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Abstract— Based on the idea of randomized coordinate descent
of c-averaged operators, a randomized primal-dual optimization
algorithm is introduced, where a random subset of coordinates is
updated at each iteration. The algorithm builds upon a variant
of a recent (deterministic) algorithm proposed by Vii and Condat
that includes the well known ADMM as a particular case. The
obtained algorithm is used to solve asynchronously a distributed
optimization problem. A network of agents, each having a
separate cost function containing a differentiable term, seek to
find a consensus on the minimum of the aggregate objective. The
method yields an algorithm where at each iteration, a random
subset of agents wake up, update their local estimates, exchange
some data with their neighbors, and go idle. Numerical results
demonstrate the attractive performance of the method.

The general approach can be naturally adapted to other situa-
tions where coordinate descent convex optimization algorithms
are used with a random choice of the coordinates.

Index Terms— Distributed Optimization, Coordinate Descent,
Consensus algorithms, Primal-Dual Algorithm.

I. INTRODUCTION

Let X and Y be two Euclidean spaces and let M : X — Y
be a linear operator. Given two real convex functions f and
g on X and a real convex function h on ), we consider the
minimization problem

inf f(z)+g(x)+ h(Mz) (1)

zeX
where f is differentiable and its gradient V f is Lipschitz-
continuous. Although our theoretical contributions are valid
for very general functions f, g and h, the application part
of this paper puts a special emphasis on the problem of
distributed optimization. In this particular framework, one
considers a set of [NV agents such that each agentn =1,..., N
has a private cost of the form f, + g, where f,, and g,, are
two convex cost function on some (other) space X, f, being
differentiable. The aim is to distributively solve

inf an + gn(u) . )
ueX
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In order to construct distributed algorithms a standard ap-
proach consists in introducing

N
) = Z f'n(xn) Zgn Tn
n=1

for all z = (x1,...,2y) in the product space X = X
Obviously, problem is equivalent to the minimization of
f(x) 4+ g(x) under the constraint that all components of z are
equal i.e., x1 = --- = xp. Therefore, Problem @]) is in fact a
special instance of Problem if one chooses h(Mz) as an
indicator function, equal to zero if x1 = --- = xy and to +o0
otherwise. As we shall see, this reformulation of Problem
is often a mandatory step in the construction of distributed
algorithms.
Our contributions are as follows.

and g(x

N

1) Vi and Condat have separately proposed an algorithm
to solve (E]) in [1] and [2] respectively. Elaborating on
this algorithm, we provide an iterative algorithm for
solving (I) which we refer to as ADMM+ (Alternating
Direction Method of Multipliers plus) because it includes
the well known ADMM [3], [4] as the special case
corresponding to f = 0. Interestingly, in the framework
of the distributed optimization, ADMM+ is provably
convergent under weaker assumptions on the step sizes
as compared to the original Vii/Condat algorithm.

2) Based on the idea of the stochastic coordinate descent
who has been mainly studied in the literature in the
special case of proximal gradient algorithms [5]-[7], we
develop a distributed asynchronous version of ADMM+.
As a first step, we borrow from [1]- [2] the idea that their
algorithm is an instance of a so-called Krasnosel’skii-
Mann iteration applied to an a-averaged operator [8, Sec-
tion 5.2]. Such operators have contraction-like properties
that make the Krasnosel’skii-Mann iterations converge
to a fixed point of the operator. The principle of the
stochastic coordinate descent algorithms is to update only
a random subset of coordinates at each iteration. In this
paper, we show in most generality that a randomized
coordinate descent version of the Krasnosel’skii-Mann
iterations still converges to a fixed point of an a-averaged
operator. This provides as a side result a convergence
proof of the stochastic coordinate descent versions of the
proximal gradient algorithm, since this algorithm can be
seen as the application of a 1/2-averaged operator [8].
More importantly in the context of this paper, this idea



leads to provably convergent asynchronous distributed
versions of ADMM+.

3) Putting together both ingredients above, we apply our
findings to asynchronous distributed optimization. First,
the optimization problem (I} is rewritten in a form
where the operator M encodes the connections between
the agents within a graph in a manner similar to [9].
Then, a distributed optimization algorithm for solving
Problem (2) is obtained by applying ADMM-+. Using the
idea of coordinate descent on the top of the algorithm, we
then obtain a fully asynchronous distributed optimization
algorithm that we refer to as Distributed Asynchronous
Primal Dual algorithm (DAPD). At each iteration, an
independent an identically distributed random subset of
agents wake up, apply essentially the proximity operator
on their local functions, send some estimates to their
neighbors and go idle.

An algorithm that has some formal resemblance with
ADMM+ was proposed in [10], who considers the minimiza-
tion of the sum of two functions, one of them being subjected
to noise. This reference includes a linearization of the noisy
function in ADMM iterations.

The use of stochastic coordinate descent on averaged oper-
ators has been introduced in [11] (see also the recent preprint
[12] which uses the same line of thought). Note that the ap-
proach of [11] was limited to unrelaxed firmly non expansive
(or 1/2-averaged) operators, well-suited for studying ADMM
which was the algorithm of interest in [11].

Asynchronous distributed optimization is a promising
framework in order to scale up machine learning problems
involving massive data sets (we refer to [13] or the recent
survey [14]). Early works on distributed optimization include
[15], [16] where a network of processors seeks to optimize
some objective function known by all agents (possibly up to
some additive noise). More recently, numerous works extended
this kind of algorithm to more involved multi-agent scenarios,
see [17]-[28].

