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Abstract

In this contribution, the capacity-achieving input coeagée matrices for coherent block-
fading correlated MIMO Rician channels are determined. dntast with the Rayleigh and
uncorrelated Rician cases, no closed-form expressionshfreigenvectors of the optimum
input covariance matrix are available. Classically, bdth eigenvectors and eigenvalues are
computed by numerical techniques. As the correspondinignggztion algorithms are not very
attractive, an approximation of the average mutual infdiomais evaluated in this paper in the
asymptotic regime where the number of transmit and receienmas converge téoo at the
same rate. New results related to the accuracy of the camelipg large system approximation
are provided. An attractive optimization algorithm of tlapproximation is proposed and we
establish that it yields an effective way to compute the ciypachieving covariance matrix
for the average mutual information. Finally, numerical slation results show that, even for a
moderate number of transmit and receive antennas, the negmagh provides the same results
as direct maximization approaches of the average mutuatnivdtion, while being much more

computationally attractive.
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. INTRODUCTION

Since the seminal work of Telatar [38], the advantage of amrgig multiple antennas at the
transmitter and the receiver in terms of capacity, for Geusand fast Rayleigh fading single-
user channels, is well understood. In that paper, the figummeit chosen for characterizing
the performance of a coheréntommunication over a fading Multiple Input Multiple Output
(MIMO) channel is the Ergodic Mutual Information (EMI). Assing the knowledge of the
channel statistics at the transmitter, one important igsuéhen to maximize the EMI with
respect to the channel input distribution. Without loss pfimality, the search for the optimal
input distribution can be restricted to circularly Gaussiaputs. The problem then amounts to
finding the optimum covariance matrix.

This optimization problem has been addressed extensivethencase of certain Rayleigh
channels. In the context of the so-called Kronecker motkas been shown by various authors
(see e.g. [16] for a review) that the eigenvectors of thenogltiinput covariance matrix must
coincide with the eigenvectors of the transmit correlatioatrix. It is therefore sufficient to
evaluate the eigenvalues of the optimal matrix, a problerchvban be solved by using standard
optimization algorithms. Note that [39] extended this feso more general (non Kronecker)
Rayleigh channels.

Rician channels have been comparatively less studied fnisypbint of view. Let us mention
the work [20] devoted to the case of uncorrelated Rician ok where the authors proved that
the eigenvectors of the optimal input covariance matrixtheeright-singular vectors of the line
of sight component of the channel. As in the Rayleigh casegifpenvalues can then be evaluated
by standard routines. The case of correlated Rician chaimelsdoubtedly more complicated
because the eigenvectors of the optimum matrix have no alémen expressions. Moreover,
the exact expression of the EMI being complicated (see e3j),[Both the eigenvalues and the
eigenvectors have to be evaluated numerically. In [41] redydnterior-point method is proposed
and implemented to directly evaluate the EMI as an expectalibe corresponding algorithms
are however not very attractive because they rely on comipuotdly-intensive Monte-Carlo
simulations.

In this paper, we address the optimization of the input damae of Rician channels with a
two-sided (Kronecker) correlation. As the exact exprassibthe EMI is very complicated, we
propose to evaluate an approximation of the EMI, valid whennthmber of transmit and receive

antennas converge tpoo at the same rate, and then to optimize this asymptotic appegon.

!Instantaneous channel state information is assumed at the receiventmecessarily at the transmitter.



This will turn out to be a simpler problem. The results of theser@ contribution have been
presented in part in the short conference paper [13].

The asymptotic approximation of the mutual information hasrbobtained by various authors
in the case of MIMO Rayleigh channels, and has shown to be geiiable even for a moderate
number of antennas, see [10], [40], [29]. The case of Riciampohls has been considered more
recently. Let us first mention results using the non-rigora@ica method : [30] obtained the
asymptotic expression of the ergodic mutual informatiagetber with the variance of the mutual
information in the case of uncorrelated Rician channels.s€éhesults were generalized to the
context of general bicorrelated Rician channels in [35F][3.arge random matrix tools have
also been developed recently. In [18], a Rician channelnsicered, for which the entries of the
random part of the channel are independent random varialileson separable variance profile.
Among other things, an asymptotic approximation of the EMlpisvided. These channels,
when equipped with a separable variance profile, are equilvélg to unitary invariance) to
bicorrelated Rician channels. Thus, the results of [18] giveégorous proof of the expression
of the EMI given in [35], [37]. We finally mention that [36] gerdizes the results of [35],
[37] to the case of a Rician channel with interference. Ashim $hort paper [13], [36] proposes
to optimize the approximation of the EMI in order to obtain gaeity achieving covariance
matrix in the context of a Rician channel with interferentle optimization algorithm of the
large system approximant of the EMI proposed in [36] is howaliferent from our proposal.

In this paper, we rely on the results of [18] in which a clo$edn asymptotic approximation
for the mutual information is provided, and present new ltesconcerning its accuracy. We
prove in particular that the relative error decreases a fatwheret represents the number
of transmit antennas. Such an analysis is not provided in [38], [37]. We then address the
optimization of the large system approximation w.r.t. thput covariance matrix and propose a
simple iterative maximization algorithm which, in some sencan be seen as a generalization
to the Rician case of [43] devoted to the Rayleigh context hEgaration will be devoted to
solve a system of two nonlinear equations as well as a stdndlaterfilling problem. Among
the convergence results that we provide (and in contrast {#i8] and [36]) : We prove that
the algorithm converges towards the optimum input covagamatrix as long as it converges
We also prove that the matrix which optimizes the large systé@proximation asymptotically
achieves the capacity. This result, which is not proved in,[886], [37], has an important

practical range as it asserts that the optimization algoriyields a procedure that asymptotically

2Note however that we have been unable to prove formally its conveegenc



achieves therue capacity. Finally, simulation results confirm the relevant®ur approach.
The paper is organized as follows. Section Il is devoted to tlesgmtation of the channel
model and the underlying assumptions. The asymptotic appedion of the ergodic mutual
information is given in section Ill. In section 1V, the striconcavity of the asymptotic
approximation as a function of the covariance matrix of thpui signal is established; it
is also proved that the resulting optimal argument asyrigatly achieves the true capacity.
The maximization problem of the EMI approximation is studiedsection V. Validations,

interpretations and numerical results are provided inigec¥|.

Il. PROBLEM STATEMENT
A. General Notations

In this paper, the notations x, M stand for scalars, vectors and matrices, respectively. As
usual, |x|| represents the Euclidian norm of vecterand |[M|| stands for the spectral norm
of matrix M. The superscript$.)” and(.)! represent respectively the transpose and transpose
conjugate. The trace dM is denoted byIr(M). The mathematical expectation operator is
denoted byE(-) and the symbolst and & denote respectively the real and imaginary parts
of a given complex number. I is a possibly complex-valued random variab\r(z) =
E|z|? — |E(z)|* represents the variance of

All along this papery andt stand for the number of transmit and receive antennas. iGerta
quantities will be studied in the asymptotic regime— oo, r — oo in such a way that
; — ¢ € (0,+00). In order to simplify the notationsg, — +oco should be understood from now
on ast — oo, r — 0o and; — ¢ € (0,400). A matrix M; whose size depends anis said
to be uniformly bounded ifup, || M| < +oc.

Several variables used throughout this paper depend onugaparameters, e.g. the number
of antennas, the noise level, the covariance matrix of thesmitter, etc. In order to simplify

the notations, we may not always mention all these depeisenc

B. Channel model

We consider a wireless MIMO link withtransmit and- receive antennas. In our analysis, the
channel matrix can possibly vary from symbol vector (or gptime codeword) to symbol vector.
The channel matrix is assumed to be perfectly known at thevexcerhereas the transmitter

has only access to the statistics of the channel. The receigedl can be written as

y () = H(7)x(7) + 2(7) (1)



wherex(7) is thet x 1 vector of transmitted symbols at time H(7) is ther x ¢ channel
matrix (stationary and ergodic process) at{d) is a complex white Gaussian noise distributed
as N(0,021,). For the sake of simplicity, we omit the time indexfrom our notations. The
channel input is subject to a power constrdint|E(xx'’)] < ¢. Matrix H has the following
structure :

K 1

H= A v, 2
K+i " Uk @)

where matrixA is deterministic,V is a random matrix and constaif > 0 is the so-called
Rician factor which expresses the relative strength of tinectland scattered components of

the received signal. Matri satisfies: Tr(AA) = 1 while V is given by
1 1 ~ 1
V=—C:WC:=: , 3
7 ®3)

whereW = (W;;) is ar x t matrix whose entries are independent and identically itisted
(i.i.d.) complex circular Gaussian random variabt&¥(0,1), i.e. W;; = RW;; +iSW;; where
RW;; andIW;; are independent centered real Gaussian random variallevaviance}. The
matricesC > 0 and C > 0 account for the transmit and receive antenna correlatifectsf
respectively and satisf%/Tr(C) = 1 andiTr(C) = 1. This correlation structure is often referred

to as a separable or Kronecker correlation model.

C. Maximum ergodic mutual information

We denote byC the cone of nonnegative Hermitignx ¢ matrices and by; the subset of
. o1
all matricesQ of € for which gTr(Q) = 1. Let Q be an element o€; and denote by (Q)

the ergodic mutual information (EMI) defined by :

1
I(Q) =Eg [log det <Ir + 2HQHH>] . (4)
(o
Maximizing the EMI with respect to the input covariance mat€) = E(xx) leads to the
channel Shannon capacity féast fading MIMO channels i.e. when the channel vary from
symbol to symbol. This capacity is achieved by averaging ebhannel variations over time.
We will denote byC'r the maximum value of the EMI over the et :

Cp = sup 1(Q). (5)
Qet,

The optimal input covariance matrix thus coincides with trguanent of the above maximization
problem. Note thatl : Q — I(Q) is a strictly concave function on the convex $gt which
guarantees the existence of a unique maxin@n{see [27]). WherC = I,, C = I, [20] shows

that the eigenvectors of the optimal input covariance matdincide with the right-singular



vectors of A. By adapting the proof of [20], one can easily check that thisult also holds

whenC = I, andC and AA* share a common eigenvector basis. Apart from these two simpl

cases, it seems difficult to find a closed-form expression ferdiyenvectors of the optimal

covariance matrix. Therefore the evaluation @f; requires the use of numerical techniques

(see e.g. [41]) which are very demanding since they rely anmgdationally-intensive Monte-

Carlo simulations. This problem can be circumvented as the EM)) can be approximated

by a simple expression denoted ByQ) (see section Ill) ag — oo which in turn will be

optimized with respect t@) (see section V).

D. Summary of the main results.

The main contributions of this paper can be summarized aswell:

1)

2)

We derive an accurate approximation Q) ast — +oo : I1(Q) ~ I(Q) where

I(Q) = logdet |I; + G(6(Q.4(Q))Q| +i(6(Q),0(Q)) (6)

where §(Q) and 4(Q) are two positive terms defined as the solutions of a system of 2
equations (see Eq. (32)). The functio@sand: depend or(é(Q),S(Q)), K, A, C, C,
and on the noise variane€’. They are given in closed form. The expression/6®) is
in accordance with the predictions of the replica methodettged in [35], [36], [37].
The derivation of/(Q) is based on the observation that the eigenvalue distritoutio
random matrixHQH® becomes close to a deterministic distributiontas: +occ. This
in particular implies that if(\;)1<;<, represent the eigenvalues HIQH", then :
%logdet [Ir + ;QHQHH] = iélog (1 + j;)
has the same behaviour as a deterministic term, which turnt®doe equal td_(r&). Taking
the mathematical expectation w.r.t. the distribution & tthannel, and multiplying by
gives 1(Q) ~ 1(Q).
The error term/ (Q) — I(Q) is shown to be of orde®(1). As I(Q) is known to increase
linearly with ¢, the relative errot‘%qj)@) is of orderO(). This supports the fact that
1(Q) is an accurate approximation 6fQ), and that it is relevant to studi(Q) in order
to obtain some insight of(Q).
We prove that the functio® — I(Q) is strictly concave orC;. As a consequence,
the maximum ofI over G, is reached for a unique matriQ,. We also show that

I1(Q,) — I(Q.) = O(1/t) where we recall thaQ. is the capacity achieving covariance



matrix. Otherwise stated, the computation@f (see below) allows one to (asymptotically)
achieve the capacity(Q.).
3) We study the structure @@, and establish tha®, is solution of the standard waterfilling

problem :

! I £0:)Q)
max ogdet( + G(ds, 0 )Q)

whered, = 6(Q,), 4, = 6(Q,) and

~ —1
- 0% = 1 K 1)
G(6,,0,) = ——CH+ ———A" |1 *_C| A.
(000) = 7% 2R+ (’"+K+1 >
This result provides insights on the structure of the appnaxing capacity achieving
covariance matrix, but cannot be used to eval@tesince the parameteds ands, depend
on the optimum matrixQ,. We therefore propose an attractive iterative maximizatio
algorithm of I(Q) where each iteration consists in solving a standard watedifiroblem

and a2 x 2 system characterizing the paramet@isS).

[11. ASYMPTOTIC BEHAVIOR OF THE ERGODIC MUTUAL INFORMATION

In this section, the input covariance matfix e C; is fixed and the purpose is to evaluate the
asymptotic behaviour of the ergodic mutual informatibi@) ast — oo (recall thatt — +oo
meanst — oo, 7 — oo andt/r — ¢ € (0, +0)).

As we shall see, it is possible to evaluate in closed form @uirate approximatiod(Q) of
I1(Q). The corresponding result is partly based on the results & dievoted to the study of

the asymptotic behaviour of the eigenvalue distributionmattrix X7 where X is given by
¥=B+Y, (7)

matrix B being a deterministicc x ¢ matrix, andY being ar x t zero mean (possibly
complex circular Gaussian) random matrix with independstities whose variances are given
by Eij = ‘7727 Notice in particular that the variablgd;;; 1 <i <r, 1 < j <t) are not
necessarily identically distributed. We shall refer to thangular array(afj; 1<i<r, 1<

j < t) as the variance profile df ; we shall say that it is separabledfj = didj whered; > 0

for 1 <4<y and cij >0 for 1 < j < t. Due to the unitary invariance of the EMI of Gaussian
channels, the study of(Q) will turn out to be equivalent to the study of the EMI of model

(7) in the complex circular Gaussian case with a separabianae profile.



