usersk > L°.

In the sequel, we denote hif-(5X) the position of the pivot-usek® in Cell ¢ i.e., dF) = z;.. A
resource allocation algorithm is also proposed in [1]. Ehigrithm turns out to have a high computational
complexity and the determination of the optimal value of firot-distanced> ™) turns out to be one
of the costliest operations involved in this algorithm. §8 why we propose in the follwing section of

the present paper a suboptimal simplified allocation allgorithat assumes a predefined pivot-distance.

I1l. PRACTICAL RESOURCEALLOCATION ALGORITHM
A. Motivations and Main idea

Proposition 1 provides the general form of the optimal resewllocation, showing in particular the
existence of pivot-userBA, L% in both CellsA, B, separating the users who modulate in bafm the
users who modulate in ban@s' andP?. As a matter of fact, the determination of pivot-usérs, L? is
one of the costliest operations of this optimal allocatisee([1] for a detailed computational complexity

analysis). Thus, it would be convenient to propose an dilmegrocedure for which the pivot-position
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would befixed in advanceto a constant rather than systematically computed/opéichi¥Ve propose a
simplified resource allocation algorithm based on this .idaathermore, we prove that when the value
of the fixed pivot-distances is relevantly chosen, the psegaalgorithm is asymptotically optimal as the
number of users increases. In other words, the total powentdyy the network for larg&d when using
our suboptimal algorithm does not exceed the minimum pohatr would have been spent by using the
optimal resource allocation. The proposed algorithm isstam the following idea.

Recall the definition ofi4 () andd?(X) as the respective position of the optimal pivot-uskfsand
L% defined by Proposition 1. As the optimal pivot-positiafs5) and dZ(¥) are difficult to compute
explicitly and depend on the particular rates and userstipas, we propose to replacg (%) andd?(¥)
with predefined valuedgbboptand dgjboptfixed before the resource allocation process. In our sulvapti
algorithm, all users in Celt whose distance to the BS is less théf,,,, modulate in the interference
bandJ. Users farther tharg,,,modulate in the protected bafid. Of course, we still need to determine

the pivot-distancedghboptandaiffJbopt A procedure that permits the relevant selection ofd;‘tbopt, dsBubopt

is given in Section IV-C

B. Detailed Description

Assume that the values dﬁjboptanddgbopthave been fixed beforehand prior to the resource allocation
process. For each Cel] define byX¢ the subset of1, ... K} corresponding to the users whose distance

to BSc is less thanig,,,, Define byX% the set of users whose distance to BS larger thandg

1) Resource allocation for protected userBocus for instance on Cell. For eachk € X4, we
arbitrarily sety!, = P/, = 0 i.e, userk is forced to modulate in the protected bafd only. For
such users, the remaining resource allocation param@,f%:?,;“z are obtained by solving the following

classical single cell problem w.rty;',, P eaca:
“Minimize the transmitted powe} ;4 Vio Py under rate constraink;, < Cy for eachk € X5".

The above problem is a simple particular case of the sindlepoeblem addressed in [1]. Define the
functions f (z) = % —z andC(z) = E[log(1 + f~1(x)Z)] on R,. The solution is given by
1+aZ
P, = gk_éf_l(gk,z@)
Ry,
E [1og (1 + gk,gP,;}Qzﬂ

A _
Ye2 =
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where parametesf, is obtained by writing that constraint, 7,?2 = 1‘70‘ holds or equivalentlys is

the unique solution to:

We proceed similarly for CelB.

2) Resource allocation for interfering usergfe now focus on users € X for each celk = A, B. For
such users, we arbitrarily sef , = P¢, = 0 i.e, users inX¢ are forced to modulate in the interference
bandJ only, for each celt. The remaining resource allocation parameﬁ%“@ Pkf‘l, fy,ffl, P,fl are obtained

by solving the following simplified multicell problem.

Problem 1. [Multicell] Minimize Y > 4¢Pty wrt. (yfy, P2 4P, PP)i under the following
c=A,B kEX;
constraints for each celt € {A, B}:

C1:Ve, Vk € X§, Ry < Cy, C2:Ve, Y %, =0 C3:95,>0.
keXs

Clearly, the above Problem can be interpreted as a panticalse of the initial resource allocation
(Problem 2 in [1]) addressed in Section II-B of the presemepaThe main difference is that the initial
multicell problem jointly involves the resource allocatiparameters in three ban@ilsP* andP? whereas
the present problem only optimizes the resource allocgtimmameters corresponding to bahdwhile
arbitrarily setting the others to zero. Therefore, the ltesef Part | [1], Theorem 2 of [1] in particular,

can directly be used to determine the global solution to lerotl.

Remark 1 (Feasibility). Recall that the initial joint resource allocation ProblerRProblem 2 in [1])
described in Section II-B in the present paper was alwaysilda Intuitively, this was due to the fact
that any user was likely to modulate in the protected bance#ded, so that any rate requiremeRj
was likely to be satisfied by simply increasing the power @ glotected band. In the present case, the
protected band is by definition forbidden to userskifi. Theoretically speaking, Problem 1 might not be
feasible due to multicell interference. Fortunately, wdl w&e this case does not happen, at least for a
sufficiently large number of users, if the values of the p&shncesdgjboptand dﬁboptare well chosen.

This point will be discussed in more detail in Section V.

DefineQf = > _1cx: i1 F% 1 as the average power transmitted by 88 the interference bandwidth
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By straightforward application of Theorem 2, we obtain tfaateach Cellc and for each usek € K¢,
Py = g;1(Q0) (g (QD)5F) (4)

Ry,
E [log (1 + gk,l(Q‘f)P,EJZ)] ’ (5)

where for eaclt = A, B and for a fixed value of), parameter$Bf, ()§) are the unique solution to the

c _
Ye1 =

following system of equations:
By
kZK Clg1 (QF)A)
—1/ney r—1 C\ ac
9y, 1(Ql)f (9k,1(Q1)61)
$ = Rp— —— .
U= @)

keXs

=« (6)

(7)

Note that the first equation is nothing else that the comsti@R: >, Via = Q- The second equation
is nothing else than the definitio@] = >, 4. i, We now prove that the system of four
equations (6)-(7) forc = A, B admits a unique squtior;?f,Qf,BlB,Qf and we provide a simple
algorithm allowing to determine this solution.

Focus on a given Celt and consider any fixed valug$. Denote byfc(Qf) the rhs of equation (7)
Wherer is defined as the unique solution to (6). Clearly, the coy@é,QF) is a fixed point of the

vector valued functiod(Q<, QB) = (I4(QP), I (Q%)).

Q. QP) =1(Q1, Q7). (8)

As a matter of fact, it can be shown that such a fixed poinf & unique. This claim can be proved

using the approach previously proposed by [12].

Lemma 1. FunctionI is such that the following properties hold.
1) Positivity: I(Q4, Q%) > 0.
2) Monotonicity: If Q4 > Q4', QB > QF', thenI(Q4,QB) > 1(Q*, Q5.
3) Scalability: for allt > 1, tI(Q*, Q) > I(tQ*,tQP).