Note that standard first order distributed optimization meth-
ods often rely on the so-called adaptation-diffusion approaches
or variants. The agents update their local estimates by evalu-
ating their private gradient and then merge their estimate with
their neighbors using a local averaging step. Unfortunately,
such methods require the use of a vanishing step size, which
results in slow convergence. This paper proposes a first-order
distributed optimization method with constant step size, which
turns out to outperform standard distributed gradient methods,
as shown in the simulations.

To the best of our knowledge, our method is the first dis-
tributed algorithm combining the following attractive features:

1) The algorithm is asynchronous at the node-level. Only
a single node is likely to be active at a given iteration,
only broadcasting the result of its computation without
expecting any feedback from other nodes. This is in
contrast with the asynchronous ADMM studied by [11]
and [29] which is only asynchronous at the edge-level. In
these works, at least two connected nodes are supposed
to be active at a common time.

2) The algorithm is a proximal method. Similarly to the
distributed ADMM, it allows for the use of a proximity
operator at each node. This is especially important to
cope with the presence of possibly non-differentiable reg-
ularization terms. This is unlike the classical adaptation-
diffusion methods mentioned above or the more recent
first order distributed algorithm EXTRA proposed by
[28].

3) The algorithm is a first-order method. Similarly to
adaptation-diffusion methods, our algorithm allows to
compute gradients of the local cost functions. This is
unlike the distributed ADMM which only admits implicit
steps i.e., agents are required to locally solve an optimiza-
tion problem at each iteration.

4) The algorithm admits constant step size. As remarked in
[28], standard adaptation-diffusion methods require the
use of a vanishing step size to ensure the convergence to
the sought minimizer. In practice, this comes at the price
of slow convergence. Our method allows for the use of a
constant step size in the gradient descent step.

The paper is organized as follows. Section [II] is devoted to
the the introduction of ADMM+ algorithm and its relation with
the Primal-Dual algorithms of Vi [1] and Condat [2], we also
show how ADMM+ includes both the standard ADMM and
the Forward-Backward algorithm (also refered to as proximal
gradient algorithm) as special cases [8, Section 25.3]. In
Section we provide our result on the convergence of
Krasnosel’skii-Mann iterations with randomized coordinate
descent. Section addresses the problem of asynchronous
distributed optimization. Finally, Section|[V]provides numerical
results.

II. A PRIMAL DUAL ALGORITHM
A. Problem statement
We consider Problem . Denoting by T'o(X) the set of
proper lower semi-continuous convex functions on X —

(—00,00] and by || - || the norm on X, we make the following
assumptions:

Assumption 1 The following facts hold true:
(i) [ is a convex differentiable function on X,

(ii) g € To(X) and h € To(Y).

We consider the case where M is injective (in particular,
it is implicit that dim(X’) < dim())). In the latter case, we
denote by S = Im(M) the image of M and by M~ the
inverse of M on & — X. We emphasize the fact that the
inclusion & C Y might be strict. We denote by V the gradient
operator.

Assumption 2 The following facts hold true:
(i) M is injective,
(ii) V(f o M~1) is L-Lipschitz continuous on S.
We denote by dom g the domain of a function ¢ and by ri S
the relative interior of a set S in a Euclidean space.

Assumption 3 The infimum of Problem () is attained. More-
over, the following qualification condition holds

0 € ri(dom h — M dom g)



where M dom g is the image by M of dom g.

The dual problem corresponding to the primal problem

is written

inf (=M*X) 4+ h*(A

jnf (f +9)"( )+ h*(A)
where ¢* denotes the Legendre-Fenchel transform of a func-
tion ¢ and where M ™ is the adjoint of M. With the assump-
tions [1] and [3| the classical Fenchel-Rockafellar duality theory
[8], [30] shows that

géi;l f(x) + g(z) + h(Mz)
== AN ), O

and the infimum at the right hand member is attained. Fur-
thermore, denoting by Oq the subdifferential of a function
q € To(X), any point (Z,\) € X x ) at which the above
equality holds satisfies

0 € Vf(Z) + dg(z) + M*X
0 € —Mz + dh*(\)

and conversely. Such a point is called a primal-dual point.

B. A Primal-Dual Algorithm

We denote by (-,-) the inner product on X. We keep the
same notation || - || to represent the norm on both X" and Y.
For some parameters p,7 > 0, we consider the following
algorithm which we shall refer to as ADMM+.

ADMM+

— (M k )\k 2
2l = argmin [h(z) + Iz = (Ma” + pA7)] } (4a)
z€y 2p
ML= \F 4 o~ (M2 — 25 (4b)
uFt = (1 — 7p Y Ma® + 7p 1+ (4c)
241 = argmin|g(z) + (Vf(a*), 2)
TeEX
Ma — uk+l 4 \k+1)12
N Mz —u 27+ T | } ad)

This algorithm is especially useful in the situations where
Vf and the left hand member of Equation (4d) are both easy
to compute, as it is the case when (say) f is quadratic and g is
an ¢; regularization term. In such situations, working directly
on f + g is often computationally demanding.

