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In this paper, it is shown that with large probability, the spectral radius of
a large non-Hermitian random matrix with a general variance profile does not
exceed the square root of the spectral radius of the variance profile matrix. A
minimal moment assumption is considered and sparse variance profiles are
covered. Following an approach developed recently by Bordenave, Chafaï
and García-Zelada, the key theorem states the asymptotic equivalence be-
tween the reverse characteristic polynomial of the random matrix at hand and
a random analytic function which depends on the variance profile matrix. The
result is applied to the case of a non-Hermitian random matrix with a variance
profile given by a piecewise constant or a continuous non-negative function,
the inhomogeneous (centered) directed Erdős–Rényi model, and more.

1. Problem description and results. Let (Wij)ij≥1 be an infinite array of complex-
valued independent and identically distributed random variables such that EW11 = 0 and
E|W11|2 = 1. For each integer n > 0, let S(n) =

[
s
(n)
ij

]n
i,j=1

be a n × n deterministic ma-

trix with real non-negative elements. Consider the Cn×n–valued random matrix X(n) =[
X

(n)
ij

]n
i,j=1

which elements are defined as

X
(n)
ij =

√
s
(n)
ij Wij .

The purpose of this paper is to study the large–n behavior of the spectral radius ρ(X(n))
under general assumptions on the sequence of matrices (S(n)) that cover the sparse cases.
These assumptions stand as follows:

ASSUMPTION 1.1. The following hold true.

(i) There exists a constant CS > 0 such that at least one of the following bound holds:∣∣∣∣∣∣∣∣∣S(n)
∣∣∣∣∣∣∣∣∣≤CS or

∣∣∣∣∣∣∣∣∣(S(n))>
∣∣∣∣∣∣∣∣∣≤CS ,

where |||·||| is the max row `1–norm of a matrix.
(ii) There exists a positive sequence (Kn)n≥1 tending to infinity, and there exists a constant
C ′S > 0 such that

s
(n)
ij ≤

C ′S
Kn

for all n and all i, j ∈ [n].
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ASSUMPTION 1.2. For each ε ∈ (0,1], it holds that

lim inf
n

min
γ∈[0,1−ε]

det
(
In − γS(n)

)
> 0.

Intuitively, this assumption is related with a rapid decrease of the magnitudes of the eigen-
values of S(n), as illustrated by the examples below.

This assumption can be re-expressed as

lim sup
n

ρ(S(n))≤ 1, and(1a)

∀ε ∈ (0,1], lim inf
n

det
(
In − (1− ε)S(n)

)
> 0.(1b)

Indeed, when Assumption 1.2 holds true, (1b) is obvious. Moreover, since S(n) has non-
negative elements, it has an eigenvalue which is equal to ρ(S(n)) [22, Th. 8.3.1], hence (1a).
Conversely, assume the conditions (1) are satisfied. Since lim supρ(S(n)) ≤ 1, it holds that
for each γ ∈ [0,1), the series

∑
k≥1 γ

k tr(S(n))k/k is convergent for each large enough n,
and we can write for these n:

(2) ∀γ ∈ [0,1), det(In − γS(n)) = exp

(
−
∞∑
k=1

γk
tr(S(n))k

k

)
.

This shows that γ 7→ det(In−γS(n)) is a non-negative decreasing function on [0,1), and (1b)
implies Assumption 1.2.

The following theorem is established in this paper:

THEOREM 1.3. Let Assumptions 1.1 and 1.2 hold true. Then, it holds that

∀ε > 0, P
[
ρ
(
X(n)

)
≥ 1 + ε

]
−−−→
n→∞

0.

Let us sketch some application examples to shed some light on the assumptions and the
result. These will be clarified and detailed in the next section. To begin with, assume that S(n)

is a block variance profile matrix with a fixed number of rectangular blocks which dimensions
are of order n, and which elements are of order 1/n. Then, S(n) satisfies Assumption 1.1 with
Kn = n. Assume that the spectral radius of S(n) is of order one. By normalizing this matrix
with its spectral radius, Condition (1a) is satisfied. Furthermore, since the rank of S(n) is
bounded by a constant, Condition (1b) is also satisfied, and Theorem 1.3 asserts that with
high probability, ρ(X(n)) cannot be larger and away of

√
ρ(S(n)) before the normalization.

A similar conclusion can be obtained when S(n) is obtained by a regular sampling of a con-
tinuous non-negative function on the rectangle [0,1]2. Assumption 1.1 will still be satisfied
with Kn = n. Let us turn to Condition (1b). Here, the rank of S(n) is no more necessarily
bounded. However, this condition will still be satisfied after the proper normalization be-
cause, roughly speaking, S(n) will have only a few non-negligible eigenvalues. This is due to
the fact that S(n) is a discrete approximation of a continuous function on [0,1]2, which is as
is well known a compact trace-class operator on the Banach space C([0,1]) of the continuous
functions on [0,1].