A. Introduction of the virtual channdHQé

The purpose of this section is to establish a link between ittmglgied model (7) :X =
B+ Y whereY = ﬁDéXfﬁ, X being a matrix with i.i.dCN(0,1) entries,D and D
being diagonal matrices, and the Rician model (2) understiyation. As we shall see, the key
point is the unitary invariance of the EMI of Gaussian chasriefether with a well-chosen
eigenvalue/eigenvector decomposition.

Proposition 1: Let X be ar x ¢t matrix whose individual entries are i.i.@N(0,1) random

variables. The two ergodic mutual informations
HQH seH
I(Q) = Elogdet (I + Q2 ) and  J(o?) = Elogdet <I +— >
9 o

are equal provided that :

— ChannelX is given byYX = B +Y with Y = \}D 2 XD>

— The following eigenvalue/eigenvector decompositiongttale :

c QCQ: _ gpgn

= UDU”  and = ,
K+1

(8)

ﬁ
+

whereU andU are the eigenvectors matrices whileandD are the eigenvalues diagonal
matrices.

— MatricesA andB are related via the identity :

K -
B= UPAQ:U . 9
VE+1 Q ©)

Proof: We introduce the virtual channé{Qz :

1 K 1 1 1 W 101
HQz =4/ —AQ2 + :C 2 10
QF = |/ 7AQ + == C e(QiCQ): (10)
where ® is the deterministic unitary x ¢ matrix defined by
©=0:Q:(Q:CQ3) 2 . (11)

The virtual channeHQé has thus a structure similar #, with (A, C, C,W) respectively
replaced(AQé, C, QiéQ%,WG)). Consider now the decomposition (8). It is then clear that
the ergodic mutual information of channE]Qé coincides with the EMI o2 = U¥YHQ!/2U.
Matrix X can be written a& = B + Y whereB is given by (9) and

Y = \}ZDin)é with X =U’wWeu .
As matrix W has i.i.d.€N(0,1) entries, so has matriX = UYW@OU due to the unitary
invariance (note that the entries ¥f are independent sind® andD are diagonal). Proposition

1 is proved. |



B. Study of the EMI of the equivalent model (7).

We first introduce the resolvent and the Stieltjes transforsoeiated withs X (Section
[11-B.1) ; we then introduce auxiliary quantities (SectidirB.2) and their main properties ; we
finally introduce the approximation of the EMI in this case (&ectll-B.3).

1) The resolvent, the Stieltjes transforrenote byS(c?) and S(¢?) the resolvents of
matricesE X and XX defined by :

S(0?) = [Z2 +0%1,] ", §(c) = [z +0%) " . (12)
These resolvents satisfy the obvious, but useful property :

S(e*) <=5,  S(6*) <= . (13)

Qw‘ i

Recall that the Stieltjes transform of a nonnegative megsisalefined by/ %. The quantity
s(0?) = 1Tr(S(0?)) coincides with the Stieltjes transform of the eigenvalueritistion of

matrix X evaluated at point = —o2. In fact, denote by(\i)1<i<, its eigenvalues , then :

s(0?) = %Z [ v(d\)
i=1

)\z"|‘0’2 R+>\—|—O'2’

wherev represents the eigenvalue distribution®@E !’ defined as the probability distribution :

1 T
V= ;26)\1.
i=1

whered,. represents the Dirac distribution at point The Stieltjes transform(o?) is important
as the characterization of the asymptotic behaviour of igermalue distribution o=X" is
equivalent to the study of(c?) whent — +oo for eacho?. This observation is the starting
point of the approaches developed by Pastur [28], Girko,[B4] and Silverstein [1], etc.

We finally recall that a positive x p matrix-valued measurg is a function defined on the

Borel subsets oR onto the set of all complex-valuedx p matrices satisfying :

(i) For each Borel seB, u(B) is a Hermitian nonnegative definitex p matrix with complex

entries;

(i) p(0)=0;
(iii) For each countable familyB,,),en Of disjoint Borel subsets oR,

H(Uan) = Z“(Bn) :

Note that for any nonnegative Hermitianx p matrix M, thenTr(Myu) is a (scalar) positive

measure. The matrix-valued measwreas said to be finite ifTr(u(R)) < +o0.
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2) The auxiliary quantities?, 3, T and T: We gather in this section many results of [18]
that will be of help in the sequel.

Assumption 1:Let (B;) be a family of » x t deterministic matrices such that :
supy; > oy |Bij|? < o0, sup, ; >i_; [Bij|* < 400 .

Theorem 1:Consider theX = B + Y, whereY = ﬁD%Xf)é, D and D represent the
diagonal matriced = diag(d;, 1 < i < r) andD = diag(d;, 1 < j < t) respectively, and
whereX is a matrix whose entries are i.i.d. complex centered wittewa&e one. The following

facts hold true :

(i) (Existence and uniqueness of auxiliary quantjtiesr o2 fixed, consider the system of
equations :
1 ~ - -1
B=-Tr|D (UZ(I,, +DJ) + B, + Dﬁ)_lBH)
| (14)

Then, the system (14) admits a unique couple of positive isoisit 3(2), 3(c2)). Denote

by T(c%) andT(c2) the following matrix-valued functions :

T(e?) = [0+ ((o?)D)+ B+ (o)D) BH| s
T(o?) = [0+ 8(sHD)+BH(I+H(e)D)'B|]
Matrices T (c2) and T (c?) satisfy
T <l Ted) < (16)

(i) (Representation of the auxiliary quantit)eShere exist two uniquely defined positive

matrix-valued measureg and i such thatu(R*) = I, @(R*) = I; and

v [ O we- [ ES

The solutions3(c2) and 3(c2) of system (14) are given by :
Bo?) = TIDT(?) ,  Bo?) = T TDR(?) (18)

and can thus be written as

s = [ W e = [ G (19

where u, and ji, are nonnegative scalar measures defined by

() = S T(Dp() and jiy(d) =  Te(DA(AN))
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(i) (Asymptotic approximatignAssume that Assumption 1 holds and that
sup |D|| < dmax < +00  and  sup ||D|| < dmax < +00 .
t t

For every deterministic matricésI and M satisfyingsup, |M]|| < 400 andsup, [|[M|| <

—+00, the following limits hold true almost surely :

. 1 v 02 . 0-2 —
{hthJroo TT [(S( ) T( ))M] 0 (20)

limy . o 1Tt [(S((ﬂ) - T(OZ))M} — 0
Denote byy and /i the (scalar) probability measurgs= 1Trp and i = 1 Tri, by (\;)
(resp.();)) the eigenvalues cEX* (resp. of£#'52). The following limits hold true almost

surely :

{nmtﬁmizzmw ST ) = 0 o1
0

limy—yoo § 351 0(N) = Jo' ™ 0(N) i(d) =
for continuous bounded functionsand ¢ defined onR+.

Proof of (i) is provided in Appendix | (note that in [18], the existencedamiqueness of
solutions to the system (14) is proved in a certain class afydéic functions depending on?
but this does not imply the existence of a unique solutién3) wheno? is fixed). The rest of
the statements of Theorem 1 have been established in [18}thairdproof is omitted here.

Remark 1:As shown in [18], the results in Theorem 1 do not require any SSinm
assumption fox. Notice that (20) implies in some sense that the entrieS(ef) and S(c?)
have the same behaviour as the entries of the deterministida@sT(c2) and T(c2) (which
can be evaluated by solving the system (14)). In particuking (20) forM = 1, it follows that
the Stieltjes transforns(o2) of the eigenvalue distribution aEX behaves likel TrT (02),
which is itself the Stieltjes transform of measyre= %T&“p,. The convergence statement (21)
which states that the eigenvalue distribution3®£" (resp.XX) has the same behavior as
(resp. i) directly follows from this observation.

3) The asymptotic approximation of the EMDenote byJ(o?) = Elogdet (I, + o~ 2E%H)

the EMI associated with matri¥. First notice that

T

) Ai
log det (I—i— o2 > = ;log (1 + 02> ;

where the\;’s stand for the eigenvalues 8f2. Applying (21) to functionp(\) = log(A+o2)

(plus some extra work sincg is not bounded), we obtain :

] 1 ZEH +oo 5
lim | ~logdet I+ —5— | — log(A+07) du(N) ) =0 . (22)
T g 0

t—-+o00
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Using the well known relation :

H +o00
1log det (I + 22; > = / <1 - lTr(EJEJH + wI)_1> dw
r o o2 w
teor1 o1
= ——-TrS(w) | dw (23)
o2 w T
together with the fact tha$'(w) ~ T'(w) (Theorem 1-(iii)), it is proved in [18] that :
H 400
lim [1 log det <I + 222 ) / <1 — 1TrT(w)> dw} =0 (24)
t——4oco | T o o2 w T
almost surely. Define by (0?) the quantity :
. teer1 1
J(o?) = r/ <w — rTrT(w)) dw . (25)

Then, J(c?) can be expressed more explicitely as :

J(o?) = log det [Ir + B(e?)D + %B(It + ﬁ(aQ)ﬁ)—lBH]
+ log det [It + ﬁ(ﬁ)b} — 2%tB(0?)3(0?) , (26)
or equivalently as
J(0?) = log det [It +BMD + BA (I, + B(a2)D)1B]
+ log det [IT + 6(02)13} ~ 2802302 . (27)

Taking the expectation with respect to the chan®l in (24), the EMI J(o2?) =
Elogdet (I, + o~2XX*) can be approximated by(c?) :

J(0?) = J(0*) + o(t) (28)

ast — +oo. This result is fully proved in [18] and is of potential intstesince the numerical
evaluation ofJ(o?) only requires to solve the x 2 system (14) while the calculation of(c?)
either rely on Monte-Carlo simulations or on the impleméntaof rather complicated explicit
formulas (see for instance [23]).

In order to evaluate the precision of the asymptotic appnation./, we shall improve (28)
and get the speed(c?) = J(0?) + O(t~!) in the next theorem. This result completes those in
[18] and in Theorem 1-(iii) but heavily relies on the Gaussstmucture of3. We first introduce
very mild extra assumptions :

Assumption 2:Let (B;) be a family ofr x ¢ deterministic matrices such that

sup || B|| < bmax < +00 .
t
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Assumption 3:Let D andD be respectively- x  andt x ¢ diagonal matrices such that
sup |D| < diax < +00  and sup ||D|| < diax < +00 .
t t
Assume moreover that
! R
1rt1f ZTrD >0 and H;flf ETrD >0 .
Theorem 2:Consider the simplified model as in Theorem ;. = B + Y, withY =

1
Vit

ministic matricesM and M satisfyingsup, | M| < +oo andsup, |[M|| < +oo, the following

D:XD:. Assume moreover that Assumptions 2 and 3 hold true. Thenevery deter-

facts hold true :

Var (iTr [S(O’Q)M]> =0 <tl2> and Var (115Tr [S(UQ)M}) =0 ( 12> (29)
Moreover,
1Tr [(E(S(0?)) — T(c?)M] = O (%) (30)
Iy [(E(S(UQ)) . T(ﬁ))M} = O(4)
and

= 1
J(0?) = J(*) +0 <t> . (31)
The proof is given in Appendix Il. We provide here some comraent
Remark 2: The proof of Theorem 2 takes full advantage of the Gaussiatatel of matrix

3’ and relies on two simple ingredients :

(i) An integration by parts formula that provides an expr@sdor the expectation of certain
functionals of Gaussian vectors, already well-known andelyi used in Random Matrix
Theory [26], [31].

(i) An inequality known as Poincaré-Nash inequality thauhds the variance of functionals
of Gaussian vectors. Although well known, its applicatianrandom matrices is fairly
recent ([7], [32], see also [17]).

Remark 3:Equations (29) also hold in the non Gaussian case and candi#igised by using
the so-called REFORM (Resolvent FORmula Martingale) methtddnced by Girko ([14]).
Equations (30) and (31) are specific to the complex Gaussiaatgte of the channel matrix

3. In particular, in the non Gaussian case, or in the real Ganssse, one would ge?t(a2) =

J(o?) + O(1). These two facts are in accordance with :

(i) The work of [2] in which a weaker resulb(1) instead ofO(¢~!)) is proved in the simpler
case wherdB =0;

(i) The predictions of the replica method in [29] (resp. [B0] the case wher@® = 0 (resp.

in the case wher® =1, andD =1,);
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Remark 4 (Standard deviation and biagjg. (29) implies that the standard deviation of
1Ty [(S(0?) — T(0?))M] and + Tr [(9(02) — ’i‘(aQ))M} are of orderO(t~!) terms. However,
their mathematical expectations (which correspond to the)lxonverge much faster towards
as (30) shows (the order B(t2)).

Remark 5:By adapting the techniques developed in the course of thef moTheorem 2,

1

one may establish thai”’ES(s?)v — u’T(0?)v = O (7) , whereu and v are uniformly

boundedr-dimensional vectors.
Remark 6:Both .J(o?) and.J(o?) increase linearly witlt. Equation (31) thus implies that the
i J(0?)—=J(0%)
relative error NCa)

the observed fact that approximations of the EMI remain Ipddizeven for small numbers of

is of orderO(¢~?). This remarkable convergence rate strongly supports

antennas (see also the numerical results in section Ve Mait similar observations have been

done in other contexts where random matrices are used, gef8E.[29], [35], [37].

C. Study of the EMI(Q).

We now apply the previous results to the study of the EMI of clehid. We first state the
corresponding result.

Theorem 3:For Q € ©;, consider the system of equations

5 = f(6,6,Q)
where f(5,4,Q) and f(8,4, Q) are given by :

- 0
f((5,5, Q) = 1TI'{C|:O’2 (Ir + mC)

K . 5 [N R e
+71AQ2 <It+K.+1QZCQ2> Q:=A } }7 (33)

K+
~ ~ 1 1 ~ 1
[(0,0,Q) = tTI"{QQCQz[UQ( t+K7+1QECQE)
~ —1
TR A (IT+K+10> AQ:| } (34)

Then the system of equations (32) has a unique strictly pes#tdlution(§(Q), S(Q)).
Furthermore, assume thatip, |Q|| < +oo, sup; ||A|| < +o0, sup;||C| < +oo, and
sup, HCH < +o00. Assume also thainf; /\min(é) >0 Where/\mm(é) represents the smallest

eigenvalue ofC. Then, ast — +oo,

1@ =@ +0(}) (35)
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where the asymptotic approximatidiiQ) is given by

~ —1
- o) 1~ 1 K 1 1
7(Q) = log det (It + K(f)lQmQa o QAT (u + Iﬁc) AQ?)