Theorem 1 Let Assumptions hold true. Assume that
71— p=L > L/2. For any initial value (z°,\°) € X x Y, the
sequence (x* \*) defined by ADMM+ converges to a primal-
dual point (x*,X*) of @) as k — oo

Remark 1 In the special case when f =0 (that is L = 0), it
turns out that the condition 7= — p=* > L/2 can be further
weakened to 771 — p~1 > 0 (see [2]). It is therefore possible
to set T = p and thus have a single instrumental parameter to
tune in the algorithm. Note also that in f = 0 the algorithm
is provably convergent with no need to require the injectivity
of M.

The proof of Theorem [I] is provided in Appendix [A] It is
based on Theorem [2| below. For any function g € I'o(X) we
denote by prox, its proximity operator defined by

. 1 )
prox, (¢) = arg min[g(w) + Sllw—2l?]. )

The ADMM+ is an instance of the primal dual algorithm
recently proposed by Vi [1] and Condat [2], see also [31]:

Theorem 2 ([1], [2]) Given a Euclidean space &, consider
the minimization problem inf,ce f(y) + g(y) + h(y) where
G,h € To(E) and where f is convex and differentiable on
& with an L—Lipschitz continuous gradient. Assume that the
infimum is attained and that 0 € ri(dom h—dom g). Let T, p >
0 be such that 7—1 — ,0_1 > L/2, and consider the iterates

(6a)
(6b)

ANHE = prox 1. (AF + p71y")

yFT = prox ; (yF — TV F(yF) — T(2AFTT —AF)).

Then for any initial value (y°,\°) € € x &, the sequence
(y*, \F) converges to a primal-dual point (y*,\*), ie. a
solution of the equation

inf f(y) +9(y) +h(y) = = WL (F +9)"(=1) + A" (A). ()

C. The case f =0 and the link with ADMM

In the special case f = 0 and 7 = p, sequence (u*)gey
coincides with (2¥)zen. Then, ADMM+ boils down to the
standard ADMM whose iterations are given by:

1

ZF1 = argmin {h(z) + —|lz — Mak — p)\k|2}
zeY 2/)

MAL = NP pmH(Mah — 2P

1
2 = argmin |g(x) + — || Mz — 25T 4 pAFTY 2]
TeEX 2p

D. The case h = 0 and the link with the Forward-Backward
algorithm

In the special case h = 0 and M = 1, it can be easily
verified that A* is null for all ¥ > 1 and v*F = z*.
Then, ADMM+ boils down to the standard Forward-Backward
algorithm whose iterations are given by:

1 .
2" = argming(z) + — ||z — (2% — TV (2"))|]?
zeEX 21

= prong(xk — 7V f(z"h)).

One can remark that p has disappeared thus it can be set as
large as wanted so the condition on stepsize T from Theorem I
boils down to 7 < 2/L. Applications of this algorithm with
particular functions appear in well known learning methods
such as ISTA [32].

E. Comparison to the original Vii-Condat algorithm

We emphasize the fact that ADMM-+ is a variation on the
Vii-Condat algorithm. The original Vi{i-Condat algorithm is
in general sufficient and, in many contexts, has even better
properties than ADMM+ from an implementation point of
view. Indeed, whereas the Vii-Condat algorithm handles the



operator M explicitly, the step in ADMM+ can be delicate
to implement in certain applications, i.e., when M has no
convenient structure allowing to easily compute the argmin
(the same remark holds of course for ADMM which is a
special case of ADMM+).

This potential drawback is however not an issue in many
other scenarios where the structure of M is such that step (@d)
is affordable. In Section we shall provide such scenarios
where ADMM+ is especially relevant. In particular, ADMM+
is not only easy to implement but it is also provably convergent
under weaker assumptions on the step sizes, as compared to
the original Vii-Condat algorithm.

Also, the injectivity assumption on M could be seen as
restrictive at first glance. First, the latter assumption is in fact
not needed when f = 0 as noted above. Second, it is trivially
satisfied in the application scenarios which motivate this paper
(see the next sections).

As alluded to in the introduction, the primal-dual algorithm
of [1], [2] can be geometrically described as a sequence
of Krasnosel’skii-Mann iterations applied to an «-averaged
operator. In the next section, we briefly present these notions,
proceed by introducing the randomized coordinate descent
version of these iterations, then state our convergence result.

III. COORDINATE DESCENT
A. Averaged operators and the primal-dual algorithm

Let H be a Euclidean spaceﬂ For 0 < o < 1, a mapping
T :H — H is a-averaged if the following inequality holds
for any x,y in H:

11—«

[T = Ty|* < [lz - yII” - (1= Tz — (1 = T)yl*.
A l-averaged operator is said non-expansive. A %—averaged
operator is said firmly non-expansive. The following Lemma

can be found in [8, Proposition 5.15, pp.80].

(07

Lemma 1 (Krasnosel’skii-Mann iterations) Assume  that
T :H — H is a-averaged and that the set fix(T) of fixed
points of T is non-empty. Consider a sequence (ny)ren Such
that 0 < mp < 1/a and Y, ni(1/o — ny) = oo. For any
20 € H, the sequence (x*)nen recursively defined on H
by x*+1 = oF 4 0y (Tak — 2%) converges to some point in
fix(T).

On the product space ) x ), consider the operator

V — (T_1|y |y >
ly  ply

where |y stands for the identity on ) — ). When 71 —p~1 >
0, one can easily check that V is positive definite. In this
case, we endow ) x ) with an inner product (-, - )y defined
as (C,o)v = ((,Vy) where (-, -) stands for the natural
inner product on ) x ). We denote by Hy the corresponding
Euclidean space.