The proof of Lemma 1 is provided in Appendix B. It uses argutaevhich are very similar to those
of [11]. FunctionI is then astandard interference functipmising the terminology of [12]. Therefore,
as stated in [12], such a functidnadmits at most one fixed point. On the other hand, the existehc
a fixed point is ensured by the feasibility of Problem 1 and thy fact that (8) holds for any global
solution. In other words, if Problem 1 is feasible, then fimc I does admit a fixed point and this fixed

point is unique. Putting all pieces together, there exisimigue solution to (8), which can be obtained
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thanks to a simple fixed point algorithm. In practice, reseuallocation in band can be achieved by
the following procedure.
Ping-pong algorithm for interfering users
1) Initialization: Q¥ = 0.
2) Cell A: Given the current value of the pow€? transmitted by base station B in the interference
bandwidth, compute!, Q1 as the unique solution to (6)-(7) with= A.
3) Cell B: Given the current value @4, computesZ, QF by (6)-(7).
4) Go back to step 2 until convergence.
5) Define resource allocation parameters by (4)-(5).
Comments
1) Convergence of the ping-pong algorithmWe stated earlier that Problem 1 is either feasible or
infeasible, depending on the value(mg“ubom dgbopp. If Problem 1 is feasible, then the ping-pong
algorithm converges. If this problem is infeasible, the piveg-pong algorithm diverges. One of the
main purposes of Section IV-C is to provide relevant valu‘e(leJbopt dgjbopt) such that convergence
of the ping-pong algorithm holds for sufficiently large nuenli of users.
2) Note that the only information needed by Base Stattoabout Cell¢ is the current value of
the powerQ$ transmitted by Base Statiohin the interference band. This value can) either
be measured by Base Statienat each iteration of the ping-pong algorithm, dr it can be
communicated to it by Base Stati@nover a dedicated link. In the first case, no message passing
is required, and in the second case only few information harged between the base stations.

The ping-pong algorithm can thus be implemented in a disteith fashion.

C. Complexity Analysis

We showed earlier that allocation for protected users caretieced to the determination in each cell

of the value off3, which is the unique solution to the equati@keg{g ﬁ

in [1] that solving this kind of equations requires a compioteal complexity proportional to the number

= 152, We argued

of terms in the Ihs of the equation, which is itself of orde(k’). Using similar arguments, we can
show that each iteration of the ping-pong algorithm for noatgcted users can be performed with a
complexity of orderO(K). Let J designate the number of iterations needed till convergéerive overall
computational complexity of the ping-pong algorithm, arehte of the simplified resource allocation
scheme as well, is thus of the order @f JK'). Our simulations showed that the ping-pong algorithm

converges relatively quickly in most of the cases. Indeednore than/ = 15 iterations were needed in
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almost all the simulations settings to reach convergenttéma very reasonable accuracy. The complexity
of the simplified algorithm is to be compared with the compateal complexity of the optimal algorithm
which was shown in [1] to be of the order 6f(M K log, K'), whereM is the number of points inside

a certain 2D search grid.

IV. ASYMPTOTIC OPTIMALITY OF THE SIMPLIFIED RESOURCEALLOCATION SCHEME

The aim of this section is to evaluate the performance of ttepgsed simplified algorithm. The
relevant performance metric in the context of this papehéstbtal power that must be transmitted by
the base stations. Since the simplified algorithm assunezefined pivot-distance(asl;‘}mOm dffjbopt) fixed
prior to the resource allocation process, the performahtieegproposed algorithm depends on the choice
of these fixed pivot-distances. One must therefore determimat relevant value should be selected for
(o

the number of users tends to infinity.

d_ff,bopt). A possible method is addressed in this section and cornisistitidying the case where

A. Main Tools: Asymptotic analysis

We study first the performance of tloptimal allocation algorithm proposed in Part | [1] when the
number of users in each cell tends to infinity. From the resofitthis asymptotic study, we conclude the
asymptotic behaviour of the optimal pivot-distandes- (%), ¢%(5)) It turns out that when the number
K of users increases, the optimal pivot-distances as weliesotal transmitted power no longer depend
on the particular cell configuration, but on an asymptotatesof the network, such as the average rate
requirement and the density of users in each cell. Thankhkisorésult, we can now choose the fixed
pivot-distances associated with the simplified algorittorbe equal to the asymptotic pivot-distances.
In this case, one can show that the performance gap betweesirtiplified and the optimal allocation
schemes vanishes for high numbers of users. We introducehmewathematical assumptions and tools
that we use for defining the asymptotic regime.

1) Notations and Basic Assumptionis: the sequel, we denote Wy the total bandwidth of the system
in Hz. We consider the asymptotic regime where the numbersefsuin each cell tends to infinity. We
denote byr, = BR, the data rate requirement of ugein nats/s, and we recall th&, is the data rate
requirement of usek in nats/s/Hz. Notice that the total raEkK:C1 ri which should be delivered by BS
tends to infinity as well. Thus, we need to let the bandwiBtlyrow to infinity in order to satisfy the
growing data rate requirement. Recalling that= K“ + K7 denotes the total number of users in both

cells, the asymptotic regime will be characterized®by— oo, B — oo andK /B — t wheret is a positive
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real number. We assume on the other hand HgtK (c € {A, B}) tends to some positive constant as
K tends to infinity. Without restrictions, this constant is@sied in the sequel to be equal to 12,
the number of users becomes equivalent in each cell. In @odsimplify the proofs of our results, we
assume without restriction that for eakhthe rate requirement, is upper-bounded by a certain constant
max> Tk < max, Wherery,, can be chosen as large as needed, and that users of eachedeltated

in the intervalle, D] wheree > 0 can be chosen as small as needed. Recallsthatenotes the position
of each usek i.e., the distance between the user and the BS. The variance ohtmnel gain of user

k will be written asp; = p(x;) wherep(x) models the path loss. Typically, functigriz) has the form
p(z) = Ax~% where is a certain gain and whereis the path-loss coefficient,> 2. In the sequel, we
denote byg,(z) = % the received gain to noise ratio in the protected bandwidtha user at position

z. This way, g2(zx) = gx2. Similarly, we define for each usér in cell A, gi(zx, QF) = gr1(QP).
More generally,g; (z, Q) denotes the gain-to-interference-plus-noise ratio initierference bandwidth

at positionz when the interfering cell is transmitting with pow@rin bandJ. Functionsg; (x,.) and
g2(x) are assumed to be continuous functionscoft is worth noting that for each, go2(z) = g1(z,0).
Finally, recall that coefficienty; ; (resp.v; ,) is defined as the ratio between the part of the interference
bandwidthJ (resp. protected bandwidtP.) and the total bandwidth. Thus;/{;1 andfy,i2 tend to zero as
the total bandwidthB tends to infinity for eaclk.

2) Statistical Tools and Main Ideas of the Asymptotic Stu@iieorem 2 of Part | [1] reduces the
determination of the whole set of resource allocation patans in both cells to the determination of
ten unknown parameterf8Q{, 55, L¢, £} o=, B, i=1,2. ParameteQ in particular represents the power
transmitted by Celk in the non protected barfl Consider now one of the two Celtse {A, B}, and
denote bye the second (adjacent) cell. In the sequel, we use the nm@@éK) (resp.Qg’(K)) instead of
Qf (resp.Q$) to designate the power transmitted by B the non protected barid(resp. the protected

band®.) when the optimal solution characterized by Propositios Lised.