: L
+log det (m ﬁc) - @@ @36)

or equivalently by

T S K 1 5 1~ | -1 1
1(Q) = log det (Ir + K<i2>1C + % ToiAQ (It + K($)1 chQ2> QQAH)

2

+ log det <It + I(i(f)lQl/QéQl/Q) - %&Q) 0(Q). (37)

Proof: We rely on the virtual channel introduced in Section IlI-A aod the eigenva-
lue/eigenvector decomposition performed there.

Matrices B, D, D as introduced in Proposition 1 are clearly uniformly bouwhdehile
inf, \TrD = inf, 1TrC = 1 due to the model specifications andf, 1TrQ:CQz >
inf; /\mm(é)%TrQ > 0 as %TrQ = 1. Therefore, matriced8, D and D clearly satisfy the
assumptions of Theorems 1 and 2.

We first apply the results of Theorem 1-(i) to matdx (and use the same notations). Using
the unitary invariance of the trace of a matrix, it is strafghward to check that :

~ B ~ —1
f6,0,Q0 1 2 5 R .
Ao tTr D<a <I+Dm>+B<I+Dm> B ) ] ;

3

L r - -1 -1
F6,5.Q0 1 |af . .5 " 5
T—i—l = tTr D (0’ <I+Dm>+B (I—l—D\/m) B) ]

Therefore,(4,4) is solution of (32) if and only if(ﬂgiﬂ, \/f§7+1) is solution of (14). As the

system (14) admits a unique solution, Sg B), the solution(é, 5) to (32) exists, is unique

~—

and is related td s, 3) by the relations :
b . o
p= , B= :
vK+1 K+1
In order to justify (36) and (37), we note thd{c?) coincides with the EMI/(Q). Moreover,

(38)

the unitary invariance of the determinant of a matrix togethith (38) imply that/(Q) defined
by (36) and (37) coincide with the approximatiohgiven by (26) and (27). This proves (35)

as well. [ |
In the following, we denote b{l'x(¢2) and T x (02) the following matrix-valued functions :
s 1 1~ 1 1 -1

{ Ti(o?) = [0+ £550) + £7AQ I+ £ Qi CQ:) QA |

2 2 5 AEAEOL K LA H PR B (39)
Tx(o®) = [" I+ £57Q:CQ2) + g7 Q:AY(I+ £47C) AQz}
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They are related to matricég and T defined by (15) by the relations :

40
Tg(0?) = UT(c?)UH 9

{ Tx(0?) = UT(o2)UH
and their entries represent deterministic approximatiofs (HQH” + ¢°I,)~! and
(Q:HTHQ: + 02L,) L.

As ITrTx = !'TyT and ITiTx = L1TrT, the quantities! TrT, and 1 TrTx are the
Stieltjes transforms of probability measuresand i introduced in Theorem 1-(ii). As matrices
HQH” and =x/ (resp.QéHHHQé and ©7%) have the same eigenvalues, (21) implies
that the eigenvalue distribution GIQH (resp.Q:H”HQ:) behaves likeu (resp.ji).

We finally mention thab(c2) andd(c?) are given by

(5(02):%TrCTK(02) and 5(02):%TrQ§CQ1/2TK(02), (41)

and that the following representations hold true :

5(02) = /R paldd)  ong 502 = /R ) fialdA) - (42)

+ A+ o?

where 114 and fi; are positive measures dR™ satisfying pq(R™) = }TrC and fiq(RT) =

ITrQY/2CQY2.

IV. STRICT CONCAVITY OF I(Q) AND APPROXIMATION OF THE CAPACITY I(Q.)

A. Strict concavity of (Q)

The strict concavity off (Q) is an important issue for optimization purposes (see Sesfjon
The main result of the section is the following :
Theorem 4:The functionQ — I(Q) is strictly concave or€;.

As we shall see, the concavity dfcan be established quite easily by relying on the concavity

of the EMI I(Q) = Elogdet (I + H?,§H>. The strict concavity is more demanding and its
proof is mainly postponed to Appendix Ill.

In the sequel, we shall rely on the following straightfordidout useful result :

Proposition 2: Let f : ¢; — R be a real function. Therf is strictly concave if and only if

for every matricedQ, Q2 (Q1 # Q2) of €1, the functiong(\) defined on[0, 1] by
d(A) = f(AQ1 + (1 - A)Qq2)

is strictly concave.
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1) Concavity of the EMI:We first recall that/(Q) = E log det (I + HCjQHH) is concave on
C1, and provide a proof for the sake of completeness. Denot@by \Q; + (1 — A\)Q and
let p(\) = I(AQ1 + (1 — X\)Q2). Following Proposition 2, it is sufficient to prove thatis

concave. Adog det (I + HQHH) = log det (I + HHHQ), we have :

HQHY )
2 M

g

¢(\) = Elogdet (I—i—

H -1 orH
() = ETr (I - H UI;Q) HUQH(Ql -Q2),
HYHQ\ 'HIH HYHQ\ 'HIH
¢”()‘) = —ETr <I+ 0_2 Q> 0_2 (Ql - QZ) <I+ 0_2 Q> 02 (Ql - QZ)] .

-1 H . . .
In order to conclude thap”(\) < 0, we notice that(I + HHHQ) H"H coincides with

—1
o (1, B

o2 o2

(use the well-known inequalityl + UV)~'U = U(I+ VU)~! for U = H” andV = H2),

We denote byM the non negative matrix

HQHH)‘1 H

_
M =H <I+ 5 —

g g

and otice that
¢"(\) = —ETr [M(Q1 — Q2)M(Q: — Qq)] (43)
or equivalently that
¢'(\) = —ETr |[M"*(Q) — Qo)M"*M*(Q; — Qo)M'/?

As matrix M'/2(Q; — Q2)M'/2 is Hermitian, this of course implies that’(\) < 0. The
concavity of¢ and of I are established.
2) Using an auxiliary channel to establish concavityI¢f)): Denote by the Kronecker

product of matrices. We introduce the following matrices :
A=1,2C, A=1,2C, A=I,2A, Q=1,9Q.

Matrix A is of sizerm x rm, matricesA andQ are of sizetm x tm, andA is of sizerm x tm.

Let us now introduce :

~. 1 1 _~x_~ 1 > K N 1 he
V=—A>WA: and H= A+ v,
vmt K+1 vK+1
where W is arm x tm matrix whose entries are i.i.dN (0, 1)-distributed random variables.
Denote byI,,(Q) the EMI associated with chann# :

o2 '

I,(Q) = Elog det (I +
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Applying Theorem 3 to the channdll, we conclude thatl,,(Q) admits an asymptotic
approximation I,,,(Q) defined by the system (33)-(34) and formula (36), where oné wil

substitute the quantities related to chanHeby those related to channgl, i.e. :
temt, romr, A—~A Q«Q CoA, CoA.

Due to the block-diagonal nature of matricds Q, A and A, the system associated with
channelH is exactly the same as the one associated with ch&finkloreover, a straightforward

computation yields :

LL(@=1Q), vm=>1.

It remains to apply the convergence result (35) to conclidé t

SinceQ — I1,,(Q) = I,(I, ® Q) is concave,l is concave as a pointwise limit of concave
functions.
3) Uniform strict concavity of the EMI of the auxiliary chain Strict concavity off (Q):
In order to establish the strict concavity 6(Q), we shall rely on the following lemma :
Lemma 1:Let ¢ : [0,1] — R be a real function such that there exists a fanfiby, )m>1 of

real functions satisfying :

(i) The functionse,, are twice differentiable and there exists< 0 such that
Ym >1, VAe|0,1], ol (N <Kk<O0. (44)

(i) For every\ € [0,1], ¢m(N) — d(N).
Then ¢ is a strictly concave real function.
Proof of Lemma 1 is postponed to Appendix IIl.
Let Q;, Qo in C1; denote byQ = AQ: + (1 — A)Q2, Q1 = I, ® Q1, Q2 = I, ® Qa,

Q = I,, ® Q. Let H be the matrix associated with the auxiliary channel and tiehy :

1 HQHY
dm(\) = —Elog det (I + Q2 > .
m g
We have already proved that,(\) —— ¢()\) 2 I(AQ1 + (1 — A)Qg2). In order to fulfill
assumptions of Lemma 1, it is sufficient to prove that theretexis< 0 such that for every
A €[0,1],

limsup ¢/l (A) <k <0 . (45)

m—00

(45) is proved in the Appendix IlI.
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B. Approximation of the capacity(Q.)

Sincel is strictly concave over the compact $gt it admits a unique argmax we shall denote

by Q,, i.e.:

1(Q,) = max I(Q) .

Qe

As we shall see in Section V, matr@, can be obtained by a rather simple algorithm. Provided
that sup, |Q.|| is bounded, Eq. (35) in Theorem 3 yield$Q,) — I(Q,) — 0 ast — oo. It
remains to check thaf(Q.) — I(Q,) goes asymptotically to zero to be able to approximate
the capacity. This is the purpose of the next proposition.

Proposition 3: Assume thasup, || A || < oo, sup; ||C|| < oo, sup; ||C|| < 0o, inf; Amin(C) >
0, andinf; A\puin(C) > 0. Let Q, and Q. be the maximizers ove€; of I andI respectively.

Then the following facts hold true :

(i) sup, Q.| < oo
(ii) sup; [ Q.| < oo.
(i) 1(Q.) =1(Q.) +O(t™1).
Proof: The proof of items (i) and (ii) is postponed to Appendix VI. Let prove (iii). As

(I(Q)-1Q.) + (I(Q,) -1(Q.)
>0 >0
= (IQ)-1Q)) + (Q.)-1Q)) (46)
=o(t™) =o(t™)
by (ii) and Th. 3 Eqg. (35) by (i) and Th. 3 Eq. (35)

where the two terms of the lefthand side are nonnegative altieet fact thaiQ.. andQ, are the
maximizers ofl andI respectively. As a direct consequence of (46), we ha@@.) — 1(Q,) =

O(t~1) and the proof is completed. |

V. OPTIMIZATION OF THE INPUT COVARIANCE MATRIX

In the previous section, we have proved that ma®ix asymptotically achieves the capacity.
The purpose of this section is to propose an efficient way of miakig the asymptotic
approximation/ (Q) without using complicated numerical optimization algimis. In fact, we

will show that our problem boils down to simple waterfillinggalithms.
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A. Properties of the maximum &fQ).

In this section, we shall establish some@f’s properties. We first introduce a few notations
Let V(k, %, Q) be the function defined by :

V(k,Rk,Q) = logdet (It +

K 1~ 1
—Q:=CQ:=
K+1Q Q+

K+1

K to’k
+ log det <I7« + MC) -
or equivalently by

V(k, R, Q) = logdet <IT + n

C+ K
K+1 o?(K +1)

K ) i -1
. Q:A" I,
2K+ 1) 2 ( - )

P

(47)

=
_l_

-1
1 K 1= 1 1
AQ <It+K+1chQ2> QQAH>
K ~
+ log det <It + K+1Q1/20Ql/2> _
Note that if (5(Q), &

(Q)) is the solution of system (32), then :

tolki
Kil (48)
Q) =V(5(Q),4(Q).Q) .

Denote by(d,,d.) the solution(5(Q,),5(Q,)) of (32) associated withQ,. The aim of the

section is to prove tha®, is the solution of the following standard waterfilling proivie

Qet,

I(Q,) = max V((S*,S*,Q) )
Denote byG(k, k) thet x ¢ matrix given by :

~ K =
G(k, k) = K+1C+02

K
Then,V(k, &, Q) also writes

~ —1
AH (1, 4+ cﬁ A .
(K +1) ( K +

(49)

V(k, &, Q) = logdet (I+ QG(k,R)) + log det <I +

K to?ki
K+1>_K+1’ (50)
which readily implies the differentiability ofx, &, Q) — V(k,k,Q) and the strict concavity

of Q — V(k,k,Q) (x and & being frozen).

In the sequel, we will denote by F'(z) the derivative of the differentiable functiof' at

point z (z taking its values in some finite-dimensional space) andWy'(x), y) the value of

this derivative at point). Sometimes, a function is not differentiable but still adndiirectional
derivatives: The directional derivative of a functiof' at = in directiony is

’ t10 t

when the limit exists. Of course, if is differentiable atz, then F'(z;y) = (VF(z),y). The
following proposition captures the main features needethénsequel.
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Proposition 4: Let F': 6; — R be a concave function. Then :
(i) The directional derivativeF” (Q; P — Q) exists in(—oo, o] for all Q,P in C;.

(i) (necessary conditignif F' attains its maximum foQ, € Gy, then :

(i) (sufficient conditioh Assume that there exis®), € €; such that :

vQe €, F(Q.;Q-Q.) <0 (52)

Then F admits its maximum aQ, (i.e. Q, is an argmax ofF" over ;).

If F is differentiable then both conditions (51) and (52) write :

vQe€, (VF(Q.).Q-Q.) <0
These results are standard (see for instance [5, Chapteth&fgfore the proof is omitted.
In the following proposition, we gather various propertietated tol.
Proposition 5: Consider the functiong(Q),5(Q) and I(Q) from €; to R. The following
properties hold true :
(i) Functionsd(Q),d(Q) andI(Q) are differentiable (and in particular continuous) odgt
(i) Let Q € C;. The following property :

VP €€, (VI(Q),P-Q)<0

holds true if and only ifQ = Q,.

(i) Denote by, andd, the quantities’(Q,) and 4(Q,). Matrix Q, is the solution of the
standard waterfilling problem : Maximize ovéd < C; the function V(é*,S*,Q) or
equivalently the functionog det(I + QG (d,,4,)).