In association with Lemma (1} the following lemma is at the
heart of the proof of Theorem

IWe refer to [8] for an extension to Hilbert spaces.

Lemma 2 ([1], [2]) Let Assumptions hold true. Assume
that =1 —p=1 > L /2. Let (N1 yF+1) = T(A\F, y*) where T
is the transformation described by Equations (6a)—(6b). Then
T is an a-averaged operator on Hy with o = (2—a1)~* and
ap = (L/2)(r = p~1)7L.

Note that 7=t — p=1 > L/2 implies that 1 > oy > 0 and
thus that « verifies % < « < 1 which matches the definition
of a-averaged operators.

B. Randomized Krasnosel’skii Mann Iterations

Consider the space H = H; X --- X H; for some in-
teger J > 1 where for any j, H; is a Euclidean space.
Assume that H is equipped with the scalar product (z,y) =
Z'j]=1<xj,yj>yj where (-, -)y, is the scalar product in H,;.
For j € {1,...,J}, we denote by T; : H — H; the compo-
nents of the output of operator T : H — H corresponding to
H;, we thus have Tz = (Tyz,..., T 2). We denote by 27
the power set of J = {1,...,J}. For any x € 27, we define
the operator TE o — H by Tgﬁ')w =T,z if j € k and
'i'g-“)x = z; otherwise. On some probability space (2, F,P),
we introduce a random i.i.d. sequence (&¥)pen+ such that
¢ Q — 27 ie £F(w) is a subset of J. We assume that
the following holds:

VieJ,Ike2l stjerand P(& =k)>0. (8)

Let T be an «-averaged operator, instead of considering the
iterates * ! = 2F 4 1y (T2* — 2¥), we are now interested in
a stochastic coordinate descent version of this algorithm that
consists in iterates of the type 2F+1 = g4, (TE" gk —gk).
The proof of Theorem [3]is provided in Appendix

Theorem 3 Let T : H — H be a-averaged and fix(T) # (.
Assume that for all k, the sequence (ni)ren satisfies

1
0 < liminfn, <limsupn, < —.
k k [e%

Let (£F)en+ be a random i.id. sequence on 27 such that
Condition [B) holds. Then, for any deterministic initial value
T, the iterated sequence

ol =gk 4 nk(f(§k+1)xk —z) )

converges almost surely to a random variable supported by

fix(T).

Remark 2 At the time of the writing the paper, the work
[12] was brought to our knowledge. A result similar to
Theorem [3] is presented in the framework of Hilbert spaces,
random summable errors (dealt with by relying on the notion
of quasi-Féjer monotonicity) and multiple blocks. The proof
of [12] devoted to this result relies on the same idea as
the one developed in [11] and presented above. Distributed
asynchronous implementations are not considered in [12].

By Lemma [2{ ADMM+ iterates are generated by the ac-
tion of an a-averaged operator. Theorem [3| shows then that
a stochastic coordinate descent version of any «-averaged
operator converges towards a primal-dual point. In Theorem [3]
below, we apply this result to the operator related to ADMM+,



and develop an asynchronous version of ADMM+ in the
context where it is distributed on a graph.

IV. DISTRIBUTED OPTIMIZATION

Consider a set of N > 1 computing agents that cooperate
to solve the minimization problem

N
inf
reX

(fn (@) + gn(2)) (10)

n=1
where f,, and g, are two private functions available at Agent
n. We make here the following assumption:

Assumption 4 For eachn=1,...,N,

(i) fn is a convex differentiable function on X, and its
gradient YV f,, is L-Lipschitz continuous on X for some
L>0.

(ii) gn € To(X).

(iii) The infimum of Problem (I0) is attained.
(iv) NN_; ridom g,, # 0.

Our purpose is to design a random distributed (or decen-
tralized) iterative algorithm where, at a each iteration, each
active agent updates a local estimate in the parameter space
X based on the sole knowledge of its private functions and
on information it received from its neighbors through some
communication network. Eventually, the local estimates will
converge to a common consensus value which is a minimizer
of the aggregate function of Problem (10).

Instances of this problem appear in learning applications
where massive training data sets are distributed over a network
and processed by distinct machines [33], [34], in resource
allocation problems for communication networks [21], or in
statistical estimation problems by sensor networks [20], [35].

A. Network Model and Problem Formulation

To help the reader, the notations that will be introduced
progressively are summarized in the following table.

dp, : Degree of node (agent) n,
e={n,m} Graph edge between n and m,
E :  Set of graph edges,

f@) =3 fulzn) Differentiable term in obj. fct.,
9(x) = gn(ay) Other Ty term in obj. fct.,

h : Consensus ensuring function,
)‘k : = (()‘I:(n)7 )‘Ig(m)))€:{n,m}€E
A2IEl vector of dual variables,
M (n) is updated by Agent n,
Stands for {n,m} € E,

Agent number,

Time index,

Set of graph nodes (agents),
XN vector of primal variables,
updated by Eq. (@d),

X2El vector given by Eq. (@a).

n~m
Subscript n
Superscript k
V=A{1,...,N}
ak = (xﬁ)ne\/

2 = (3¢, 2))eer
We represent the network as an undirected graph G =

(V, E) where V = {1,..., N} is the set of agents/nodes and F/
is the set of edges. Representing an edge by a set {n, m} with

n,m € V, we write m ~ n whenever {n,m} € E. Practically,
n ~ m means that Agents n and m can communicate with
each other.