LC
Q" = NP 9)
k=1
K -
Q;’() = Z%ﬁzpkc,z- (10)
k=Lc

The new notatioerf(K), Qg’(K) is used to indicate the dependency of the results on the nuofilsers
K. For the same reason, parametefss¢, 55, £ will be denoted in the sequel iy (K) | g7 5) | oK) ee (k)
respectively. Our goal now is to characterize the behavitt®resource allocation strategy 85 B — oo

and, in particular, the behavior of powe@fl’(K), Qg’(K). By straightforward application of Theorem 2
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o(K)

of Part 1, Q; 215;172,113/5,1 can be written as
c,(K c,(K
Q7" = N RF(ar, 87, Q00,0 4 Wi e 4 (11)
k< Le:(K)

whereWry. ) 1 = Ve 1 PLea , denotes the power transmitted to the pivot-utef) in the inter-

ference band, and where functio¥ is defined by
—1 1 (2,9)
£ (m155)

F(z,8,Q,€) = (12)

for eachr, 3, Q. The first term in the rhs of (11) represents the total powecated to all users < L(5).

It is quite intuitive that the power allocated to one USEf. () 4 is negligible when compared to the
power allocated to all users < L), In fact, it can easily be shown that the first term of (11) is
bounded ag{ — oo whereasiVy. ., ; tends to zero. In the sequel, we use notaliBf. ., ; = ox (1),
where o (1) stands for any term which converges to zerolas— oc. In order to study the limit of
this expression a&’ tends to infinity, we introduce for each one of the two cells tbllowing measure

v>(E) defined on the Borel sets &, x R, as follows

KC
1
v UULT) = 52 Y Ona () (13)
k=1

wherel and.J are any intervals oR, and wherej,, ., is the Dirac measure at poifit;, z). In order

to have more insights on the meaning of this tool, it is usadulemark that>()(1,.7) is equal to

number of users located A and requiring a rate (in nats/s) in mtervhl

() (T
v (L, J) = total number of users

Thus, measure®5) can be interpreted as the distribution of the set of couplgsz;,) of Cell c. The
introduction of the above measure simplifies consideraldy asymptotic study of the transmit power.
Indeed, replacing?;, (in nats/s/Hz) byﬂngt—S/S) in equation (11), we obtain

(1:7(K) = i Z T‘k?(ﬂi‘k,ﬁl 7@1 75 )) +0K(1)

k<Lc (K)

B //A Fa, 87, Q7 00N 1) (r,2) + 0 (1) (14)

where integration is considered with respect to theSgt) = [0, rmax] x [e, d*(E)], wherede (%) =
z;.0 IS the position of pivot-useE®(5) and where: can be chosen, as stated earlier in this section, as

small as needed. It is quite intuitive that the asymptotiwedim g .o Q ) can be obtained from (14)

K

by replacing%: = £ x &= by ¢ x 1

% and the distributionv> ) by the asymptotic distribution of
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couples(ry, zx) as K tends to infinity. The existence and the definition of thismagtotic distribution

is provided by the following assumption.
Assumption 1. As K tends to infinity, measure®(X) converges weakly to a measure

We refer to [7] for the materials on the convergence of messuin order to have some insight
on the behavior of equation (14) in the asymptotic regimeagime for the sake of simplicity that
sequencesiA(K) gB.(6) QM E) - BK) g (K) gB.K) ¢ (K) ¢B(K) are convergent and that they
converge respectively td4, %, Q:, QF, 31, pP, ¢4, ¢B. This assumption is of course arbitrary for the
moment, but it allows to better understand the main ideasuofasymptotic analysis. More rigorous
considerations on the convergence of these sequencesenilisbussed later on. Ignoring at first such

technical issues, it is intuitive from equation (14) tl@t(K) converges to a constagl{ defined by
t _
@ = [[ 5o e (15)

where A{ = [0, rmax] X [6,d°]. In other words, we manage to express the limit of the po@%?K)
transmitted by statior in the interference band as a function of the asymptotic @atifiguration. In
order to further simplify the above expression, it is alsalistic to assume that measuréis the measure
product of a limit rate distribution times a limit locationstribution. Assumption 2 below is motivated
by the observation that in practice, the rate requiremgnaf a given user is usually not related to the

position z;, of the user in each cell.

Assumption 2. Measurev is such thatdv®(r,x) = d((r) x d\°(z) where(® is the limit distribution

of rates and\® is the limit distribution of the users’ locations. Here denotes the product of measures.

Measureg and\ respectively correspond to the distributions of the ratebthe positions of the users
within one cell. For instance, the val@é = % g* r d¢¢(r) represents the average rate requirement per
channel use in Celt. We furthermore assume that measukédsand \? are absolutely continuous with

respect to the Lebesgue measure[@rD]. Using Assumption 2, equation (15) becomes
dC

Qf =7 [ F(x. 07, QF.€) dX*(). (16)

€

Of course, a similar result can be obtained @(K) i.e, the power transmitted by base stationn
the protected ban@“. To that end, we simply note that functign(z) satisfiesga(z) = g1(x,0). Using

similar tools, the expression (@g’(K) given by (24) converges a& — oo toward

D
Q5 = rc/ F(z, 55,0,0) dX(z). (17)

c
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Equations (16) and (17) respectively provide the Iimits@flf(K) and ng<~’<> as a function of some
parametersic, 3¢, 35 and QS (assumed for the moment to be the limits cﬁf(K),ﬁf’(K),ﬁg’(K) and
Qf’(K) as long as such limits exist). These unknown parametersiegld to be characterized. Therefore,
we must determine a system of equations which is satisfiechésget parameters. This task is done by

Theorem 1 given below.

B. Asymptotic Performance of the Optimal Resource Allocati

Define the following functior§(zx, 3,Q,¢) = ﬁ for eachx, 3, Q, €. The proof of the following

91(x,2)
o252

result is provided in Appendix A.

Theorem 1. Assume thatd = K4 + K® — oo in such a way thatk/B — t >0 and K4 /K — 1/2.
Assume that the optimal solution for the joint resourceadtmon problem (Problem 2 in [1]) is used for
eachK. The total power spent by the netwa:agf() =Y c—AB Zf;l(yg’lP,g’l + ;2% ) converges to
a constantQ)r. The limit Q7 has the following form:

de
QT = Z ¢ </ g(£7ﬂf7@?756) d)‘c(x) +/

c=A,B
where for each: = A, B, the following system of equations in variablés 55, 55, £¢ is satisfied:
dC

D
F(a, 45,0,0) dﬂ@) , (18)

c

7e 9($76f7 Qigc) dkc(m) =« (19)
D
S 55.0.0) dx(a) = 1;()‘ (20)
dc Cc dc Cc
DO p (2T i) — gu(a)Flanta)5) @
de -
e / T, 5, Q5 £°) dX(x) = QF (22)

Moreover, for eachc = A, B and for any arbitrary fixed value{QA,Q’f), the system of equations

(19)-(20)-(21)-(22) admits at most one solutigtf, 55, 59, £¢).