Proof: (i) is established in Appendix IV. Let us establish (ii). Riéd¢hat 7(Q) is strictly
concave by Theorem 4 (and therefore its maximum is attainest atost one point). On the
other hand,I(Q) is continuous by (i) ove; which is compact. Therefore, the maximum of
I(Q) is uniquely attained at a poi®,. Item (ii) follows then from Proposition 4.

Proof of item (iii) is based on the following identity, to beoped below :

where Vq denote the derivative of/(x,, Q) with respect toV’s third component, i.e.
VqQV(k, R, Q) = VI'(Q) with T' : Q — V(k, &, Q). Assume that (53) holds true. Then item
(ii) implies that (Vg V/ (5*,5*,Q*> ,Q—Q,) <0foreveryQ € ;. As Q — V(6,,0,, Q)

is strictly concave or€;, Q, is the argmax ofV/ (4., 4., -) by Proposition 4 and we are done.
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It remains to prove (53). Consid€) and P in C;, and use the identity

(VI(P),Q - P) = (VQV(§(P),56(P),P),Q — P))

+ (‘ZZ) (6(P),6(P),P) (V4(P),Q ~ P)

4 (‘Z:) (6(P),6(P),P) (V4(P),Q - P) .

We now compute the partial derivatives Bf and obtain :

oV to? [ L

5 = e (R iR Q)

oV to? . ’ (54)
T SR Q)

where f and f are defined by (33) and (34). The first relation follows from (4l #he second

relation from (48). As(5(Q),d(Q)) is the solution of system (32), equations (54) imply that :
v _ov
Ok - Ok
Letting P = Q, and taking into account (55) yields :

(5(Q),4(Q), Q) (5(Q),4(Q), Q) =0 (55)

and (iii) is established. ]
Remark 7: The quantitiess, andd, depend on matriXQ,. Therefore, Proposition 5 does not
provide by itself any optimization algorithm. However, ivgs valuable insights on the structure
of Q,. Consider first the cas€ = I and C =1 Then,G(é*,S*) is a linear combination of
I and matrix A7 A. The eigenvectors oQ, thus coincide with the right singular vectors of
matrix A, a result consistent with the work [20] devoted to the maxation of the EMIZ(Q).
If C = IandC # I, G(4,,4,) can be interpreted as a linear combination of matri€es
and A” A. Therefore, if the transmit antennas are correlated, thereigctors of the optimum
matrix Q, coincide with the eigenvectors of some weighted sunCofind A A. This result
provides a simple explanation of the impact of correlatethdémit antennas on the structure
of the optimal input covariance matrix. The impact of cortethreceive antennas aQ, is

however less intuitive because mate’ A has to be replaced witA” (I + 5,C)*A.

B. The optimization algorithm.

We are now in position to introduce our maximization aldamitof 7. It is mainly motivated
by the simple observation that for each fixée, <), the maximization w.r.t.Q of function
V(k, R, Q) defined by (50) can be achieved by a standard waterfilling proegdvhich, of

course, does not need the use of numerical techniques. Oathlee hand, forQ fixed, the
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equations (32) have unique solutions that, in practice,lmbtained using a standard fixed-
point algorithm. Our algorithm thus consists in adaptingapeetersQ and 8,4 separately by

the following iterative scheme :

— Initialization : Qy =1, (51,51) are defined as the unique solutions of system (32) in which
Q = Qo = I. Then, defineQ; are the maximum of functio® — V(61,51,Q) on @y,
which is obtained through a standard waterfilling procedure.

— lterationk : assumeQ);_q, (6k,1,5k,1) available. Then(ék,Sk) is defined as the unique

solution of (32) in whichQQ = Q_;. Then, defineQ; are the maximum of function

Q - V(ékvgka Q) on el-

One can notice that this algorithm is the generalizationh& procedure used by [43] for

optimizing the input covariance matrix for correlated Ragh MIMO channels.

We now study the convergence properties of this algorithmal, state a result which implies

that, if the algorithm converges, then it converges to thigusm argmaxQ,, of I.

Proposition 6: Assume that the two sequenc@s),>o and (6 )x>o verify

lim (Sk — (3]@,1 — 07 m Sk — gk,1 — 0 (56)

i
k—+o00 k—4o00

Then, the sequend®))x>o converges toward the maximu@, of 7 on C;.
The proof is given in the appendix.

Remark 8:1f the algorithm is convergent, i.e. if sequen¢®y);>o converges towards a
matrix P, Proposition 6 implies thaP, = Q,. In fact, functionsQ — §(Q) andQ — 4(Q)
are continuous by Proposition 5. As = 6(Qx—1) andd, = S(Qk,l), the convergence diQy)
thus implies the convergence 6f;,) and (4;), and (56) is fulfilled. Proposition 6 immediately
yields P, = Q,.

Remark 9: Although we have not been able to prove the convergence oéltiaithm, we
believe that it can be used in practice because its possitihe convergence can be easily
checked by evaluating, — 6,1 andé; — 4, for eachk. If one of the above sequences does
not converge towards, Remark 8 implies that the algorithm does not converge. is ¢hse,

a simple solution consists in modifying the initializatipoint as many times as necessary. We
however natice that all the numerical experiments we havelgoted indicate that the algorithm

converges if initialized aQg = 1;.
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VI. NUMERICAL EXPERIMENTS
A. When is the number of antennas large enough to reach thepastjenregime ?

All our analysis is based on the approximation of the ergadigtual information. This
approximation consists in assuming the channel matrix tdabge. Here we provide typical
simulation results showing that the asymptotic regime &hed for relatively small number of
antennas. For the simulations provided here we assume :

- Q=1L.

— The chosen line-of-sight (LOS) componekthas the following structure :

1
A= —"—la(0),...,a(0)] A, 57
\/E[ (61) (01)] (57)
wherea() = (1,¢,...,e"=19)T and A is a diagonal matrix whose entries represent

the complex amplitudes of theline of sight (LOS) components. The angles of arrivals
are chosen randomly according to a uniform distribution.

— Antenna correlation is assumed to decrease exponenwdlythe inter-antenna distance
i.e. Cij ~ plé_j‘, Cij ~ p'j{‘j‘ with 0 < pr <1 and0 < pp < 1.

— K is equal tol.

Figure 1 represents the EM(Q) evaluated by Monte Carlo simulations and its approximation
I(Q) as well as their relative difference (in percentage). Hée, correlation coefficients are
equal to(pr, pr) = (0.8,0.3) and three different pairs of numbers of antenna are coresider
(t,r) € {(2,2),(4,4),(8,8)}. Figure 1 shows that the approximation is reliable evenrfer

t = 2 in a wide range of SNR.

B. Numerical evaluation of the improvement provided by tly@hm.

In this paragraph, we evaluate numerically the EMI improvetmarovided by matrixQ,
over the simple uniform transmission strate@Qy= I,. We assume that :

-C=1I,

— The transmit antennas correlation mat€ixis generated according to the popular model

proposed in [4], i.e.

ék’l = Q eiiﬂ-(k‘fl) COS& e*é(ﬂ'(k*l) sinaa¢)2)

wherea is a constant chosen in such a way t%ﬁ?’rr(é) = 1. ¢ ando, can be interpreted

as the mean angle of departure and the standard deviatidre afrigles of departure of a

scatterer cluster respectively. We notice that jf ~ 0, thenRank(C) ~ 1. We refer the
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20 T
—— Montecarlo Simulations ( 2*2)

* Deterministic Approximant ( 2*2 )
15+ | — Montecarlo Simulations ( 4*4 )

x  Deterministic Approximant ( 4*4 )
—— Montecarlo Simulations ( 8*8)
<! Deterministic Approximant ( 8*8)
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EMI in bps/Hz
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Fig. 1. The large system approximation is accurate for correlated RiciéiCvchannels. The relative difference
between the EMI approximation and that obtained by Monte-Carlo simulaioiess tharb % for a 2 x 2 system

and less thal % for a 8 x 8 system.

reader to [4] for more details. In our experiments, we haveseh¢ = 30o andoy = 5o

andoy = 20 .
— Matrix A is a rank 1 matrix. Its right singular vectori%(l, emimeost  gmim(i=1)cos0)T
and its left singular vector is-1(1,1,...,1)". The value of § belongs to

NG
{0,30 ,60 ,90 ,120 ,150 } in our experiments.

- K=1

We plot in figures 2 and 3 the relative improveméﬁw provided by the optimal matrix
Q.. over the uniform transmission strate@y= I. In figure 2, we have consideret} = 50, and
we have plotted the relative improvement versus the SNmfer{(),?)Oo,G()o,QOo, 1200, 1500}
and forr =t =4 andr = ¢ = 8. Figure 3 corresponds to, = 200. The results show that the
improvement is not very significant fary = 200, but important foroy = 5 . This behaviour
was expected because matf, is the solution of a waterfilling problem corresponding to a

matrix G, defined as a linear combination & A and C (see item (iii) of Proposition 5 as
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well as Remark 7). Iy = 50, matrix C is close from a rank 1 matrix so th&ank(G,) ~ 2.
In this context, matrixQ, may differ quite significantly froml;. This tends to indicate that
the optimization of the input covariance matrix can be quieful if matricesA and C are il

conditioned.

55

Relative gain in percent
N N w w B Py ol
o (%)) o (4] o o o
1

=
al

=
o

SNRin dB

Fig. 2. Relative improvement of the EMI far, =5 .

C. Comparison with the Vu-Paulraj method.

In this paragraph, we compare our algorithm with the methoebgnted in [41] based on
the maximization off (Q). We recall that Vu-Paulraj’s algorithm is based on a Newtathad
and a barrier interior point method. Moreover, the averagaual informations and their first
and second derivatives are evaluated by Monte-Carlo stinoki In fig. 5, we have evaluated
Cp = maxqee, 1(Q) versus the SNR for = ¢t = 4. Matrix H coincides with the example
considered in [41]. The solid line corresponds to the resptsvided by the Vu-Paulraj's
algorithm ; the number of trials used to evaluate the muta&rimations and its first and
second derivatives is equal 80.000, and the maximum number of iterations of the algorithm
in [41] is fixed to 10. The dashed line corresponds to the resutisided by our algorithm :
Each point represents(Q,) at the corresponding SNR, whef®, is the argmax ofl ; the
average mutual information at poiQ, is evaluted by Monte-Carlo simulation (30.000 trials
are used). The number of iterations is also limited to 10. Eiduishows that our asymptotic

approach provides the same results than the Vu-Paulrg&igim. However, our algorithm is
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Vu-Paulraj 0.75 8.2 138
New algorithm| 1072 3.1072 7.1072

Fig. 4. Average time per iteration in seconds

computationally much more efficient as table (4) shows. Thietgives the average executation

time (in sec.) of one iteration for both algorithms for=t =2,r =t =4,r =t = 8.

In fig. 6, we again compare Vu-Paulraj's algorithm and our psad. Matrix A is generated
according to (57), the angles being chosen at random. Thentiarand receive antennas
correlations are exponential with parameter< pr < 1 and0 < pr < 1 respectively.
In the experimentsy = ¢t = 4, while various values opr, pr and of the Rice factor
have been considered. As in the previous experiment, thénmuax number of iterations for
both algorithms is 10, while the number of trials generatecevaluate the average mutual
informations and their derivatives is equal to 30.000. Oppraach again provides the same
results than Vu-Paulraj's algorithm, except for low SNRs for= 1, pr = 0.5, pr = 0.8 where
our method gives better results : at these points, the Virf§aualgorithm seems not to have

converge at the 10th iteration.
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VIlI. CONCLUSIONS

In this paper, an explicit approximation for the ergodic maltinformation for Rician MIMO
channels with transmit and receive antenna correlatiomagiged. This approximation is based
on the asymptotic Random Matrix Theory. The accuracy of theagmation has been studied
both analytically and numerically. It has been shown to b @ecurate even for small MIMO
systems : The relative error is less tha% for a 2 x 2 MIMO channel and lesg % for an
8 x 8 MIMO channel.

The derived expression for the EMI has been exploited to dexivesfficient optimization

algorithm providing the optimum covariance matrix.

APPENDIXI

PROOF OF THE EXISTENCE AND UNIQUENESS OF THE SYSTE(14).

We consider functiong(x, ) and g(x, =) defined by

Tr|D (&(IT + D&) + B(L + f)m)_lBH) o
' (58)

11 [= . B
glr,F) =z 5Tr D (o2 + Dr) + B (L, + DR) "' B)
K

For eachz > 0 fixed, functionk — g(k, k) is clearly strictly decreasing, converges towarco

if k — 0 and converges t0 if k — +o0o. Therefore, there exists a unique> 0 satisfying
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g(k, k) = 1. As this solution depends of, it is denotedh (%) in the following. We claim that

— (i) Functionk — h(k) is strictly decreasing fok > 0,

— (ii) Functionk — &h(r) is strictly increasing forz > 0.

In fact, considerzy > k1 > 0. It is easily checked that for each > 0, g(k,~1) > g(k, R2).

Hence, the solutiork(%;) and h(k2) of the equationgy(x, 1) = 1 and g(k, ko) = 1 satisfy

h(k1) > h(R2). This establishes (i). To prove (ii), we use the obvious i@y (h(k1),R1) —

g(h(R2), k2) = 0. We denote byU;);—1 » the matrices

L g2 3 s h (i 1 -\ H
U; = 0* (h(Ri)I + K;h(R;)D) + B <h(f£z) +D B
It is clear thatg(h(k;), ki) = %T&"DU;I. We expresgj(h(k1), k1) — g(h(kz2), k2) as
1
g(h(F1), &1) — g(h(R2), k2) = gTrD(Ufl -Uyh)

and use the identity
U~ =Uut (U -U) Ut

Using the form of matrice$U;);—1 2, we eventually obtain that
9(h(R1), R1) — g(h(R2), R2) = u(h(R2) — h(R1)) + v(R2h(Rz) — R1h(R1))
wherew andv are the strictly positive terms defined by

1 _ _
u= DU (021 + B(I+ h(fy)D)~1(I + h(fgl)D)*lBH) U;!

(59)
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and

1
v=-TrDU;'DU, ! .
t

As u(h(fﬁg) — h(l;nl)) + U(Rgh(kg) — th(kl)) = 0, (h(l%g) — h(l%l)) < 0 |mp|leS that
Roh(R2) — R1h(R1) > 0. Hence,kh(k) is a strictly increasing function as expected.