Assumption 5 G is connected and has no self-loops (n = m
forall {n,m} € E).

Let us introduce some notation. For any =z € XN, we
denote by x,, the n" component of x, ie., z = (2,)ncy.
We introduce the functions f and g on XV — (—o0, +o0]
as f(x) =) ey fu(zn) and g(x) = >, oy gn(2y). Clearly,
Problem (I0) is equivalent to the minimization of f(z)+ g(z)
under the constraint that all components of = are equal. Here,
one can rephrase the optimization problem as

N
min 3 (fulwn) + gulen)) + te(a)

n=1

where ¢4 is the indicator function of a set A (null on A
and equal to +oco outside this set), and C is the space of
vectors © € XN such that z; = --- = zn. This problem
is an instance of Problem (I) where h = tc and M as the
identity operator. However, simply setting h = (¢ and M as
the identity would not lead to a distributed algorithm. Loosely
speaking, we must define h and M in such a way that it
encodes the communication graph. Our goal will be to ensure
global consensus through local consensus over every edge of
the graph.

For any ¢ € E, say ¢ = {n,m}, we define the linear
operator M, : XN — X? as M (x) = (zn,%,,) assuming
n < m to avoid any ambiguity on the definition of M.
We construct the linear operator M : XN — ) & x2FI
as Mz = (Mc(x))..p where we assume some (irrelevant)
ordering on the edges. Any vector y € ) will be written as
Yy = (Ye)ecr Where, writing € = {n, m} € E, the component
ye will be represented by the couple y. = (y.(n), y.(m)) with
n < m. Note that this notation is abusive since it tends to
indicate that y. has more than two components. However, it
will turn out to be convenient in the sequel. We also introduce
the subspace of X'? defined as Ca = {(z, ) : # € X'}. Finally,
we define h: Y — (— oo, +00] as

hy) = teaye) - (1)
eck
We consider the following problem:
min f(z) + g(z) + h(Mz) . (12)
zeXN

Lemma 3 Let Assumption[5|hold true. The minimizers of (12))
are the tuples (z*,- - ,x*) where x* is any minimizer of (10).

Proof: Assume that Problem (I2) has a minimizer z =

(.I’h...,ZL‘N). Then

e={n,m}ekE

h(Mz) = tey (T, Tm)) = 0.

Since the graph G is connected, this equation is satisfied if
and only if z = (z*,...,2*) for some z* € X. The result
follows. ]



B. Instantiating ADMM+

We now apply ADMM+ to solve the problem (12). Since
the newly defined function h is separable with respect to the

(Ye)ecE» we get
prox,(y) = (prox,.., (ve))eer = ((7c,50))

where g = (ye(n) + y.(m))/2 if ¢ = {n,m}. With this
at hand, the update equation (@a) of ADMM+ is written as
P = ((ZFHL ZEY) cp where 28t = (2F + 2 ) /2 +
p(\E(n) + )\f(m))/Q for any € = {n m} € E. Plugging this
equality into Eq. , it can be seen that \*(n) = —\F(m).
Therefore, zF+1 = (x + 2k )/2 for any k > 1. Moreover,
N1 () = Ne(n) + (o — b, )/(2P)

Let us now instantiate Equations @c) and {@d). Observe that
the n'™ component of the vector M* Mz coincides with d,,x,,
where d,, is the degree (i.e., the number of neighbors) of
node n. From Eq. (#d), the n™ component of z¥*! is written

[(M”‘(U’“+1 - T/\k;))n - Tan(%'i)]

eeE

k+1 _
T, = prox

Tgn/dn
where for any y € ),
(M*y)n =

>

m:{n,m}ek

is the n™ component of M*y € XN. Plugging Eq.
together with the expressions of zf{”l , and )\'E“ y(n) in the
argument of prox,, /4 , we get after a small calculation

k+1

_ T .
Tp' = ProX,, g [(1 —7p Yk — —an(xfl)

dn,

-

= >
" mi{n,m}eE

The Distributed ADMM+ (DADMM+) algorithm is described

by the following procedure:

DADMM+
Initialization: (20, \?) s.t. )\?n my (1) = )\?n my (m) for all
m ~ n.
Do
. For all n € V, Agent n has in its memory the variables
rs ANE iy ()Y rmons and {a }inn. 1t performs the
followmg operations:

— For all m ~ n, do
k k
k+1 _\k Ty — Loy
Aoy (1) = A,y () + =5 =2
_ T
= @b = prox,g, jq, [(L= 7o ek — -V fa(ah)

T _
" mi{n,m}eE

)

o For all n € V, Agent n sends the parameter z**! to
its neighbors,
o Increment k.

The proof of the following result is provided in Appendix [C]

Theorem 4 Ler Assumptions H) and [5 hold true. Assume that
L
-1 -1
T S —=p >
2dmin
where dyin is the minimum of the nodes’ degrees in the graph
G. For any initial value (x°, \°), let (z*)ren be the sequence
produced by the Distributed ADMM+. Then there exists a

minimizer x* of Problem (T0) such that for alln € V, (z¥)en
converges to T*.

13)

C. A Distributed Asynchronous Primal Dual Algorithm

In the distributed synchronous case, at each clock tick, a
central scheduler activates all the nodes of the network simul-
taneously and monitors the communications that take place
between these nodes once they have finished their prox(-)
and gradient operations. The meaning we give to “distributed
asynchronous algorithm” is that there is no central scheduler
and that any node can wake up randomly at any moment
independently of the other nodes. This mode of operation
brings clear advantages in terms of complexity and flexibility.