As a consequence, when optimal multicell resource allonas used, the total power spent by the
network converges to a constant which can be evaluatedghrthe results of Theorem 1. This result
allows to evaluate the asymptotic power spent by the netwarla function of the reuse facter, the
average rate requirementand the asymptotic distribution of users in each cell

Now that the asymptotic performance of the optimal allarascheme has been studied, the value of
the fixed pivot-distancez{}lbom dgjboptassociated with the simplified allocation algorithm canddevantly

chosen to be equal in each Celto the asymptotic pivot distanc# defined by Theorem 1.
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C. Determination of the fixed pivot—distanoi{%bopt Suboptfor the simplified allocation scheme

We stated earlier in Section lll that the suboptimal algunitreplaces the optimal valué (%) of
the pivot-distance in each Cellwith a fixed valueds

such thatd® (%) ~ 44, and 4% ~

subopt INtuitively, if dsubopt and dsubopt are chosen

subopt for large K, the performance of our algorithm shall be
close to the optimal one a& increases. Therefore, we must determine an asymptotiogtiynal pair
of pivot-distancegd”, d?). To that end we propose the following procedure.

Note first by referring to Theorem 1 that the valueidf ¢ can be easily determined once the relevant
values ofQ{! and Q¥ have been determined. The remaining task is thus the detation of the value
of (Qf,QF). To that end, we propose to perform an exhaustive seardgnQ?).

i) For each poin{Q4, Qf’) on a certain 2D search grid, solve the system (19)-(20+22) introduced
by Theorem 1 for botle = A, B. Theorem 1 states that this system admits at most one soligicany
arbitrary fixed valuéQ4, QP). If the investigated pointQ+:*, Q¥) of the grid is such that the system (19)-
(20)-(21)-(22) does admit a solution, we can obtain thisismh denoted byi(Q, QF), B5(Qf, QF),
B5(Q4, QF), €(Q4,QF) thanks to a simple procedure inspired by siagle-cellprocedure proposed
in Part | [1] for finite number of users:

« Solve the system (19)-(20)-(21)-(32formed by replacing the equality in equation (22) of sys-

tem (19)-(20)-(21)-(22) by the following inequality
dC

™ [ F(e, B QF.€)dN(x) < QF - (22)

€

The existence and the uniqueness of the solution to this gst@rm for an arbitrar)@{‘, Qf’) € ]Ri%r
can be proved by extending, to the case of infinite numberefsu®roposition 1 which was provided
in [1] for the case of finite number of users.

« If the resulting power fgdc F(x, 65, QF, £°)dN(x) transmitted in the interference bafid is equal
to Q5, then the resulting value af*(Q#, Q%) coincides with the unique solution to system (19)-
(20)-(21)-(22) . Once again, this claim can be proved by rekiteg Proposition 1 of [1] to the case
of infinite number of users.

« If the powerr [¥ F(x, 3¢, Q5, £°)dX°(x) is less tharQ, thend“(Q{', QP) is clearly not a solution
to system (19)-(20)-(21)-(22) , as equality (22) does ndthm this case, it can be easily shown
that system (19)-(20)-(21)-(22) has no solution. The paipf, Q) is thus eliminated.

ii) Compute the total power

Qr(QT,Qr) Z’Ymplf,l + V2 Fr 2
c=A,B k
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that would be transmitted if the values @f' and Q¥ introduced by Theorem 1 were respectively equal
to QF and Q4.

i) The final value ofi*, d? is given byd4(Q7, QF), dB(Q7, QP), the value associated witl{', QF)

the argument of the minimum power transmitted by the network

Qi Q) = arg min, Qr(Qf, Q7).

1y%1

iv) Finally, we choose

dA

_ JA B _ B
subopt_d arlddsubopt_d '

Note that the same procedure provides as a byproduct theé dpmiof the total transmit power as

QT - QT(Q?? QIB)

Comments

It is clear from our previous discussion that the above ptace for computingd®, d®) can be done
in advance prior to resource allocation. This is esseptéhlle to the fact that the asymptotically optimal
pair of pivot-distance$d“, d”) does not depend on the particular cell configuration, butroasymptotic
or “average” state of the network. The procedure can be rumftance before base stations are brought
into operation. It can also be done once in a while as the amtiomistribution of the users and the
average rate requirementan be subject to changes: but these changes occur aftepéoinogls of time.
Therefore, the number of operations needed for the conipntaf (d4,d?) is not a major concern

because it does not affect the computational complexityesburce allocation.

D. Asymptotic Performance of the Simplified Algorithm

(K)
subopt

Denote by@ the total power transmitted when our simplified allocatidgodathm is applied.
Recall thatQ}K) designates the total power transmitted by the network wihendptimal resource

allocation associated with the joint resource allocatioobfem (Problem 2 of [1]) is used.

Proposition 2. The following equality holds:

; (K)  _ (K)
Kh_r)noo qubopt - Kh_H)lOO QT :

Proposition 2 can be proved using the same arguments as éseused in Appendix A. The detailed
proof is omitted. The above Proposition states that theqweg suboptimal algorithm tends to be optimal

w.r.t. the joint resource allocation problem, as the nunmidfeusers increases. Therefore, our algorithm

May 19, 2009 DRAFT



18

is at the same time much simpler than the initial optimal uese allocation algorithm of [1], and has
similar performance at least for a sufficient number of usersach cell. Section VII will furthermore

indicate that even for a moderate number of users, our simbalpalgorithm is actually nearly optimal.

V. ON THE CONVERGENCE OF THESIMPLIFIED ALLOCATION ALGORITHM

As stated before, the simplified algorithm performs the uese allocation in each Callindependently
for the protectedk}, and the non protectel§ users, which are separated by the predefined pivot-distance

subopt R€source allocation for the non protected users is donadjterative and distributed ping-pong
algorithm described in Section Ill. It was stated in Sectibinthat the convergence of the ping-pong
algorithm is ensured by the feasibility of the the problemregource allocation for the non protected
users{ﬂ(}“,ﬂ(?} (Problem 1). If Problem 1 is feasible, the ping-pong aldwntconverges. If Problem 1
is infeasible, the ping-pong algorithm diverges. It wa®atated in Section Il that Problem 1 may not
be feasible if arbitrary values of the pivot—distano@&optanddﬁ,boptare used. Fortunately, feasibility of
the latter problem will not be an issue if the valuea@‘gboptanddgjboptare relevantly chosen as described
by the procedure introduced in Section IV-D. Indeed, it canshown in this case that at least for large
K, the setK{ will contain the users who would anyway have been restrittethe interference band
if the optimal resource allocation of Part | [1] was used. Blprecisely, it can be shown that there exists
a value Ky of K beyond which Problem 1 is always feasible. The proof of tiéesnent is omitted
from this paper but is provided in [13] and is based on setisitanalysis of perturbed optimization

problems [14]. It is worth mentioning that in our simulat&grProblem 1 was feasible in almost all the

settings of the system, even for a moderate number of usersefieas small as 25.