From this, it follows that functiors — g(h(%), %) is strictly decreasing fok > 0. This

function converges te-cc if & — 0 and to0 if # — +oc. Therefore, the equation w.rk. :
g(h(k), k) =1

has a unique strictly positive solutigh Denote byg the strictly positive term3 = h(B). It is

clear thatg(53, ) = §(3,5) = 1 or equivalently that3 = f(3,3) and 8 = f(8, 3). We have
therefore shown thats, 3) is the unique solution of (14) satisfying> 0 and 3 > 0.

APPENDIXII

PROOF OFTHEOREM 2

This section is organized as follows. We first recall in sulisactll-A some useful
mathematical tools. In subsection II-B, we establish (28)II-C, we prove (30) and (31).
Technical details that are needed to establish (30) andg@Lalso given in subsections II-D
and II-E.

We shall use the following notations.fis a random variable, the zero mean random variable
u—E(u) is denoted byi. If 2 =2+ iy is a complex number, the differential operatg%sand
£ are defined respectively b&(% - i%) and 3 (% . i%). Finally, if ,B,Y are given

matrices, we denote respectively 8y, b;, y; their columns.

A. Mathematical tools.

1) The Poincaré-Nash inequalitybet x = [z1,..., 257 be a complex Gaussian random
vector whose law is given byE[x] = 0, E[xx’] = 0, and E[xx*] = E. Let & =
®(xq,...,20,71,...,Z0) be aCl complex function polynomially bounded together with

its partial derivatives. Then the following inequality hslttue :
Var(®(x)) < E [vz«p(x)T = vzé(x)} +E [(vch(x))H E V.0(x)| |

whereV.® = [08/9z,...,00/0zy]T andV:® = [0D /07, ...,08/9zy]" .

This inequality is well known (see e.g. [8] and [22]).
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Let'Y be ther x ¢ matrix Y = -D:XD>, whereX has i.i.d.€N(0,1) entries and consider

Vit
the stackedt x 1 vectorx = [Yi1,...,Y;4]Z. In this case, Poincaré-Nash inequality writes :
Y)|? | |0®(Y) [
E IR
Var (& ;;dd ' oY, v (60)

2) The differentiation formula for functions of Gaussiandam vectors:With x and® given

as above, we have the following

M
E[2,®(x)] = > [E],, E {aq’_(x)} . (61)

ozx
=1 m

This formula relies on an integration by parts, and is thusrrefl to as the Integration by
parts formula for Gaussian vectors. It is widely used in Matlatical Physics ([15]) and has

been used in Random Matrix Theory in [26] and [31].

If x coincides with thet x 1 vectorx = [Y11,...,Y.]T, relation (61) becomes
E V,0(Y)] = #0g [a;ﬁ:z)] . (62)
Replacing matriXY by matrix Y also provides
B[V ,0(v)] = 20 [‘9;(/3} . (63)
3) Some useful differentiation formula3he following partial derivativesai and g)s/pj
for eachp,q € {1,...,r} and1 <i <r, 1 < j <t will be of use in the sequel. Straightforward
computations yield :
{ w o= S, .
giyf: = —Sig (Sé)p

B. Proof of (29)

We just prove that the variance dfTr(MS) is a O(%) term. For this, we note that the
random variablel Tr(MS) can be interpreted as a functidn(Y) of the entries of matrixy,

and use the Poincaré-Nash inequality (60yptdY’). Function®(Y) is equal to

1
= n Z MypSpq -
p.q
Therefore, the partial derivative @ (Y') with respect toY;; is given by

00(Y) 1 oS
= Z Mg, 8};;:

oY t P

which, by (64), coincides with

8@) 1
ZM ,pSp, _Z (éyHSMS)i )
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As d; < diax andd; < dax, it is clear that

o0®( MR oD
ZdeE’ ) gdmaxdmaxzz ’ax(fw)

i=1 j=1 i=1 j=1

It is easily seen that

gL (¢fsms’ M7 sel)

ZE’ aYu

As ||S|| < & andsup, [|M]| < +oo, £FSMSZMSEN is less thank sup, | M|[? [|€;|?. Mo-

reover,E||&,|? coincides with|[b; |2+ 1d; 3°7_; d;, which is itself less thah . + dmaxdmax 5,

a uniformly bounded term. Therefore,

r 2
S ’3¢(Y)
i=1 Y3

is aO(%) term. This proves that

ZdeIE’a@ )"

=1 j=1

oft)
oft)

The conclusion follows from Poincaré-Nash inequality (60).

It can be shown similarly that

ZdeE’a‘b Y) "

i=1 j=1

C. Proof of (30) and (31).

As we shall see, proofs of (30) and (31) are demanding. We fitsbduce the following

notations : Define scalar parametels?), a(o?), a(o?) as

n(o?) = 7 Tr (DS(0?))
a(o?) = E [1Tr (DS(0?))] (65)
a(o?) = 1r [13 ( 2(I + aD) ) o (1 — BYE(S(0?)) B(I —|—04I~))_1>}
and matriceR(c2), R(0?) as
R(0?) = [02 (I+aD) + B (I + af)) B BH} - )
R(0?) = [02 (I + af)) +BH (I+aD)"! B} o

It is difficult to study directly the term{ TTM(E(S) — T). In some sense, matrR can be seen
as an intermediate quantity betweB(S) and T. Thus the proof consists into two steps : 1)

first, studying2 TrM(E(S) — R) and 2) studying! TrM(R — T).
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1) First step: The first step consists in showing the following Proposition.
Proposition 7: For each deterministic x » matrix M, uniformly bounded (for the spectral
norm) asr — oo, we have :
1 1
ETr M(E(S)—R)| =0 <t2) : (67)
We just sketch the proof of this proposition, and provide die¢ailed proof in subsection II-D.

In order to use the Integration by parts formula (62), notlat

0?S(0?) +8(c*)ZxH =1 . (68)
Taking the mathematical expectation, we have for gache {1,...,7} :
U2E(Spq) +E [(SEEH)pq] =d(p—q) - (69)

A convenient use of the Integration by parts formula allowexpressE [(SEEH)pq] in terms

of the entries ofE(S). To see this, note that

[ SEEH pq = ZZE(SMEUXTU)

For eachi, E(S,X;;2q;) can be written as

E(SpiXijSq;) = E(Spi) BijBgj + E (SpiYq;) Bij + E (i 3g5) -
Using (62) with function®(Y) = S,,;3,; and (63) with®(Y) = S,;, and summing over index
i yields :
@E [Spe€Sb;] + E[(Sb;),] By
t PasSy J J/P q7
(70)
02 :
Eq. (29) forM = D implies thatVar(n) = O(%), or equivalently that(n ) = O(%). This,

t2

dyd

E [(S£j>pEQJ = quE(Spq) - CijE [W(Séj)pzq,j -

in some sense (details are given in subsection II-D), allmnepproximatel [ (S&;)p% 7]] by
E(n)E [(S€;)p2q,;] = oE [(SE;)pE,,;]. Therefore, Eq. (70) can be written as

dyd; dyd.

E [(ng)pzqvj = TE(Spq) - achE [(ng)pE] - quE [SpqggHSbj} +E [(Sbj)p]?w
Solving w.r.t. E [(S¢;),%,,;], we obtain
| 1 dyd 1 51 dgd; i
B ((5€,)5%0] = § 1L LB (S) + By By — 5 LR [S]'S)]
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Writing £, = b; + y;, and summing ovey provides the following approximate expression of
E[(SZ2),,] :
1 - -
E[SES),] =~ d,Tr [D(I + aD)’l} E(S,,)

+E [(SB(IJraD)lBH) ] —d,E [SpqiTr (SBﬁ(I+a]3)1BH)]

Pq
—qu[quiTr <SB]3(I+a]3)_1YH>] . (71)

Using similar calculations, it is possible to establishttha

E [SpqiTr (SBB(I + a]j)lYH>] ~ —E(S)q)E [1Tr (SBE(I n aﬁ)lYH>]

2

E [SpqiTr (SBD(I + aﬁ)_lBH>] ~ E(S,q)E [1% (SBB(I + aﬁ)_lBH>]
and that
E [1Tr <SBB(I + a]j)_lYH>] ~—almy <E(S)BD2(I + aﬁ)—2BH> (72)
t =Y '
Therefore E [(SZX*),,] can be approximated by
dy Sy [f)(I + af))—l} E(S,) +E [(SB(I + af))—lBH) ]
q pq
t rq
— dyE(Spg)E [1Tr <SB]5(I +aoD)BH )]
+ ady B(Spg)E ETr (SBf)2(I +aD)2BH )] . (73)

Plugging the above approximate expressiofi (@(SEEH)M] into (69), and solving with respect
to E(S,,), we obtain after some algebra that
(E [S (0’2(1 +aD) +B(I+ aﬁ)_lBH)D ~d(p—q)
pq

or equivalently that

E(Spq) ~ Ryq -

In order to prove Proposition 7, it is of course necessary\v@auate the convergence speed
toward O of the error term&(S,,) — R,,. Fortunately, Poincaré-Nash inequality allows to
study these terms rather easily, and to prove (67). Moreildetee given in subsection 1I-D.

2) Second stepThe second step consists in showing the Proposition :

Proposition 8: For each deterministic matridvI, uniformly bounded for the spectral norm
ast — oo, we have :

%Tr M(R—T) =0 <t12> . (74)
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We first observe thaR — T = R (T~! — R™!) T. Using the expressions @' and T,
multiplying by M, and taking the trace gives
%Tr M@R-T)] = (B-a) UQ%Tr(MRDT) -
(a—B) %Tr [MRB(I + 5D) "D + 5D) B T| . (75)
As the termsZ-Tr(MRDT) and L Tr [MRB(I + AD)'D(I + ﬂﬁ)*lBHT] are uniformly
bounded, it is sufficient to establish that — 4) and (& — 3) are themselve®) (%) terms. For
this, we first prove the following lemma.

Lemma 2:a anda& can be written as
1 B 1 ~ -
a = ETr (DR) + e, a = ZTr (DR) + €, (76)

wheree andé are O() terms.

Proof: The first relation of (76) follows immediately from Propositi@ when matrixiVi
is equal toD. To establish the second relation, we again use Proposition a relevant matrix
M, and obtain that

a(o?) = 1r [13 <g2(1 + aD)) o (I ~BYRB(I+ a]j)l)} +é
whereé = O(%). We claim that

%Tr [15 (02(1 + aﬁ))fl (I _BHRB(I+ aﬁ)—l)] - %Tr (ﬁﬁ) . 77)
In fact, using the definition oR, we get that

(BH RB(I + a]j)—l) -
B [I + (0*(I+aD)) ' B(I+ af))_lBH)} o (0*(T+aD))” B(I+aD)™".
In order to simplify the notations, we put
G = (o*(I+aD)) ' BI+aD)™"

Using the identities

BY (1+GB)"'G = (I1+BfG) 'BfG
1- (I+BfG) 'BYG = (1+BYG)"’ ’
we get that
I1- (B"RB(I+aD)™") = (1+B"G) .
Hence,

(02(1 + af)))il (I ~BYRB(I+ af))—l) ~ R,
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which eventually yields (77). This establishes the secondon of (76). [ ]
We now establish that — 3 anda — 3 are bothO() terms.
First expresga — 3) = 1TrD(R — T) + e. Using (75) forM = D yields

Tt
(a—3) (1 — %Tr [DRB(I + D) 'D(I + ﬁﬁ)_lBHTD +(a—-p) UQ%Tr(DRDT) =
(78)
Similarly, (& — ) = 1Tr [f)(f{—’i‘)} + ¢ Expressing(R — T) as (R — T) =
R (’i‘*l — R”) T and replacingl~! andR~! by their expressions, we obtain after straigh-

forward computations :

) JQ%Tr(ﬁRﬁT) +(@—p) (1 - %Tr []‘jRBH(I + FD)"'D(I + BD)—lDTD _
(79)

Equations (78) and (79) can be interpreted as a linear systems(a — 3) and (& — /3). More

precisely, if we defindug, vg, 1o, 09) by

w = 1-+Tr(DRB(+ D) 'D(I+ D) 'BHT)

i = 1—iTr(DRBH(I+ 3D)"'D(I+ 3D)'BT) (80)
vo = o1 Tr(DRDT)

Gy = o1 Tr(DRDT)

then, (78) and (79) can be written as

uy Vo a— 0 _ € (81)
up Vg a—p3 €

If the determinantugty — ugvy Of the 2 x 2 matrix governing the system is nonzero 5 and
& — (3 are given by :

1706 — ’U(]g - ~ UOg — ZNL()E
o — ﬁ = —, o — /8 == ~ = ) (82)
Uy — UQVo UgvVy — UQVo

o, vo, i, By being uniformly bounded. As and ¢ are O(#%) terms, (o — 3) and (& — 3)
will themselves beD (%) terms as long as the invergegdy — dovo) ' of the determinant is

uniformly bounded. In order to state the corresponding lteste define(u,v,a,v) by

u = 1-1Ty(DTB(I+/D)'D(I+ D)~ 'BYT)
o = 1-1Ty(DTBY(I+ 3D)"'D(I+ 3D) 'BT)
v o= o’ 1Tr(DTDT)
i = o1 Tr(DTDT)

(83)

The expressions of(u,v,@,v) nearly coincide with the expressions of coefficients

(ug, vo, Ug, Vp), the only difference being that matric®s andR are replaced in the definition
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of (u,v,u,?) by matricesT and T respectively. The following result, proved in subsection
lI-E, suggests that the study af — av provides useful informations oty — wgvg.

Lemma 3: (ug, vo, Up, Up) can be written as

Uy = U+ €y
vg = U+ 6 (84)
Vg = V+e€
Uy = U+ €y

wheree,, €,, €,, €, converge to) whent — +oc.
The behaviour ofiv—aw is provided in the following Lemma, whose proof is given in settion
I-E.

Lemma 4: Coefficients(u, v, @, v) satisfy :

- ()u=m0,

— (ii) 0 <u < 1 andinf;u > 0,

— (i) 0 < uv —uv < 1 andsupy u{;iifw < +00.
Lemmas 3 and 4 immediately imply that it existssuch that0 < ugty — agve < 1 for each
t >ty and

1

sup ————— < +00 . (85)
t>t, U0V — U0V

This eventually shows: — 3 and& — /3 are of the same order of magnitude thaandye, i.e.
are O(+) terms which in turn establishes Proposition 8.