The proposed Distributed Asynchronous Primal Dual al-
gorithm (DAPD) is obtained by applying the randomized
coordinate descent on the above algorithm. As opposed to
the latter, the resulting algorithm has the following attractive
property: at each iteration, a single agent, or possibly a subset
of agents chosen at random, are activated. More formally, let
(€¥)ren be a sequence of i.i.d. random variables valued in
2V, The value taken by &* represents the agents that will be
activated and perform a prox on their x variable at moment
k. The asynchronous algorithm goes as follows:

DAPD Algorithm:
Initialization: (2%, \?).
Do
o Select a random set of agents £+ = A,
e For all n € A, Agent n performs the following
operations:

— For all m ~ n, do

() = Afpmy (1)
)\k-‘rl — {n,m} {n,m}
{n, m}(n) 2
L oh—h
20

_ T
- gkt = ProX,, /4. [(1 —7p Yk — d—an(fo)
n

l Z (pilxl:n + >‘]{€7z,,m} (m))} >

1 ,AFFL (n)} to Neigh-

- For all m ~ n, send {x (nm)

bor m.

o For all agents n ¢ A, wﬁ“ = »Tn’ and )\]E:;in}( n) =
A’En m}(”) for all m ~ n.

o Increment k.

Assumption 6 The collections of sets { A1, Az, . .
Pl¢t = A;] is positive satisfies | JA; = V.

.} such that

In other words, any agent is selected with a positive probabil-
ity. The following theorem is proven in Appendix



Theorem 5 Let Assumptions and [6] hold true. Assume
that condition holds true. Let (zX*1),cy be the output
of the DAPD algorithm. For any initial value (z°,\°), the
sequences x¥, . .. ,x?\, converge almost surely as k — oo to
a random variable x* supported by the set of minimizers of

Problem (10).

Before turning to the numerical illustrations, we note that
the very recent paper [36] also deals with asynchronous
primal-dual distributed algorithms by relying on the idea of
random coordinate descent.

V. NUMERICAL ILLUSTRATIONS

We address the problem of the so called ¢y-regularized
logistic regression. Denoting by m the number of observations
and by p the number of features, our optimization problem is
written

m

1 T
s 2 :1 (1 —yta, x) 2
)EIEI%}) m — & te + MHX”

where the (y;)7~, are in {—1,+1}, the (a;);”, are in R?, and
p >0 is a scalar.

We consider the case where the dataset is scattered over
a network. Indeed, massive data sets are often distributed
on different physical machines communicating together by
means of an interconnection network [37, Chap. 2.5] and many
algorithms have been implemented for independent threads or
processes running on distant cores, closer to the data (see e.g.
[24], [13] for MapReduce implementation of ADMM, [26]
for Spark implementation). Formally, denoting by {B,})_;
a partition of {1,...,m}, we assume that Agent n holds
in its memory the data in B,,. Denoting by G = (V, E)
the graph that represents the connections between the agents,
the regularized logistic regression problem is written in its
distributed form as

al 1 T I
(5 us(reemeie) s

min
Np
xeR n=1 \teB,
+§ LC2(y€)'
eck

Clearly, this is an instance of Problem (12).
Our simulations will be performed on the following classical
datasets:

name m P density
covtype | 581012 54 dense
alpha 500000 500 dense
realsim | 72309 | 20958 | sparse
rcvl 20242 | 47236 | sparse

The datasets covtype, realsim, and rcvl are taken
from the LIBSVM websiteE] and alpha was from the Pascal
2008 Large Scale Learning challengeﬂ We preprocessed the
dense datasets so that each feature has zero mean and unit
variance. The global Lipschitz constant for the gradient of the
logistic function was estimated by its classical upper bound

Zhttp://www.csie.ntu.edu.tw/~cjlin/libsvm/
3http://largescale.ml.tu-berlin.de

L =025 max,—1.. n ||a,|3. Finally, the regularization pa-
rameter ;& was set to 1074,

In our simulations, we also compared the DAPD algorithm
presented in this paper with some known algorithms that lend
themselves to a distributed implementation. These are:

- DGD: the synchronous distributed algorithm [38]. Here,
each agent performs a gradient descent then exchanges
with its neighbors according to the Metropolis rule.

- ABG: the asynchronous broadcast gradient [39]. In this
setup, one agent wakes up and sends its information to
its neighbors. Any of these neighbors replaces its current
value with the mean of this value and the received value
then performs a gradient descent.

- PWG: the pairwise gossip gradient [16], [40]. In this
setup, one agent wakes up, and selects one neighbor.
Then each of the two agents performs a gradient descent,
then exchanges and replaces its value by taking the mean
between the former and the received value.

For the DGD, the ABG, and the PWG, the stepsizes
have been taken decreasing as 7o/k%"®. The other param-
eters (including 7o) were chosen automatically in sets of
the form parameteripeor, x 10%i = {1,..,10} (where
parameteripeory 18 computed from the best theoretic bound
with Lipschitz constant estimate L) by running in parallel
multiple instances of the algorithm with the different constants
over 50 iterations and choosing the constant giving the lowest
functional cost.

Whereas DAPD can allow for multiple agents to wake up at
each iteration, we considered only the single active agent case
as it does not change much the practical implementation. It is
thus underperforming compared to a multiple awaking agents
scenario. Similarly to the previous algorithms, the stepsizes
of DAPD have been chosen automatically in sets of the form
Parameteripeory X 10 for 7 and p = 27 for fairness in terms
of number of step sizes explored.