VI. SELECTION OF THEBESTREUSE FACTOR

The selection of a relevant value allowing to optimize the network performance is of crucial
importance as far as cellular network design is concerné@. definition of anoptimal reuse factor
requires however some care. The first intuition would cdnisissearching for the value ot which
minimizes the total powe@ng) = Q}K)(a) transmitted by the network, for a finite number of usérs
However,Q(TK )(a) depends on the particular target rates and the particukatiquos of users. In practice,
the reuse factor should be fixed prior to the resource allme@rocess and its value should be independent
of the particular cells configurations. A solution adoptgddeveral works in the literature consists in
performing system level simulations and choosing the spoading value ofy that results in the best

average performance. In this context, we cite [8], [9] an@] Mithout being exclusive. In this paper, we
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are interested in providing analytical methods that petmithoose a relevant value of the reuse factor.

This is why we propose to select the valug, of the reuse factor as
_ L (K) ()
aopt = argmin lim Q" (a)

Recall that the limiting powe€); = limg . Q(TK) is given by equation (18). In practice, we propose to
compute the value af)r = Q7 («) for several values of on a grid in the interval0, 1]. For each value
of « on the grid,Qr(«) can be obtained using the procedure presented in subséd¥¢t©nNote also
that complexity issues are of few importance, as the opétiton is done prior to the resource allocation
process. It does not affect the complexity of the global ves® allocation procedure. We shall see in
Section VII that significant gains are obtained when usirggdptimized value of the reuse factor instead

of an arbitrary value.

VIl. SIMULATIONS

We first begin by presenting the technical parameters of ylstemn model. In our simulations, we
considered a Free Space Loss model (FSL) characterized byhdgss exponent = 2 as well as the
so-called Okumura-Hata (O-H) model for open areas [15] withath loss exponenst= 3. The carrier
frequency isfy = 2.4GHz. At this frequency, path loss in dB is given pys(x) = 20log,(z)+100.04
in the case where = 2, wherez is the distance in kilometers between the BS and the usehelcdse
s =3, pap(x) = 30logy(x) + 97.52. The signal bandwidtlB is equal to5 MHz and the thermal noise
power spectral density is equal g = —170 dBm/Hz. Each cell has a radius = 500m.

Asymptotically optimal pivot-distance and frequency reu® factor: We first apply the results of of

D=500m p=500m

T
s=2
©-s=3

0.9r

0.5r

T R Sy S R o e e e 0 1416
r (Mbps) rt( Ps)
Figure 2. Optimal reuse factor vs. sum rate Figure 3. Optimal pivot-distance vs. sum rate

Sections IV and VI in order to obtain the values of the asyrigadly optimal pivot-distanceg, d”
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and the asymptotically optimal reuse factaf,. These values are necessary for the implementation of
the simplified allocation algorithm proposed in Section Bach of the two cells is assumed to have in
the asymptotic regime the same uniform distribution of sisaft = A2 = \ whered\(z) = dz/D.
The average rate requirement in each cell is assumed to bgathe, too74 = 7 = 7, where7® is
defined in Subsection IV-A2 as the average data rate in €eléasured in bits/sec/Hz. In this case, the
optimal pivot-distance is the same in each dadl, d* = d”. Define dopt = d* = dB. The value of
dopt and appy Was obtained using the method depicted by Subsection IVeCSattion VI respectively.
Denote byr; the total data rate of all the users of a sector measured sfsed (, = 7 * B). Figure 2
and Figure 3 plot respectivelyop: and the normalized pivot-distanely,/D as functions of the total
rater, for two values of the path loss exponest= 2 ands = 3. Note from Figure 2 thatvop and dop
are both decreasing functions gf This result is expected, given that higher values-owill lead to
higher transmit powers and consequently to higher levelstefference. More users will need thus to
be “protected” from the higher interference. For that pggahe pivot-position must be closer to the
base station and a larger part of the available bandwidtit imeiseserved for the protected bariBls
andPp. Note also that, in the case= 3, “less protection” is needed than in the case where 2. In
other wordsdopi(s = 3) > dopi(s = 2) andagp(s = 3) > aopi(s = 2). This observation can be explained
by the fact that, when the path loss exponent is higher, ttezférence produced by the adjacent base
station will undergo more fading than in the case when tha fizds exponent is lower.

Simplified resource allocation: In Section Ill, we proposed a suboptimal allocation aldworitcharac-
terized by its reduced computational complexity compacethe optimal allocation algorithm depicted
in [1]. This algorithm assumes fixed pivot—distan(zlg“gbopt db Here, we study the performance of

subopt
this algorithm Whernlgtbopt and dffjbopt are chosen according to the procedure provided in Sectied IV
ie., dghbopt = dopt and d\ffjbopt = dopt, Wheredqp is the asymptotically optimal pivot-distance defined
earlier in this section. In order to study the performanceahi$ algorithm, we need to compare, for a
large number of system setting@gﬁ(b)opt the total transmit power that must be spent when applying the
simplified algorithm, witthpK) the total transmit power that must be spent when the optiesdurce
allocation scheme of Part | [1] is applied. The results miushtbe averaged in order to obtain performance
measurements that are independent of the particular syst¢éing. For that sake, we consider that in
each cell users are randomly distributed and that the distaaparating each user from the base station
is a random variable with a uniform distribution on the intdr[0, D]. On the other hand, we assume
without restriction that all users have the same target eatd that the number of users is the same for

the two cellsKk4 = KB, DefineX as the vector containing the positions of all the users insystem
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e, X = (z1, 2, ..., oK< )c=4a,p. Recall thatvk, z; is a random variable with a uniform distribution
on [0, D]. For each realization oK, defineQ(TK)(X,a) as the total transmit power that results from
applying the optimal joint resource allocation scheme aft Pavith the value of the reuse factor fixed
to . Define Q(TK)(X) = min,, Q(TK)(X,a). In the same way, denote t@éﬂ?op(X) the total transmit
power that results from applying the simplified resourcecation scheme of Section Il with the value
of the reuse factor fixed tep defined in Section VI. For each realization of the random we,
the values on(TK)(X) and Qgﬂ)p(X) were calculated and then averaged to ob@de(TK)(X)] and
EX[Qgﬁ%{)p(X)] respectively. In figure 4, we plot for a range of values of thengater; measured in

s=2, D=500m
10 T

-v-asymptotic
—“4—optimal (KA:KB:SO)

—simplified (K*=KB=50)
simplified (K*=K®=25) /
10°

(X)] (W)