Eqg. (31) eventually follows from the integral representat{80)

+oo
J(0?) = J(0?%) = / Tr(E(S(w)) — T(w)) dw. (86)

2

as well as a dominated convergence argument that is omitted.

D. Details of the proof of Step 1

We provide the detailed proof of Proposition 7. We first statesaful Lemma.
Lemma 5:Let P, P, andP5 be deterministio- x t, ¢ x ¢, t x r matrices respectively, uniformly

bounded with respect to the spectral normtas oc. Consider the following functions oY'.

(YY) = %Tr [sp=f] | (87)
T(Y) = %Tr [S=P =P, | (88)
T(Y) = %Tr [S=P, YP,] . (89)
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Then, the following estimates hold true :

Var(®) = 0<tlz> : (90)
Var(¥) = 0<tlz> : (91)
Var(®') = 0(7;) . (92)

The proof, based on the Poincaré-Nash inequality (60), idtedi
We now complete proof of Step 1. We take Eg. (70) as a startingtpand writen as
n =E(n) + 1 = o+ 1. Therefore,

E [77 (Séj)pm =ak [(S'Ej)pm +E {% (Sﬁj)p%} :

Plugging this relation into (70), and solving w.nR.[(sgj),, Yq. j] yields

— 1 d,d; 1 —
E )y i -9 _ER(S —— _FE[(Sb,),| B,
(8&),%0) = 1 g B+ 1 TE S0 By
S _E[S,,£7Sb.] — —FE |7 (SE)p 2| .
tl—l—adj [ pqu J] 1+ ad; [77( é])P QJ]

Writing §; = b;+y;, and summing ovej provides the following expression E)‘[(SZEH)pq] :

E[Sz=M),] = dq%Tr[ﬁ(HaD)*l}E(qu)

+E [(SB(IJraD)lBH) ] —d,E [SpqiTr (SBE(I+a]5)1BH)]

pq
—d,E [quiTr (sBD( + aﬁ)lYH>] ~E [7‘3 (S=D@ +aD)'x=) ] . (93)
p,q
The resolvent identity (68) thus implies that
d _ .
6(p—q) = o”E(Sp)+ LTr |D(IL+aD) | E(S))

+E [(SB(HOJD)‘IBH) ] —d,E [quiﬂ (SBf)(1+a]5)—1BH)]

prq
1 . ) N _
—qu[Spthr (SBD(I+aD)—1YH)] —E[n (SED(H—aD)_lEH) ] . (94)
p.q
In order to simplify the notations, we defing and p, by
1 2 N\ —1pH 1 B N\ — 1 H
pr = ;T (SBD(I+aD) B ) and py = STr (SBD(I+aD) Y ) .

Fori = 1,2, we write E(S,qp;i) as

E(Spgpi) = E(Spq) E(pi) + E (5; P%) :
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Thus, (94) can thus be written as

Sp—a) = ’E(Sp) + dy; Tr [DI+0D) | E(Sy)

+ (E(S)B(I + aﬁ)—lBH) —d, E(qu)%ﬂ (E(S)BD(I + af))—lBH)

— dyE(Syq)E [1Tr (SBf)(I + af))_lYH)] —d,E (Spq ,01> d,E <Spq ,02>
_E [5’7 (szf)(I + aﬁ)—le)M] . (95)

We now establish the following lemma.

Lemma 6:
R S A\-1y H
Eps = E 75T1“ SBD(I+aD)'Y
1 ~ = o O
= —a Tr (E(S)BDQ(I n aD)—2BH> _E (77 ,03) , (96)
where p3 is defined by
1 - -
ps=Tr (SBDZ(I + aD)_22H> .
Proof: We expressE(pz) as

t d;
E(p2) = %Zj:l 1+ad, ]E(Yf[Sbj)

1\t d; r — (97)
T 21 Trer 2ict B ((Sby)iYy)
and evaluatét ((Sb;);Y;;) using formula (63) ford(Y) = (Sb;);. This gives
aszk
E ((Sh;),¥;;) = dd ZE(W”)B,W ,
By (64),
S\ v B
- v, ) ~ —E (Sii(bj' S)x) — E (Sii(vj S)) -
Therefore,
E (yi'Sb;) = —d;E (nbfSb;) — d,;E (nySb;) .
Writing againy = E(n) + 1 = o + 7, we get that
E(y/'Sb;) = —adiE (b]'Sh;) - adE (y]'sh; ) (98)

~d;E (71b2Sb; ) — d;E (i7y!'sb;)

Solving this equation w.r.tE (nybj) yields

d; d; d; .
E (yHSb;) = —— 2% _E (bSb, J bSb; i g (fyHsSb;) (99
(y] i) 1+ad ( i) — 1+ ad, ( ) 1+ ad, (773’] J) (99)
or equivalently
d; d; °
E (y/'Sb;) = ——=E (b]'Sb;) - —=E (i1&/Sb;) . (100)

l—i-OcdJ 1+ ad;
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Eq. (96) immediately follows from (97), (100), and the redatif (1) p3) = E(1] p3). [ |
Plugging (96) into (95) yields
(5(p - Q) + qu
_E(S,,) [02 +d, <1Tr]~)(1 +aD) L —E(p) + a%Tr]E(S)B]jQ(I + aﬁ)—QBHﬂ
+ [E(S)BI+aD) "B (101)

Pq

where A is ther x r matrix defined by
Ay =E [é} (s=D+ ozf))lZH>pJ +d,E (§pq(p°1 + ﬁz)> — dE(Sy) E (7153
for eachp, ¢ or equivalently by
A=E [7‘3 (SEf)(I + af))—leﬂ +E ((51 + p2) S) D E (n pg) E(S)D .

Using the relation
aDI+aD) ' =1—-(I+aD)™!,

we obtain that

- %Tr <IE(S)Bf)(I + aﬁ)—lBH> - %Tr (E(S)Bf)(l + aﬁ)_2BH)

— E(p) - %ﬂ (E(8)BD(+ D) ?B) . (102)
Therefore, the term

STD(I +aD) ™ E(pr) + T (E(S)BDX(T + aD) 2B
is equal to
%Trf)(I +aD)! - %Tr (E(S)BD(I + aD) ?B")
_ %Tr DI +aD)" (1-BYES)B(I+aD) )|
which, in turn, coincides withr? & (see Eqg. (65)). Eq. (101) is thus equivalent to
(]E(S) [02(1 +aD) +B(I+ aﬁ)—lBH} ),,q = 3(p—q) + Ay (103)

or, in matrix form,
ES) R '=I+A (104)

E(S)=R+AR. (105)
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In order to complete the proof of Proposition 7, it remaingheck that ifM is a deterministic,
uniformly bounded matrix for the spectral nhorm as— oo, then

1

-TrARM = O <1> .
t t2

For this, we write; TTARM as 1 TrARM = T} + T, — T3 where
T, = E [% Iy (szD(IJraﬁ)*leRM)] :
T, = E ((51 ) iTr@DRM)) |
Ty = E (7163) +Tr (E(S)DRM) .

We denote byps the term

1 _ _
pr=Tr (SED(I + aD)*leRM>

2
o o . . 02 °
and notice that, = E(n p4). Eq. (29) implies thaE(n ) andE [% Tr (SDRM))] areO(%)
terms. Moreover, Lemma 5 immediately shows that for eaehl, 2,3, E(p; ) is aO(%) term.

The Cauchy-Schwarz inequality eventually provi(%@ARM = O(tiz), which completes the

proof of Proposition 7.

E. Details of the proof of Step 2

1) Proof of Lemma 3:n order to establish Lemma 3, we first prove that :
Lemma 7:
a—0 = o) and a—3 = o(1). (106)
Proof: We first prove that ifo? is large enough, then (106) holds. For this, we take (82)
as a starting point, and study the behaviour of coefficiepts, vy, ¥y for large enough values

of o2. As matricesR andT are less thaq}—QIT and matriceR andT are less tha@%lt, it is

clear that :
wg = 1= L4 [DBI+ D) DA+ D) B > 1 L diamanbia
g > 1—L1Tr [DBH(I + 3D)"'D(I + BD)*IB} > 1= L doinaxb?
uy < % ;
vg < b df,%

(207)
As L — ¢, it is clear that there exists? and an integet, for which ug > 1/2,5 > 1/2, 4y <
1/4,v9 < 1/4 for t >ty ando? > o3. Therefore,uody — Ggvg > 15 for t >ty ando? > 2.
Eq. (82) thus implies that i5* > o3, thena — 3 anda — (3 are of the same order of magnitude

ase = O(t%), and therefore converge to 0 wheén— +oo. It remains to prove that this
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convergence still holds fob < o2 < o3. For this, we shall rely on Montel's theorem (see
e.g. [6]), a tool frequently used in the context of large m@mdmatrices. It is based on the
observation that, considered as functions of parameter(c2?) — 5(02) and a(0?) — 5(0?)
can be extended to holomorphic functions ©n- R~ by replacings? by a complex number
z. Moreover, it can be shown that these holomorphic functiars uniformly bounded on
each compact subsét’ of C — R, in the sense thatup,sup,cx |a(z) — B(2)] < +oo
and sup, sup,cc |@(z) — B(z)| < +oo. Using Montel's theorem, it can thus be shown that
if a(c?) — f(o?) anda(o?) — B(o?) converge toward zero for eaat? > o2, then for each
z€ C—R~, a(z) - f(z) anda(z) — B(z) converge as well towards 0. This in particular implies
thato(o?) — B(0?) anda(o?) — 3(02) converge towards O for eaet? > 0. This proves Lemma
7. For more details, the reader may e.g. refer to [18]. [ ]

We note that Montel’'s theorem does not guaranteedhat3 anda — 3 are still O(t%) terms
for 02 < 02. It is therefore necessary to prove Lemmas 3 and 4 to obtasnréisult from Eq.
(82).

In order to complete the proof of Lemma 3, we observe that, b§) (@nd (106),
1Tr[M(R — T)] converges towards O for each uniformly bounded malix It can be shown
similarly that +Tr [M(R — 'i“)] converges towards 0 for each uniformly bounded malvix

Using these properties for relevant matrideéband M immediately yields Lemma 3.

2) Proof of Lemma 4.:n order to establish item (i), we notice that a direct apgiien of

the matrix inversion Lemma vyields :
TBA(1+3D)"! = (I1+ D) 'BAT . (108)

The equalityu = © immediately follows from (108).

The proofs of (ii) and (iii) are based on the observation thatcfion o> — o23(0?) is
increasing while functionr? — 3(02) is decreasing. This claim is a consequence of Eq. (19)
that we recall below :

_ dpp(A) 5 _ diwp(N)
ple*) = /R+/\+02’ ple) = /R+A+02 ’

where du,(\) = 1Tr(Ddp()\)) and djiy(\) = LTr(Ddji())). Notice thatu,(RT) = 1 Tr(D)

—t t —t

and thatji,(R*) = 1Tr(D). Note that is decreasing because — is decreasing and

_1
Ato?
o?B(c?) is increasing because — ﬁ; is increasing. Denote bythe differentiation operator

w.rt. o2, Then,(¢23)" > 0 and §° < 0 for eacha?. We now differentiate relations (18) w.r..
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o?. After some algebra, we obtain :

u(0?B) +o*w 3 = 1Tr(DTB(I+BD)~'(I+ D) 'BHT) (109)
L (0%8) +08 = —{T'TDT
As 3 < 0, the first equation of (109) implies that (623)" > 0. As (¢23)" > 0, this yields
u > 0. Asu < 1 clearly holds, the first part of (ii) is proved.
We now prove thainf; v > 0. The first equation of (109) yields :
1
(a28)
—= >0, 1nft|ﬁ | > 0 and thatinf; v > 0.

u > —azvﬁ/

(110)

In the following, we show thainf, @ zﬂ)

By representation (19),

3 djip(N) . Adpip(N)
e LK U e

< L for A >0, (6?8) < Lu(RT) = 1TrD. Therefore, the term—L - is

AS (o o2y

lowerbounded by?(1TrD)~!. As 1TrD < Zdpax, We haveinf; —— > 0.

(o 25)
We now establish thainf, || > 0. We first use Jensen’s inequality : As measure

(%Trf))*1 diip(X) is a probability distribution :

[ i (o) d,zbmr <[ b ()

In other words| ' = [i,. 5=z diin(A) satisfies

- 1 1 2
> || ——dm)| = 3
HETSs [/m N v oz )] 1TrDﬁ

As mentioned above(%Tr]ND)*1 is lower-bounded by(d.x)~!. Therefore, it remains to

establish thainf, 32 > 0, or equivalently thainf, 5 > 0. For this, we assume thatf, 3,(02) =
0 (we indicate tha3 depends both on? andt). Therefore, there exists an increasing sequence

of integers(t)r>o for which

i =

Lo ()
li —d A) =0
k—1>r-‘£l<>0 R+ )\+0'2 My ( ) ’

Whereﬁl(f"’) is the positive measure associated with(c2). As D is uniformly bounded, the
sequencéji\’™)) ;> is tight. One can therefore extract frof\™™));= a subsequenc(el,(f;))lzo

that converges weakly to a certain measgjewhich of course satisfies

1,
/R+>\+02dub<)\):0'
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This implies thatii; = 0, and thusg; (R™) = 0, while the convergence ((ta,(f;))lzo gives

A7 (RT) = lim ,u( )(R+)— lim TrD >0

l——o00 [—4o00 I
by assumption (3). Therefore, the assumptiofy 3,(c2) = 0 leads to a contradiction. Thus,
inf; 3;(c%) > 0 andinf, |3'| > 0 is proved.

We finally establish that is lower-bounded, i.e. thahf, %TrDTDT > 0. For any Hermitian

positive matrixM,

1 1 2

ETr(MZ’) > [tTr(M)] .
We use this inequality foM = T'/2DT'/2. This leads to

2

1 1 1 1 2
- TrDTDT = 2TrM2 > [t"ﬁ(M)} = [tTr(DT)} =32,
Therefore,inf, tTrDTDT > inf; 3. Using the same approach as above, we can prove that

inf; 3% > 0. Proof of (ii) is completed.