The (total) functional cost was evaluated with the value at
agent 1 (the agents are indistinguishable from a network point
of view) and plotted versus the number of local gradients used.

In Figure [T} we plot the ¢5-regularized logistic cost at some
agent versus the number of local gradients used. We solved
this problem for each dataset on a 10 x 10 2D toroidal grid
(100 agents) by assigning the same number of observations per
agent. We observe that the DAPD is significantly faster than
the other stochastic gradient methods. Finally, we also remark
that the quantity of information exchanged per iteration for
DAPD is roughly a vector of length shorter than 2N p (8p with
our graph) which means that the number of transmissions is in
general quite small compared to the size of the whole dataset
(roughly T'p).

In Figure[2] we plot the same quantities for the rcv1 dataset
but now the same number of observations are dispatched over
i) a 5 x 5 toroidal grid (25 agents) and ii) a 50-nodes complete
network.

VI. CONCLUSIONS AND PERSPECTIVES

This paper introduced a general framework for stochastic
coordinate descent. The framework was used on a new al-
gorithm called ADMM+ which has roots in a recent work by


http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://largescale.ml.tu-berlin.de
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Fig. 1. Comparison of distributed algorithms on a 5 X 5 grid.
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number of local gradients computed
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Fig. 2. Comparison between different networks on rcvl dataset.

Vil and Condat. As a byproduct, we obtained an asynchronous
distributed algorithm which enables the processing of distinct
blocks on different machines. Future works include an analysis
of the convergence rate of our algorithms along with efficient
stepsizes strategies.

APPENDIX
A. Proof of Theorem|]]

By setting £ = S and by assuming that £ is equipped with
the same inner product as ), one can notice that the functions
f=foM™ g=goM~' and h satisfy the conditions of
Theorem 2} Moreover, since (f + g)* = (f + g)* o M*, one
can also notice that (z*, \*) is a primal-dual point associated
with Eq. @) if and only if (Mz*, \*) is a primal-dual point
associated with Eq. (7).

To recover ADMM+ from the iterations (6a)—(6b), the starting
point is Moreau’s identity [8, Th. 14.3] which reads

prox,—1p.(z) + pt prox,,(pz) = x.
Setting zF = M~'y* and

2 = prox,, (y* + pAF)

(M k Ak 2
— argmin[(w) + 12— M+ 22)] B
wey 2p

Equation (6a) can be rewritten thanks to Moreau’s identity
Ak+1 _ Ak +p71(Ml'k o Zk+1) )
Now, Equation (6b) can be rewritten as
k k+1_ k|2
. = w—y T (2N ")
Y1 argmin g(w)+(V Fy*) )+ | 2 H
weS T

Upon noting that g(Mz) = g(z) and (Vf(y*), Mz) =
(M=) V(M M%), Mz) = (Vf(z"),z), the above
equation becomes

Muw—uF+ 1 \k+1]12
FFl=argmin g(w) + (V f(z*)w) + M= 5 T ”
weX T

where
uF Tt = Ma® 4+ r(\F — A\FFL
= (1—p ) Mak + 7p L+

The iterates (2F+1, \FF1 yF+1 xF+1) are those of the
ADMM+.

B. Proof of Theorem [3]

The main idea behind the proof can be found in [11]. Define
the operator U = (1 — ng)l + nx T (we omit the index %k in U
to simplify the notation); similarly, define U®*) = (1 — ;)1 +
ne T("). Remark that the operator U is (o )-averaged.

The iteration (9) reads 2"+ = U€" ™ )ak . Set p,, = P(&; =
k) for any k € 27. Denote by ||z||*> = (z, z) the squared norm
in H. Define a new inner product z e y = 3, ¢;(z;,Y;);
on H where qj_1 = D o7 Prlyjexy and let lzl> = z oz
be its associated squared norm. Consider any z* € fix(T).

Conditionally to the sigma-field F* = o(¢y, ..., &F) we have
il - | = 5 e 0005 -t
re2J
=Y ey gl =P+ D pe Y gllal — )
k€27 JEK k€27 jér

= ll=* =2+ 3= pe Y as (10" = 31— Il - 2311

keI  JEK

J

= [l = @[+ 37 (U5 — 252 ~ 1~ 51%)

j=1

= [Jl=* = | + (U 2" ~ Jla* —2*]?) .

Using that U is (amy)-averaged and that z* is a fixed point
of U, the term enclosed in the parentheses is no larger than
— L2y () — U)z¥ 2. As | — U = 5 (1 — T), we obtain:

ank

* 2 * 2
Eff|lz*** —2*||" | F*] < [[a* - 2]
— (1 —amp)||(1 = T)2®|? (14)

which shows that ||z* — x*mQ is a nonnegative supermartin-
gale with respect to the filtration (Fj). As such, it converges
with probability one towards a random variable that is finite
almost everywhere.