(K)
subopt

Total Transmit Power (mW)
E[Q

1
10
4

10 12 14 16 ) ] !
A (Mbps) d/D

Figure 4. Optimal and suboptimal transmit power vs. sum rdgure 5. Transmit power vs. the pivot-distandefor the

simplified allocation schemer{ = 10Mbps, K¢ = 50)

bits/sec {; = Eﬁ:l Ry, B) the values ofEx [Q&K)(X)] andEx [Qgﬁ)op{X)] in two casesK ¢ = 25 and
K¢ = 50. The error bars in the figure represents the variance of thdora variableQéﬂ{bZ)p(X) in
the caseK“ = 50. In the same figure, the corresponding values of the asymgtansmit powerQ
defined by Theorem 1 are also plotted. This figure shows tlwat) &r a reasonable number of users
equal to25 in each cell, the transmit power needed when we apply theptual algorithm is very
close to the power needed when we apply the optimal resollommtion scheme. The gap between the
two powers is of course even smaller far° = 50. This result validates Proposition 2 which states that
our proposed suboptimal resource allocation scheme is @sgically optimal. Figure 5 is dedicated to
illustrate the sensitivity of the simplified allocation grhe with respect to the pivot-distandgnoptin the
caseK ¢ = 50. For that sake, the figure plots the total transmit powerltieguirom applying the simplified
scheme as a function @kunop: The minimum in the figure corresponds to the asymptoticafiyimal
pivot distancedsuhopt = dopt- We note that using values different frody: increases the suboptimality

of the simplified scheme. Let us go back to Figure 4. The Iditare shows that over the range of
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the considered values of the total data ratethe total transmit powe]EX[Q(TK)(X)] for K¢ =50 is
practically equal to the asymptotic pow€r. This result suggests that, for a number of users equal to
50 in each cell, the system is already in its asymptotic regimerder to validate the latter affirmation,

one still needs to investigate the value of the mean squaoe (TK) — Qr)? as well. This is done by

(K) 2
Figure 6 which plots x(Qr ng)_QT) , the mean square error normalized @y..

s=2, D=500, r‘:5 Mbps

i
N

V\

< 10
SN
N g 1N
o4
N

= 6
¢
x —
= —
w T

Ex (@) (X)-Qr)?
2

Figure 6. oz

vs. number of users per cell

VIIl. CONCLUSIONS

In this pair of papers, the resource allocation problem &mtarized downlink OFDMA systems has
been studied in the context of a partial reuse faetar [0, 1]. In the first part of this work, the general
solution to the (nonconvex) optimization problem has bemwided. It has been proved that the solution
admits a simple form and that the initial tedious problenuces to the identification of a limited number
of parameters. As a noticeable property, it has been prdvatdthe optimal resource allocation policy
is “binary”: there exists a pivot-distance to the BS sucht thsers who are farther than this distance
should only modulate protected subcarriers, while clogssts should only modulate reused subcarriers.
A resource allocation algorithm has been also proposed.

In the second part, we proposed a suboptimal resource &dlncalgorithm which avoids the costly
search for parameters such as the optimal pivot-distancthe proposed procedure, the optimal pivot-
distance is simply replaced by a fixed value. In order to mleva method to relevantly select this
fixed pivot-distance, the asymptotic behavior of the optireaource allocation has been studied as the
number of users tends to infinity. In the case where the fixeot{oistance associated with the simplified

algorithm is chosen to be equal to the asymptotically ogtipisot-distance, it has been shown that our
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simplified resource allocation algorithm is asymptotigabuivalent to the optimal one as the number
of users increases. Simulations proved the relevancy oalgarithm even for a small number of users.
Using the results of the asymptotic study, the optimal vallithe reuse factor has been characterized. It
is defined as the value ef which minimizes the asymptotic value of the minimum trartspower. Our
simulations proved that substantial improvements in teomspectral efficiency can be expected when

using the relevant value of the reuse factor.

APPENDIXA

PROOF OFTHEOREM 1

Theorem 1 characterizes the asymptotic behaviour of thémmintransmit power resulting from
applying the optimal resource allocation when the numbaeursgfrs K tends to infinity. It is thus useful

at this point to recall the theorem given in the first part dé thvork which characterizes the optimal

allocation for finite values of. Define the function?’(z) = E [ﬁ] For each celt = A, B and
for eachl = 1... K¢, define bya{ andb¢ the unique positive numbers such thaf, _, C(g}:iiaf) =«
and >3 41 st = 12 With af = bj. = 0 by convention.

Theorem 2 ([1]).
(A) Any global solution to the joint resource allocation profmidas the following form. For each Cel)

there exists an integek® € {1,..., K¢}, and there exist four positive numbe?g, 35, £¢, Q$ such that

1) For eachk < L¢,
C c\— — 5 QE C c
Pgy = gk1(Q5) N (%51) Ppy =
Ry, . (23)

E {log (1 + 9k,1(Q?)P§,1Z)] |

c _
Ve, 1 =

)

2) For eachk > L€,

Py =0 Fy= 9;;%]0_1(%,255)
R (24)

’Y/(;,l =0 71(;,2 =
E [1og (1 n gk,ngQZ)}
3) For k = L°
ex—1 o1 (9,1 (QF 1
Py =@ 777 (258, ) | p, = )
k—1 Ke 25
c _ c c -« _ c ( )
Y1 =@ Vi Vk,2 5 Z V2
=1 I=k+1
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(B) For eachc = A, B, the systen$(Q+', Q¥) formed by the following four equations is satisfied.

L¢ = min {l =1... Kc/glll_(ffc)F <gl11_i(_6£) az) < gioF (9l,2bl)} (26)
ngi(?cﬂF (ng_li_(gcl)ﬁf> _ ch,zF(ch,zﬁg) (27)
a0 (2t f?c L) + 5.2 Clonats) = R (28)
Zﬁgpﬁl =Q7, (29)

k

where the values of; ; and P, in (29) are the functions of 3, 55, €¢) defined by equation (23).
(C) Furthermore, for eaclt = A, B and for any arbitrary valuea@{‘ and Q{B, the system of equations
8¢(Q4, QP) admits at most one solutiofL¢, 3¢, 55, £9).

In subsection IV-A2, we obtained that for each cel: A, B,

c KC C C. c, C,
P = f//m,m)r?(w,ﬂl’(m’ U9, €)@y 1, 5) + 0 (1) (30)
" = 5 // @, 55,0,0)av" ) (r,2) + 0xc(1) (31)
AGE
where A7) = [0, p] x [e,d*¥)] and A7) = [0,p] x [(), D] and whered*(") is the pivot-

distance.e., the position of useL>(X). Our aim is to prove thap'") = S Q™) 4+ Q5" converges
as K — oo, and to characterize the limit. For each cele {A, B}, sequenceicv(K) is bounded by
definition @(%) ¢ [0, D]). Consider a subsequengeg such that(d4(?x) dB:(¢x)) converges to a
certain limit, say(d“,d”). We prove that in this case, all quantiti@ﬁ’w“, Qg’(d’K), ﬁf’(¢K), ﬁg’(¢K),
¢4(@x) converge to some valuegs, Qs, 55, 5, &€ which we shall characterize. Focus for instance on

c,(éx)

sequenced,™"’. Recalling thaty{. .« , tends to zero as{ — oo (77..u o = ok (1)) and replacing