In order to establish (iii), we use the first equation of (1a9kpresgc?43) in terms of 3,
and plug this relation into the second equation of (109). Thes :
<73 - lfw) g = —%Tr’i‘f)'i‘ — i%Tr(DTB(I + /D) Y1+ D) 'BYT) . (111)
u

o2y

The righthand side of (111) is negative as well@sTherefores — %ﬁv > 0. As u is positive,
u? — v is also positive. Moreover, et ¢ are strictly less than 1. A8 andwv are both strictly
positive,uv — ww is strictly less than 1. To complete the proof of (iii), we icetthat by (111),

1 s
w—w ~  ulT'TDT

13| clearly satisfies|5'| < - 1TrD and is thus upper bounded W (i) implies that

ott
T > 0. Denote byz = }TYTDT.

Tr'TD
t ¢
ST Tl

=1

supt < +oo. It remains to verify thainf; 1T h

H—M—t

In order to use Jensen’s inequality, we considge and notice that% Zﬁzl Ri=1.x

1T\rD!

can be written as )

t t
1 .~ 1 . ~
=D 7> & | Q1T
i=1 j=1

By Jensen’s inequality

t t
2R | (Q 1T
i=1 j=1

2 2

t t
> ZZIT,JI )12

=1

& | =
@M}—A
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Moreover,

Finally,

Sinceinf, 52 > 0, we haveinf, 1 T*TDT > 0 and the proof of (jii) is completed.

APPENDIXIII

STRICT CONCAVITY OF I(Q) : REMAINING PROOFS
A. Proof of Lemma 1

Notice thatg,, is strictly concave due to (44). Notice also thais concave as a pointwise
limit of the ¢,,’s. Now in order to prove the strict concavity @f, assume that there exists a

subinterval, saya, b) C [0,1] with a < b where ¢ fails to be strictly concave :

VA €[0,1], @d(Na+ (1 —A)b) = Agp(a) + (1 — N)p(b) .

Otherwise stated,

o(b) — ¢(a) -

Vr € (a,b), o¢(z)= — (x —a) + ¢(a).

Let z € (a,b) andh > 0 be small enough so that— ~» andx + h belong to(a, b) ; recall the

following inequality, valid for differentiable concaveriations :

() — pm(z — h) / m(z +h) — dm(z)
= 2 G () 2 ; :

Letting m — oo, we obtain :

b(x) — p(z — h) bz +h) — d(z)
h

> limsup¢,,(z) > liminf¢) (z) > .

m—0o0 h

In particular, for allz € (a,b), limy, oo ¢y () = 2U=20)  Now let [z, z+}] € (a,b). Fatou’s

lemma together with (44) yield :

x+h
0 < kh < / liminf ¢! (u) du

z+h
< liminf " (u)du = li

m m
m—oo [ m— oo

(@ (z+h) = d(x)) = 0.

This yields a contradiction, therefore must be strictly convex off), 1].
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B. Proof of (45).

We defineM as thetm x tm matrix given by

. -1 -
NI = i (I+ HQfH> L
g g
We have :
V) = T [MI(Q) — Q2)M(Q1 — Q)]
or equivalently
~ v VH —1 .~
o) = E T | (14 B ) @ - M@ - Q»ﬂﬂ]
m g g

Recall thatTr(AB) > Anin(A)Tr(B) for A, B Hermitian and nonnegative matrices. In

particular :

Tr
o

HOEA\ T H . .
<I+ Qr ) 2(Q1—Q2)M<Q1—Q2)HH]

Similarly, we obtain that

T |75 - QM@ - Q|

o2

This eventually implies that

o —1
(595 B emia —Qz)HH] >

TOTTH\ L TH T H T
i (14555 ) w R @ @t e

Tr

o - o
As R
A?nin<I+HQ2HH) > L > -
i N (T4 B~ (14072 Q) [H/TH]))
we have :
V) <~ B ( T ||HHH||)2> ><Tr(HU2H<Q1—Q2>HUfI<Q1—Q2>)] .

Let us introduce the following notations :
1 1 [HH H . . HIH
Ir

5 Pm

2
(1+o2|Ql 7 H]|) m
The following properties whose proofs are postponed to Adpehl-C hold true :

(Q1 — Qo)

02 -
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Proposition 9: (i) lim,,— var(8,) =0,
(iy Forall m>1, E(3,) =E(3) =ETr [H;H(Ql - Q)T H(Q, - QQ)} >0,
(iii) There existsé > 0 such that for all\ € [0, 1], lim inf,,, oo E(ay,) >0 >0 .

We are now in position to establish (45). By Proposition)9ifie have

[E(ctmBin) — E(um)E(Bm)| < v/var(Bn) vVE(a3,) < V/var(Bpn) —— 0.

m—00

By Proposition 9-(ii),(iii), we have :

lim inf E(, Gm) = 1}TErLiO%fE(am)E(ﬁm) =E(5) l%r}ijoréfE(am) > 0E(B1) > 0.

m—00

The bound (45) is now established for= —dE(51). Applying Lemma 1 tap,,, (), we conclude
that A — ¢(\) is strictly concave for everfd;, Qs in C; (Q1 # Qs), and so isQ — I(Q) by

Proposition 2.

C. Proof of Proposition 9

Proof: [Proof of (i)] In order to prove thatim,, var(3,,) = 0, we shall rely on Poincaré-

Nash inequality. We shall use the following decomposition

1

C:

—UD:U#, C:=UD:U"
VK +1
In particular, H writes
8 K . L UAWU -,
U"HU = /—U"AU+D>———D:-
K+1 Vit
AN 1 X 1 A
= B+D:—-D: = B+Y
Vit
2 5.

whereX is ar x t matrix with i.i.d. €N (0,1) entries. Consider now the following matrices :

B=1,%B, I'=1,®D, I'=1,9D, v=1,9U, V=I,%U.

Similarly, H writes :

X
Vmt
where X is a mr x mt matrix with i.i.d. GN(0,1) entries. Denote by® = U7 (Q; —
Q2)U and by® = V7 (Q, — Q2)V(= I,, ® ©). The quantity3,, writes then :3,, =

1>

B+Y

1>

r: >,

VEIAV =B+ T

3Note that the notations introduced hereafter slightly differ from those intred in Section I1I-A but this should

not disturb the reader.
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q
A

TrOX¥eX3. Considering3,, as a function of the entries aK = (X;;), i.e.
$(X

), standard computations yield

00X) _ 2 gsnsost)
8X7;j m g
Poincaré-Nash inequality yields then
2

)

(X
var () < —ZI‘ I E'
7 X,

- 721“1“ SE|(07ses)

Je

4dmaxdmax
m3t3
L

< meema 1 HE|E
< 22 | | —

IN

ETr (637505750751 56M)

Moreover, Schwarz inequality yields

1/2
Lnsrsen sise < [%@HW] [Tr (@H(2H2>2@@H(2H2>2@)]
m

mt

so that

1 . o . s . . 1 . . 1/2 . . 1/2
—Treiselisiye < |efo)| [tTr(ZHE)Q] [Tr(ZHE)4] .
m

mt mt

)] e s

Schwarz inequality yields then

M«

E <1Tr2H2®H2H2@> < 676 [E <1Tr(
mit mit
It is tedious, but straightforward, to check that

m

and
supE (Tr(2H2)4> < +00
which, in turn, imply thatvar(8,,) = O(:%). |
Proof: [Proof of (ii)] Write E 3,,, as
Efn = — ETr37505756
= %ETr B"B+B'Y+Y"'B+Y"Y)0 (B"'B+B’Y+Y"B+Y"Y)0O
O'
@ L 1,BYBOBYBO + .~ ETrBYBOYIY®
04m oim
+ L ETBYYOYYBO + - ETrY/BOBYY6
oim 04m

1 o
+——ETrY?'YeB"BO + L ETYHIYOYIYe
g m

oim
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where (a) follows from the fact that the terms whe® appears one or three times are readily
zero, and so are the terms li@Tr BY YOB”Y®©. Therefore, it remains to compute the

following four terms :

n 2 %TrBHB(;)BHB@,

T, 2 %EﬁBHB@YHY@,
r, 2 %ETrBHYG)YHB(L),
T, 2 %ETrYHY(;)YHY(;).

Due to the block nature of the matrices involved, = Tr BPBOB#B® ; in particular, T}
does not depend om. Let us now computd’. We haveT; = m Tt B¥BOE (YY) ©
andE (YY) = (mt)"'T2E (XTX) I’z = (mt)~'Tr(T")T. Therefore,T; writes :

T = L7 (1) %Tr ( B(l)i“(l)) = Tv (D) %Tr (BHBQD@> ,

m m

and this quantity does not depend on. We now turn to the term73. We have

T3 = m~'Tr BYE (YOY#) BO. The same computations as before yi@ldYOYH) =
(mt)~'Tr (f‘%(;)f‘%) . ThereforeTs writes :
1 ~1 v ~1 . ~ 1 ~ 1 1
Ty = —Tr (T360%) — T (B"TB6) - Tr (DD} ) 1 Tr (B"DBe) .
m

- ~ o~ .~ ~ 1 ~ 1 ~ ~ ~ 1 < ~ 1 ~ ~ 1
E(YIVOYTY) = TR (XTX[:Or:Xrx) I .
m

X
Computing the individual terms of matrik (XI‘Xf‘iéf‘i ) yields (denote byG =

I'zOT: for the sake of simplicity) :

[E(XTXGXTX)],, = E(iil,kxu,jlxmzxiz,e) Lisin G oLz
in Jrogsia

= (TrT)* Gy + Tr (T?) Tr G Gy

whered, stands for the Kronecker symbol (i@, = 1 if £k = ¢, and 0 otherwise). This yields

vH~r A~ H~ _ 1 1 2 T T
E(YIVOYTY) = (T r)2Ter + — (T (02) (er)T
and
1 /TeT\? 1 11 1 L \2
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which does not depend on. This shows thaEs3,, does not depend om, and thus coincides
with E3;. In order to complete the proof of (ii), it remains to verifyatE3; > 0, or equivalenlty
that ES, is not equal to 0. IfES; was indeed equal to 0, then, matrix

1/2 1/2

(H"H)" (Q1 — Q) (H"H)

or equivalently matrix

H"H(Q: — Qo)

would be equal to zero almost everywhere. Qs # Q-, it would exist a deterministic non

zero vectorx such thatx H# Hx = 0 almost everywhere, i.éx = 0, or equivalently
WCY%2x = —VKtC /?Ax . (112)

As matrix C1/2 is positive definite, vectoiC*/2x is non zero. Relation (112) leads to a
contradiction because the joint distribution of the emstrig W is absolutely continuous. This
shows thatE3; > 0. The proof of (ii) is complete. [ |
Proof: [Proof of (iii)] In order to control = L first notice that|Q| =
[Proof of ()] R RN FE =T vl
Q|- Now |[H*HI| = ||H|* and

- K . 1 1 ~ 1 VVV
H| </ ——||A|| + A A || —]| .
[H| < K+1H | m” I lAz]] HWH
Now ||A| = ||A|, |Az| = ||Cz|| and||Az|| = ||C:||. The behaviour of the spectral norm of

(mt)~z W is well-known (see for instance [34], [1])H:(mt)*§WH — oo 14 1/1/c almost
surely. Therefore, Fatou’s lemma yields the desired redith inf,, Ec,,, > 6 > 0, and (iii) is

proved. [ ]

APPENDIX IV

PROOF OFPROPOSITIONS, ITEM (1).

By (49) and (50),(x, %, Q) — V(k,#, Q) is differentiable fromR* x R* x €; to R. In
order to prove that’(Q) = V(6(Q),4(Q), Q) is differentiable, it is sufficient to prove the
differentiability of 4,4 : €, — R. Recall thats and é are solution of system (32) associated
with matrix Q. In order to apply the implicit function theorem, which withmediatly yield

the differentiablity of§ andé with respect toQ, we must check that :

1) The function

(5,6,Q) — Y(5,6,Q) = f—{(é,f,Q)
6_f(5757Q)

is differentiable.
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2) The partial jacobian

~ 125,54, — 914, 4,
D5 Y(6,6,Q) = 3?5( - dg](; @
_W((sadaQ) 1_5(6757Q)
is invertible for everyQ € C;.

In order to check the differentiability of’, recall the following matrix equality
I+UV)'uU=Uua+vu)! (113)

which follows from elementary matrix manipulations (cf.1[2Section 0.7.4]). Applying this
equality toU = Q: andV = §CQ:, we obtain :
1 1~ 1\ —1 1 ~ —1
AQ? (1 n 5QECQE) QAT — AQ (I n 5CQ) Al
which yields
£(6,6,Q) = tTr{c[a L+ 7€)+ 7 7AQ (It n KHCQ) A ] .
Clearly, f is differentiable with respect to the three variables and Q. Similar computations
yield

~ —1
s 1 - 5 - K ,u 5 -1
f“"s’Q):tTf{QC[”Q(“KHCQ“KHA (IH_K—HC) AQ| }

and the same conclusion holds fbr Therefore, (5,0, Q) — Y(4,4, Q) is differentiable and 1)
is proved.

In order to study the jacobiaD(&S)T, let us compute firs%.

of - 1 § -~ \!'cCq I K
28,6 = -TrCTxAQ(I+-—C —= (1+—2C AT
959 Q t KQ<+K+1 Q> K+1<+K+1 Q> KK+1-
1 1 1) 1~ 1 71Q%CQ%
= [Tr CTLAQ: <I—|—K+1Q20Qz> —
Q:CQ: J P K
—~ | I — (02 2 2 AYT
K11 <+K+1Q cQ ) Q KKt1°

@ %Tr (DTB(I + 8D)~'D(I + #D)'BHT)
where (a) follows from the virtual channel equivalences (8), (9) titge with (38) and (40).

Finally, we end up with the following :

1— ‘;‘g(d, 5,Q)=1- %Tr(DTB(I + D) 'D(I+ D) 'BAT) .
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Similar computations yield

1— gg(a, 5,Q) = 1-— %Tr(f)’i‘BH(I +D)"'D(I + D) 'BT) ,
of . = B o?
_5(67 57 Q) - ?TI' (DTDT) )
Of o~ 0P

The invertibility of the jacobiarD(5 S)T follows then from Lemma 4 in Appendix II-C and 2) is
proved. In particular, we can assert tfats Q — §(Q) andC; > Q — 4(Q) are differentiable

due to the Implicit function theorem. Item (i) is proved.