Given a countable dense subset H of fix(T), there is a
probability one set on which ||2* — z|| = X5 € [0,00) for



all z € H. Let 2* € fix(T), let € > 0, and choose * € H
such that ||a* — || < e. With probability one, we have

llo* = 2*ll < ll2* — || + ll= - 2*| < Xo + 2¢

for k large enough. Similarly, ||2* — 2*|| > X, — 2¢ for k
large enough. We therefore obtain:
C1 : There is a probability one set on which |||l’k — x*|||
converges for every z* € fix(T).
Getting back to (T4), taking the expectations on both sides of
this inequality and iterating over k, we obtain

o0
S m( = an)EJ|(1 = Thak |2 < || — 2|
k=0
Using the assumption on (7 )ken, it is straightforward to
see that > _p- o k(1 —amy) = +oc and thus that Y _p-  E[[(1—
T)x*||? is finite. By Markov’s inequality and Borel Cantelli’s
lemma, we therefore obtain:
C2: (I—T)z¥ — 0 almost surely.
We now consider an elementary event in the probability one
set where C1 and C2 hold. On this event, since H’xk — x*m
converges for o* € fix(T), the sequence (z¥)gey is bounded.
Since T is a-averaged, it is continuous, and C2 shows that all
the accumulation points of (z*)en are in fix(T). It remains
to show that these accumulation points reduce to one point.
Assume that 27 is an accumulation point. By C1, ka — xﬂH
converges. Therefore, lim ||z* — #7|| = liminf ||2* — 21| =
0, which shows that x7 is unique.

C. Proof of Theorem

The proof simply consists in checking that the assumptions
of Theorem E] are satisfied. To that end, we compute the
Lipschitz constant L of V(foM ~!) as a function of L. Recall
that S is the image of M. For any y € S, note that

V(foM™)(y) = M(M*M)™'Vf(M™'y).

Using the definition of M, the operator M*M is diagonal.
More precisely, for any x € RY, say = (2,,)nev, the nth
component of (M*M)x coincides with d,x, where d, =
card{m € V : n ~ m} is the degree of node n in the
graph G. Thus, |[M(M*M)™'z||? =3 . dy b2 |? As a
consequence of the latter equality and , for any (y,y’) €
S?, say y = Mz and ' = M2, one has

15)

IV(f o M~ (y) = V(fo M)
=Y d IV fuln) = Va1

Under the stated hypotheses, we can write for all n,
IV fu(zn) — an(x%)HQ < Pl — x%HQ Thus,

IV(foM™)(y) =V (fo M™H)(y)II* < (L?/dmin) ||z —2'|”

(16)
where dpin = min(d, : n € V). On the otherhand, ||y —
VIP = M@ —2)|? = 3, dnllen — 201”2 duinlle —
2’||%. Plugging the latter inequality into , we finally obtain
IV(f o M~V)(y) — V(f o MDY < (L/dmin)?z —
a'||?. This proves that V(f o M) is Lipschitz continuous with
constant L = L/dy,in. The final result follows by immediate
application of Theorem [I}

D. Proof of Theorem

Let (f,g,h) = (fo M=% go M~ h) where f,g,h and
M are those of Problem @]) For these functions, write
Equations (@) as (\F+1,y#+1) = T(AF, y*). By Lemma 2] the
operator T is an «-averaged operator acting on the space H =
Y x S, where S is the image of XN by M. For any n € V, let
Sy, be the selection operator on H defined as S, (A, Mz) =
((Ae(n))ecE :nee, Tn). Then it is easy to see that up to an
element reordering, H = S1(#H) x -+ x Sy (#). Identifying
the set J introduced before the statement of Theorem [3] with
V', the operator TE) is defined as follows: if n € fk, then
S (TEI(N, M2)) = Sn(T(A\, Mz)) while if n & &, then
Sn(T(‘fk)()\,Mx)) = Sp(A\, Mz). We know by Theorem
that the sequence (AF1, Mak+1) = TE(\F Ma*) con-
verges almost surely to a primal-dual point of Problem (7).
This implies by Lemma [3 that the sequence z* converges
almost surely to (z*,...,z*) where z* is a minimizer of
Problem (T0).

We therefore need to prove that the operator TE s
translated into the DAPD algorithm. The definition (TI) of
h shows that

W (@) = ter(de)

eeE

where C5 = {(z,—x) : * € X'}. Therefore, writing

(nk+17qk+1 _ ka—‘rl) _ T()\k7yk — M.fl,'k),

Equation (6a) shows that

et = projes (A + p~yl).

Notice that contrary to the case of the synchronous algorithm
DADMMH, there is no reason here for which proje. (AF)y = 0.
Getting back to (AF+1, Mak+1) = TETH(N\K yb = Mgk,
we therefore obtain that for all n € 5’““ and all m ~ n,

k k
n yfn,m} (n) - y’{“n,m}(m)
2p
_ Moy () = Moy (1) —
2 2p

Recall now that Eq. (6b) can be rewritten as

k k+1 k\|12
. = w—y " +T(2A"T =\
qk-i-l:a,rgné‘lng(w)+<vf(yk)7w>+ || (27- )H
we

Upon noting that g(Mz) = g(z) and (Vf(y*), Mz) =

(M=Y)*Vf(M*Mz*), Mz) = (Vf(z¥),z), the above
equation becomes

V" = argmin g(w) + (V ("), w)
weX

N | M (w — xF) + 7(2AFF1 — \F)||2
2T '




Recall that (M*Mz),, = d,x,. Hence, for all n € £+, we
get after some computations

.
acfﬁ—l = ProX,, /4, [mﬁ — d—an(xfl)
T rarrionk+l Nk
O X D).

Using the identity (M*y)n = >_,,.(n.m1er Y{n,m}(n), one
can check that this equation coincides with the x—update
equation in the DAPD algorithm.
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