eachyy , with expression (23)y; , = Rk/C(gg’Zﬁg’(K)), we obtain immediately

1 l—«o

E Z Tk8($7ﬁ§7(K)7070) +0K(1) = 2 ; (32)
k> Le:(K)
where we defined
1
9($7ﬁ797£) = T o N (33)
c (—glfi’gg) 5)
for eachz, 3, Q,&. In the asymptotic regime, we obtain the following lemma.
Lemma 2. As K — oo, sequenc@2 converges to the unique solutigij to the following equation:
1—
5/0 / r§(, 5, 0,0)dv (r.x) = — e, (34)
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Proof: Existence and uniqueness of the solution to (34) is strimghéard since functiond —
9(zx, 3,9,¢) is strictly decreasing fromo to 0 onRR .. We remark that sequen@’(d’f‘) is bounded.e,,
g;*‘f’K) < k for a certain constant. In order to prove this claim, assume that there exists aegju®snce
6§’¢<<K> which converges to infinity. This hypothesis implies tha gubsequence given by the |hs of (32)
for K of the form K = ((K’) converges to zero a&’ — oo. This is in contradiction with (32) which
states that the latter sequence convergels:&) Using similar arguments, it can be shown ttzif§1(¢K)
is lower bounded by a certaiel > 0 i.e, € < 6 9x) < . Denote byss any accumulation point of
52’(¢K) and deflne82’ 6r) subsequence (ﬁg’(d’K (i.e, Ok coincides with¢ x for a certain function
¢) which converges t@,. We prove thats, is given by (34). Define&7(r, z,y) = rS(x,y,0,0). We show

that the difference

p rD
G(r,z, B;’(GK))CZVC’(BK)(T, x) — / G(r,z, B;’(OK))dVC(r, x)
0 de

c,(0x)

tends to zero a®% — oo. By the triangular inequality,

p rD
G(r,z, 857y (r, ) — / G(r,z, 85 ave ) (1, z)
0 de

dc,(GK)

D p rD 0
G(r,w,ﬂg)duc’(eK)(r,w) —/ G(r,w,ﬂg’( K))duc(r,w)
de 0 de

Ll

Respectively denote b}Ai 1, Ak, Ak 3 the first, second and third terms of the above equation. We

(r,x 62 (0x) ) G(r,x ﬁg)‘duc’(e’()(u,x).

first study Ag ;. Clearly, functionG(u,z, 3) is bounded on0, p] x [¢, D] x [¢/,x]. Denote by an
upper bound. ThenA g1 < V9% (Ix), wherelIx = [0, p] x [d*¥x) d°] (or Ix = [0, p] x [d¢,d>0)] if

d¢ < d>(x)), Recall thatd>(?~) converges tal® by definition, so that®(Ix) = ¢¢([0, p])A¢([d>¥x), d))
converges to zero as long as meashtéias no mass point af. Sincer>(?x) converges weakly to,

it is straightforward to show thaicv(ek)(IK), and thusAg 1, tend to zero. Now focus oAk 2. The first
term [ [ G(r,z, 32)dv®%<)(r,2) which composes\ » converges toffG 7z, B2)dve(r, x) by the
weak convergence af*(%x) to v°. The second ternf [ G(r,z 62 )du (r,z) converges to the same
limit by Lebesgue’s dominated convergence Theorem. Thyg, tends to zero. In order to prove that
Ak 3 tends to zero, we remark thatip ‘M‘ < 0o, Where the supremum is taken w.(k, r, 3) €

[0, p] x[e, D] x[€, k]. Denote byC' the latter supremum We easily obtadr( r,:p,ﬁ2 ) G(r,z,[2)| <

|35 ") — ), ~ o v
Ags < C|By /(6xc) — [a|. ThUSAK’g tends to zero a& tends to infinity. Putting all pieces togethéy,

9 ([0, p] x [d¢, D]). Sincev? is a probability measure,

tends to zero. Using (32)% Iy fd’? G(r,x,ﬁg’((’“)duc(r,x) converges tol‘Ta. By continuity arguments,
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By = limg 62 ) satisfies (34). Thugy (%) is a bounded sequence such that any accumulation point

is equal tos, defined by (34). Thusimg 3y (0] = Ba. [
Using Lemma 2, we may now characterize the limit of (31)kas~ co. Using the fact that

limg g;*‘f’K) = (5 andlimg d*(?x) = d° along with some technical arguments which are similar to the

ones used in the proof of Lemma 2, we obtain
. K¢ p rD
g = K / / rF (@, 65,0,0)dv" @) (1, ) + o (1) (35)
0 c
where 35 is the unique solution to (34). As“(®x) converges weakly to¢, ngW) converges to

D
= %/op / rF(x, 52,0,0)dve(r, x) . (36)

The same approach can be used to analyze the behavior ofmq@f’(‘z”‘) and 55’("”‘) for each
c = A, B. After similar derivations, we obtain the following resuis K — oo, sequenceﬂf’(d’“,
Qf’(‘z’f‘), gA(ex), ﬁf’(‘z’f‘), Q’f’("”‘), ¢B.(@x)) converges to theniquesolution (3{*, Q1 ¢4, 3P, QP ¢B)

to the following system of six equations:

/ [ ot e et

—// rG(x, 5, Q5 € () = a c=AB, (37)

2Jo Je
LD p (U ) — gala) Flaata) )

1_|_§c 1_|_§c

where 35 and d¢ are the limits ofﬁ2 x) and de(@x) respectively. We discuss now the existence and
the uniqueness of the solution to the above system of edqudtior that sake, recall the definition of
functionsd and§ given by (12) and (33) respectively Note ti¥&tr, 5,9,¢) = Q,0), and that

S(,8,9,€) = S(z, £, 9,0). Define §; =

( 71+§7
for ¢ € {A, B}. By applying this new notation, The

z, 1+§7 1+§c
first two equations of system (37) give place to the followsygtem of four equations:
/ / l' ﬁvalv ) (T‘,ﬂj‘)
c=A,B. (38)

//dc 9(, 55, Q5,000 (r,2) = a

The existence and the uniqueness of the solt{tAf@nQ‘{ «=A,B to the system (38) was thoroughly studied
in [2]. Applying the results of [2] in our context, we conchudhat(%,@f)czA,B = (55, Q5)c=a.B
is unique. We turn now back to the third equation of systen) (87get the following equality® =

1(d°,QF 1(d°,Q1) 5= . . .
ol g?(ic)%gi(dc?ﬁz)“ ) —1. The latter equation proves the uniquenes&'dbr ¢ = A, B. The uniqueness

of 3{ follows directly from the same equation.

So far, we have proved the uniqueness of the solution to tiséesy (37) of equation. As for the
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convergence of sequencek (**), QM%) ¢Aox) gB(9x) QB.(9x) ¢B,(é1)) to this unique solution,
its proof is omitted here due to the lack of space, but folltmessame ideas as the proof of convergence
of (ﬁf’(‘z"‘), g"(@‘)) and @f’“’“, QB’(W)) provided above.

So far, me managed to prove that for any convergent subsequéf(¢x) 5. (¢x)) — (44, dP), the
set of parameterﬂi’(‘z”{), QS’“””, ﬁf’(¢K), 5;’@’”, ¢4(9x))._ 4 p converges to some valuéls, Q5, 535,
Bs, £€¢ which are completely characterized by the system of equat{84), (36) and (37), as functions
(d4,dP). Using decomposition® = (¢ x X¢, the system formed by equations (34), (36) and (37) is
equivalent to the system (19)-(20)-(21)-(22) provided he@rem 1. At this point, we thus proved that at
least for some subsequencgs defined as above, the subseque@éé‘z”‘) converges to a limit which
has the form given by Theorem 1. The remaining task is to ptbaeQ}K) is a convergent sequence.