APPENDIXV

PROOF OFPROPOSITIONG

First note that the sequend®);) belongs to the compact s€;. Therefore, in order to
show that the sequence converges, it is sufficient to edtathiet the limits of all convergent
subsequences coincide. We thus consider a convergentosigmee extracted froniQg)x>o,
say (Qy k) )k>0, Where for eachk, ¢(k) is an integer, and denote @Z{’ its limit. If we prove
that

<VIQY),Q-QY><0 (114)

for eachQ € €y, Proposition 5-(ii) will imply thatQ}f coincides with the argmax), of I
over C;. This will prove that the limit of every convergent subsemqeconverges towardy,,
which in turn will show that the whole sequen(@x);>o converges taQ,.

In order to prove (114), consider the iteratian(k) of the algorithm. The matrixQ, )
maximizes the functiorQ — V(%(k),%(k),Q)- As this function is strictly concave andd

differentiable, Proposition 4 implies that

< VQV(6yk)s Opk)s Quh))s Q — Quey > < 0 (115)

for every Q € C; (recall thatVq represents the derivative 6f(x, &, Q) with respect tol’’s
third component). We now consider the pair of solutic@ﬁg(k)ﬂ,gw(k)ﬂ) of the system (32)
associated with matrixx)-

Due to the continuity 0f(Q) and4(Q), the convergence of the subsequelkg ;) implies
the convergence of the subsequen(:é[%)ﬂ,glp(k)ﬂ) towards a limit (51”,51?). The pair
(6%,67) is the solution of system (32) associated W@}y i.e. 6¥ = 5(Q¥) ands? = 5(Q¥);

in particular :
ov

Ok

8l
Ok

(67,07, QY) = 5= (07,87,Q¥) = 0
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(see for instance (55)). Using the same computation as ipriba&f of Proposition 5, we obtain
(VI(Q), Q- Q¥) = (VV (3£.3/.QF) Q- QY) (116)

for everyQ € €;. Now condition (56) implies that the subsequeigg,), Sw(k)) also converges

toward (6¢,4%). As a consequence,

kE{POOWV(%(k), Sy Qu))s Q — Quaiy) = (VV (67,67, Q¥),Q — QY) .

Inequality (115) thus implies thd& V' (5%,5%, QY), Q — Q¥) < 0 and relation (116) allows us

to conclude the proof.

APPENDIX VI

END OF PROOF OFPROPOSITION3

Proof of Proposition 3 relies on properties @, established in Proposition 5—(iii). Denote

by
A = max <sup IA[, sup || €], sup ||CH> <oo and a=min (igf Ain(C), int )\min(C)) > 0.
t t t

Proof of (i): Recall that by Proposition 5—(iii)Q, maximizeslog det(I + QG (4., d,)).

This implies that the eigenvalugs;(Q,)) are the solutions of the waterfilling equation

1

V=11, Aj(Q*):maXG_MG)’O)
J

wherey is tuned in such a way thaf; \;(Q,) = t. Itis clear from this equation thdQ, || < ~.
If v < Amin(G) 7! then [|Q, || < Amin(G) 7L If ¥ > Anin(G) ™! theny > X;(G)~! and we

have :
J i Y

hence

In both cases, we have

IQ.II <1+

(G (117)

It remains to prove

vQee, infm (G0(Q).4Q)) >0 (118)



54

and we are done. To this end, we first show thdit 5(Q) > 0 for all Q € €;. From Equations

(39) and (41), we have :

1
Q) = ZtTCTK(Uz)
> )\min(C)%trTK(UZ)
(a) 1 9 o -
> . -
2 Amn(C) [ttr <0 L+ 6C

—1
K ) - -1
AOY2 (1 1/2 1/2 1/2AH
TR Q <t+K+1Q cQ Q

(b) 1 9 0.2 _ K " —1
> ; — -
= )\mm(C) <ttr <U I + K+ 150 + K+ 1AQA )) (119)

where (a) follows from Jensen’s Inequality an@) is due to the facts that(I; + Y) 7! < 1

andtr(XY) < || X]|tr(Y) whenY is a nonnegative matrix. We now find an upper bound for

6. From (40) and (16), we hawT i (02)|| < 1/02. Using (41) we then have
- -1 - - ~ 1 A
0 < ITx[l5trCQ < [Tk |[ICI;0Q < —

(recall that%trQ = 1). Getting back to (119), we easily obtain

K+1 K+1 K+1) K+1
where( is a certain constant term. Hence we hay@) > aco—l. By inspecting the expression
(49) of G(4,4), we then obtain

1 2 K A A2K t
Ztr <021,. +-2 _5c+ AQAH> < g <02 + >+ <Cp V(t,r), i

aC! ~ a20 !
. > 0 . > 0
Amin(G) = K+ 1Amm(c) -~ K+1

and (118) is proven. It remains to plug this estimate into/§ldnd (i) is proved.

:Cl>0

Proof of (ii): We begin by restricting the maximization d{Q) to the setC{ = {Q
Q = diag(qi,...,q) > 0,tr(Q) = t} of the diagonal matrices withif;, and show thaQ? =
argmaxqees 1(Q) satisfiessup, 1QY|| < co where the bound is a function @f, A, o2, ¢, K)
only. The sete{ is clearly convex and the solutioR¢ is given by the Lagrange Karush-Kuhn-

Tucker (KKT) conditions
oI(Q) 0

b = 9, EOQI =05, (120)

where J(Q) = logdet (I, + ZHQH") and the Lagrange multiplier and the 3; are

associated with the power constraint and with the pogytigbnstraints respectively. More
specifically,n is the unique real positive number for Whi(ﬁz.:1 g; = t, and theg; satisfy
Bj=0if ¢g; >0andg; > 0if ¢; = 0. We have

01(Q) 1. n 1 H !
=—h’' (I, + =HQH h;
dq; o27J + o2 Q J
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whereh; the j*" column of H. By consequenceR [03(Q)/dq;] < LE [||h;|*]. Ash; is a
Gaussian vector, the righthand side of this inequality finée and therefore, by the Dominated
Convergence Theorem, we can exchafigéq; with E in Equation (120) and write

o1(Q) _ 1
8%‘ T o2

1 —1
E |hY <IT+UQHQHH> hj] (121)

Let us denote byH; ther x (¢t — 1) matrix that remains after extractirig; from H. Similarly,
we denote byQ; the (¢ — 1) x (¢ — 1) diagonal matrix that remains after deleting row and
columnj from Q. Writing R, = (IT + %HijHf)fl, we have by the Matrix Inversion
Lemma ([21, §0.7.4])

1 -1 Qi
I, + —HQH =R, — J R h,h'R,; .

By plugging this expression into the righthand side of Equat{121), the Lagrange-KKT

conditions become

X,
E|l—2 | =p-2; 122
[02 +qa‘Xj] "= (122)

whereX; = hHR-h» A consequence of this last equation is that 1/77 for everyj. Indeed,

assume thag; > 1/n for somej. Theno? + ¢; X; > X;/n henceE [ } < n, therefore

O'2+q X;
Bj > 0 (122), which implies that; = 0, a contradiction. As a result, in order to prove that
sup; |Q¢|| < oo, it will be enough to prove thatup, 1/n < co. To this end, we shall prove

that there exists a constagt > 0 such that

max P(X; <C)——0. (123)

J=1,...,t t—00

Indeed, let us admit (123) temporarily. We have

el % __c el X __C X
a2+quj 0'2—|-q]'C N J2+quj X;>0 2+q]C 02+qu] X;sC
C C
—=P(X; >C) — 54—
0% +¢;C (%X ) 0%+ ¢;C
wheree; = Th e C]P’(X < (), and the inequality is due to the fact that the functjgn) =

2+q — is increasing. As

C
max |EJ|<— max P(X; <C) ——0

7=1,.. o2 J=1,...,t t—o00
by (123), we have
X,
liminfmin(E[ 3 J ]— 20 >20.
t j o+ qj X o4+ q;C
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Getting back to the Lagrange KKT condition (122) we therefuaee fort large enoughy—3; >

#%/2 for everyj = 1,...,t. By consequence,

L1 20 N

- < i

nTan=p ¢ Y
for larget. Summing overj and taking into account the power constrairjg q; = t, we obtain
t 202t 202
5 <G ttie ; <EF+1and

202
sup | QL < <5 +1 (124)

which is the desired result. To prove (123), we make use of MMStmation theory. Recall

that H = A+ L C/?WC'/2. Denoting bya; andz; the jt" columns of the

\/7 Vi
matricesA and WC'/2 respectively, we have

K+1

K 1 1 K 1 1
X — _ aH Hol/2 | R. Ccl/24. | .
J (K_i_lajJr\/i\[] J +1J \/7\[ Zj
We decomposez; as z; = u; + ujL where u; is the conditional expectatiom; =
E(z||z1,...,2j-1,2j4+1,...,2, in other words,u; is the MMSE estimate of; drawn from

the other columns oW C1/2, Put

1 1 LH 1/2 K 1 1 12
Sj:Q(\/i\[]C/Rj< +1J \/7\[ /uj

1 1H ~1/2 1/2. 1
——u; C/“R,C o 125
+L‘(K—|—1) ¥l J u] ( )
Then
K 1 1 K 1
X = S H —ulc/?2 | R, Cl/2y,
j ]+< K19 P URTIviY I\VEF1Y T ﬁ\f v
> 5. (126)

Let us study the asymptotic behaviour &f;. First, we note that due to the fact that

the joint distribution of the elements oW C'/2 is the Gaussian distributionujL and

vj = lz{,...,2]_,2],,...,2;|" are independent. By consequena:r;& and (Rj,u;) are
independent. Let us derive the expression of the covariana@ixnR, = E[uj-uj-H].

>From the well known formulas for MMSE estimation ([33]), wevkaR,, = E[zjz]H] —
Elz;v}] (E[vjvf])_lE[vj z!']. To obtain Ry, We note that the covariance matrix of the
vectorz = [z],...,2z7 |7 is E[zz"] = CT ® I, (just check thaff [[WCW] [WCL2),| =
5(i—k)[C];;). Let us denote by;, ¢; andC; the scalag; = [C];;, thej** vector column ofC
without element;, and the(t — 1) x (¢t —1) matrix that remains after extracting row and column
4 from C respectively. With these notations we hag = (éj - 6?(3;16]-) I,. Recalling that
ujL and(R;, u;) are independent, one may see that the first term of the rigtitigie of (125)
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~ ~H~—1x
le—Cj Cj Cj

is negligible while the second is close o = ; ~—/—

tr(R;C). More rigorously, using
this independence in addition t = max(||A ||, ||C|, |C||) < co and||R;|| < 1, we can prove
with the help of [1, Lemma 2.7] or by direct calculation thaer exists a constardf; such
that

(&}
T

E [(Sj - pj)ﬂ < (127)

In order to prove (123), we will prove that thg are bounded away from zero in some sense.

First, we have

- a) T ~ —1(b) . -
& —ellCle; Y [C—le > 1Y = Auin(©) > a

(for (a) see [21, 80.7.3] and fofb), use the fact thal{X];;| < || X]|| for any elementk,[) of
a matrix X). By consequence,

aAmin(C) 1 1 7\
iz Trr g\t e,

aAmin(C) (1 1 2\ 7!
e (t“ <1, T i QH; ))

,\
Ve

2

(b) 1 1 2 1 -1
a r B
= —+— (A L/2) &2 1
- K+1 (t + o2 <‘ |+l =[cl \\ﬁVV I ttr(Q)

where(a) is Jensen Inequality an@) is due totr(XY) < || X]|tr(Y) whenY is a nonnegative
matrix. As lim; ||%WH = 1+ /1/c with probability one ([1]), and furthermorer(Q) = t,

we have with probability one

a? 1 A ~1/2)? o
luntlnfjg}.r.l.,tijKqu (c +ﬁ<2—|—c ) > =Cy . (128)

Choose the constaidt in the lefthand side of (123) as = C/4. From (126) we have

maxP(X; <C) < maxP(S; <CO)
J J

= maxP(S; < C|S; - pjl = C) + maxP (S; < C,[S; — pj| < C)
J J

max P (|S; — p;| = C) + maxP (p; < 20)
J J

(@ 1

< —ymaxE [(Sj - Pjﬂ + max P (p; < 2C)
C? J

®) 1 :

< gpmaxE [(Sj - pjﬂ +P <mj1npj = 20>

—
2]
~

o(1)

where (a) is Tchebychev’s Inequalityb) is due tomax; P(E;) < P(U;E;), and(c) is due to
(127) and to (128).
We have proven (123) and hence ti@Q¢ = arg maxqees [(Q) satisfiessup, QY| < .
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In order to prove thaQ. = argmaxqece, 1(Q) satisfiessup, ||Q.|| < oo, we begin by noticing
that

1 HyyH
(IQneaé I(Q) = Ir}leaé /IXnEaCX(fE [log det <I,« + ﬁHUAU H ﬂ (129)

wherell; is the group of unitary x ¢ matrices. For a given matrikl € U;, the inner maximiza-

tion in (129) is equivalent to the problem of maximizing thetomal information ovel€{ when
H ; H ! _ _ K ! 1 1 1/2 "1/2

the channel matriH is replaced withH = HU = K—HA + \/THWC /2W'C/2, Here,

matrix C' is defined byC' = UYCU, A' = AU, W = WO where © is the unitary

matrix ® = CY2UC' -2 As U < U, we clearly have||A’| = ||A], |C'| = ||C

and |C'~!|| = ||C!||. By consequence, the boundsand A4, and hence the constant in

the left hand member of (123) (which depends only (@nA, o2, ¢, K)) remain unchanged
when we replacel with H'. By consequence, for everyy € U; the matrix A,(U) that
maximizesE [log det (I, + SHUAUYH)] satisfies|A.(U)| < 202/C + 1 (see (124))

which is independent obJ. Hence||Q.|| < 20%/C + 1 which terminates the proof of (ii).
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