First, note thanpK) is a bounded sequence. Indeéﬁff() is defined as the minimum power that can
be transmitted by the network to satisfy the rate requiramedy definition,Q(TK) is thus less than the
power obtained when using the naive solution which consist®rcing each base station to transmit
only in the protected band , is forced to zero for each usérof each cellc). Now it can easily be
shown that whenK' — oo, the power associated with this naive solution converges tonstant. As a
consequence, one can determine an upperbour@%ﬁ which does not depend of.

Second, assume for instance tl@+ and Q’. are two accumulation points of sequer@éK). By
contradiction, assume th@; < Q/.. Extract for instance a certain subsequenc@%ﬁ‘f) which converges

to Qr. Inside this subsequence, one can further extract a subsegusay, such that
) —Qp,  dU®) — Vo= AB

whered? andd? are some constants both (just use the fact #&f) is bounded for each). Clearly,
QT can be written as in (18), where parametgfs 35, d°, Qf, £ satisfy the system of equations (19)-
(20)-(21)-(22) . We now consider the followirgyboptimalresource allocation policy for finite numbers
of usersk4 and K 2. In each cell € {4, B}, usersk whose distance;, to their BS is less thar® are
forced to modulate in the interference bahdnly, while users: which are farther thaa® are forced to
modulate in the protected bal only. In other words, for each usérin cell ¢, we impose
[d%xwwc:ﬁQE@o
rp2d =, =P ;=0

Ve=A,B. (39)

Particular values of the (nonzero) resource allocatioramatersy; ,, P;, are obtained by minimizing
the classical joint multicell resource allocation probl@moblem 2 in [1]), only including the additional

constraint[C’]. As a new constraint has been added, it is clear that the pmakr transmitted by
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the network, sa)Q(TK)’*, is always larger than the total powéaiTK) achieved by the optimal resource
allocation, for anyK. On the other hand, using the same asymptotic tools as pisyjdt can be shown

after some algebra that
. Ok)* _ 1. Ox) _
hfr(nQT = hIr(nQT =Qr.

In other words, this suboptimal solution performs as goodhasoptimal one wheri has the form
K = 0k for someK’. Although we omit the proof, this observation is rather itive. Indeed for such
K = 0k, the optimal values of the pivot-distances converge to tiérary onesd?, d®. Even more

*

importantly, it can be shown that the total pom@&K)’ spent when using the suboptimal procedure

converges a¥ — oo. Therefore,
lim Q5" = Qr .

Now consider a subsequengg; such thatlimyg Qgp ) = Q% > Qr, and compare our suboptimal
allocation policy to the optimal one for th&’s of the form K = ¢ x. As limg Q(T <) s lim g Q&fﬁk)’*,

there exist a certaia > 0 and there exists a certaiidy such that for anyi > K,

(1/’K > QWK

The above inequality contradicts the fact tl@agé”’{) is the global solution to the joint multicell resource
allocation problem (Problem 2 in [1]). Therefor@;. necessarily coincides witt)r. This proves that
Q(TK) converges toQr. To complete the proof of Theorem 1, one still needs to prdna for any
fixed value of(Qf, QP) ¢ R?, the system formed by equations (19)-(20)-(21)-(22) aslmitmost one
solution. The main ideas of this proof were evoked in the pafoProposition 1 of [1]. However, the

complete proof is omitted due to lack of space.

APPENDIX B

PROOF OFLEMMA 1

The proof is an adaptation to the context of our system mofial groof provided in [11].
1) Positivity. the proof of this property is straightforward by definitiof function I.
2) Monotonicity We focus first on Celld. Recall that function/#(Q?) was defined by means of the
system formed by equations (4), (5), (6) and (7), with theieafQ? in the latter equations fixed ©Q°.
A careful look at these equations reveals, with the aid ofrésailts of [1], that/4(Q®) is actually the
minimum value of the transmit pow@kegc? 7Q1P,;‘}1 resulting from the following single cell problem.
The proof of the above claim can be obtained by direct apjtineof the results of [1]. Denote by

WA =, P/, the average power transmitted to ugein bandJ.
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[Single cell problem] “Minimize the transmit powelzkegql W,j}l under the rate constrainR, < Cj

for eachk € ﬂ(}“ when the power transmitted by Base Stati®rin bandJ is fixed toQ””.

Denote by{fy,f‘”l*(QB), W,fi*(QB)}k the global solution to the above single cell optimizatiomtéthat

I4(QP) = > kedch W,fi*(QB). Note also that for each usére X4, the following equation holds
W (QP) Z)

Ter (QP)

Now, consider the case when the power transmitted by Basesta in bandJ is fixed toQB' < QPB.

Tt (QP)E llog (1 + k1 (QP) = Ry (40)

Moreover, assume that we fix the value of the sharing faqz;gr of any userk to the valuey,f’l*(QB)
which was optimal when the interference level was equa)fo Denote byW,j‘1 the value of the power

that must be transmitted to uskrin this case in order to satisfy his/her rate requiremeng

log <1 + gk 1(@3/)%Z>] = Ry. (41)
’ Ty (QB)

Note that functionz — E[log (1 + xZ)] is increasing onR,. Using this property along with equa-

tions (40) and (41) and the fact thaf, ;(Q5) < gr.1(Q5), we haverfi*(QB) > Wik Now,

A x
Ve (QB)E

o Wit (QP"). Consequentlyy™, ;1" (Q7) = 37, Wi (QP"), where {1 (@), Wiy (Q%)}x is
the global solution to the above single cell problem whenitlierference level is equal tQB’. We
conclude thati4(Q5) > I4(Q5"). In the same way, one can show thdt(Q4) > I2(Q*') when
Q4 > QA'. Combining the latter two results for Cell and B, we prove the monotonicity property of
the vector-valued functioii(QA, QP).

3) Scalability: Consider first Celld and let{y,; (Q), W;;"(Q”)} be defined as above as the global

since fy,éi*(QB) is not necessarily optimal when the interference level isatdo QP >k W,j}l >

solution to the single cell problem when the power trangdithy Base Statio®8 in bandJ is fixed to
QPB. Now, consider the case when the power transmitted by Bas@®®5 in bandJ is fixed totQ?,

wheret > 1. Assume also that we force the value of the sharing fa@fgrof any userk to be equal to
72’1*(623) which was optimal when the interference level was equaptb Denote byW,;‘"1 the value of

the power that must be transmitted to usdn this case in order to satisfy his/her rate requirememt

A x B B chAl )
T(Q7)E |1 L+ gr1(tQ7) =2 || = Ri. (42)
T (@7) [0g< Ik )%?’71 OF) z

It can be easily verified tha%gk,l(QB) < gr1(tQP). Using the latter inequality along with equa-

tions (40) and (42) and the fact that functian— E[log (1 + xZ)] is increasing onR,, we have
tW,fi*(QB) > W,j}l. Sincefy,f”l*(QB) is not M necessarily optimal when the interference levelqaa
totQ”, > Wi > >, MW (tQP). Consequently, Y, W,/ 5 (QF) > 3, W/ (tQP). We conclude
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thattI4(QP) > I*(tQ®). Similarly, we can easily show that?(Q4) > I'%(tQ*). Combining the latter

two inequalities, we can prove the scalability property b vector-valued functiob(Q*, Q7).
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