Of particular interest are the situations where Kn = o(n), that we refer to as the “sparse”
cases, where, typically, the number of non zero elements of S(n) per row belongs to the in-
terval [cKn,CKn] where 0 < c < C <∞, and these elements are bounded by C ′/Kn for
C ′ > 0. Examples of these cases where Assumption 1.2 is satisfied will be detailed below.
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Theorem 1.3 only provides an upper bound on the spectral radius ρ(X(n)). One can expect
the stronger result P [|ρ (X)− 1| ≥ ε]→ 0, which requires showing that

P
[
ρ
(
X(n)

)
≤ 1− ε

]
→ 0

when ρ(S(n)) is close to one. One way of establishing this last result is to establish a so-
called global law on the spectral measure of X(n), showing that this spectral measure can
be approximated for all large n with a distribution supported by the closed unit disk. For
matrices with variance profiles, global laws were established in the literature in some non-
sparse situations where Kn = n and where the `1 norms of all the rows and the columns of
S(n) are of order one. The first of such results was revealed by Girko [21]. A global law was
rigorously established by Alt et.al. in [2] under moment and density assumptions and in the
case where all the numbers ns(n)ij belong to a compact interval lying away from zero (the
so-called “flat” variance profile).We note that, beyond the global law, the large-n behavior
of the spectral radius is also analyzed in [2] and [14] through the establishment of local law
results. For a slightly more general model, see also Remark 1.7 in [6]. Regarding the spectral
radius in [3] the authors prove a result analogous to Theorem 1.3 under the assumption of a
"flat" variance profile. Our result extends [[3], Theorem 2.1] beyond the flat variance profile
case, as it encompasses a broader class of models, see Examples 2.3 and 2.4, and is derived
using more elementary methods. Beyond the flat variance profile in the non-sparse case, the
global law was established in [15] under a so-called robust irreducibility assumption on the
variance profile, and a moment assumption on the matrix entries.

Regarding the applications, the control of the spectral radius of X(n) is essential in the
study of many dynamical systems that arise in the fields of control theory, natural or arti-
ficial neural networks, theoretical biology and ecology, and others. For instance, in neural
networks, X(n) is the matrix that represents the couplings between n neurons [27]. In theo-
retical ecology, X(n) is used to model the random food interactions between n living species
that coexist within an ecosystem [1]. In these situations, the inhomogeneity of the matrix
model represented by the variance profile, or the sparsity of its non-zero elements are often
advocated to model realistic situations. The transition of such systems from stationary to
chaotic dynamics is often driven by ρ(X(n)).

To obtain Theorem 1.3, we use the approach based on the reverse characteristic polynomial
of X(n) that Bordenave, Chafaï and García-Zelada developed in [11] to deal with the case
s
(n)
ij = 1/n, and that was partially inspired by the article [7] devoted to a different problem.

Observe that no moment of the random variables Wij beyond the second moment is required
in the statement of Theorem 1.3. This is a prominent feature of the approach of [11], which
improves upon the older literature such as [5, 10, 20]. In the recent literature, the approach
of [11] for controlling the spectral radius was applied for the Elliptic Ginibre model in [19].
In the same vein, the recent papers [16] and [17], consider the characteristic polynomial of
sparse Bernoulli matrices and sums of random permutations and regular digraphs.

In the remainder, we fix a real number δ > 0 to a value as small as we wish, and we denote
as Hδ the space of holomorphic functions on the open disk D(0,1− δ) of C with center zero
and radius 1− δ equipped with the topology of the uniform convergence on the compacts of
D(0,1− δ). We also denote as H the space of holomorphic functions on the open unit-disk
D(0,1). As is well known, these spaces are Polish spaces.

Let us consider the reverse characteristic polynomial of the matrix X(n), which is defined
as

qn(z) = det
(
In − zX(n)

)
.
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Obviously, qn is a Hδ–valued random variable. Our paper is mainly devoted towards studying
the asymptotic behavior of the probability distribution of qn on Hδ . Here, a notation is in
order. Let (Un) and (Vn) be two sequences of random variables valued in some metric space.
For each n, let µn and νn be the probability distributions of Un and Vn respectively. We shall
use the notation

Un ∼n Vn
to refer to the facts that the sequences (µn) and (νn) are relatively compact, and that∫

fdµn −
∫
fdνn −−−→

n→∞
0

for each bounded continuous real function f on the metric space. We shall say then that (Un)
and (Vn) are “asymptotically equivalent”. Note that (µn) and (νn) do not necessarily con-
verge narrowly to some probability distribution. This setting is well-suited to describe the
asymptotics of our sequence (qn) because without an additional assumption on the construc-
tion of the sequence (S(n)), the distribution of qn has no reason to converge narrowly to a
limit probability measure on Hδ . These asymptotics are described by the following theorem,
which will be proven in Section 3:

THEOREM 1.4. Let Assumptions 1.1 and 1.2 hold true. Then, for all large n, the function

κn(z) =
√

det(I − z2EW 2
1,1S

(n))

is a well-defined element of Hδ with the square root being the one for which κn(0) = 1. The
function

Fn(z) =

∞∑
k=1

zkZk

√
tr((S(n))k)

k
,

where (Zk)k=1,2,... is a sequence of independent complex Gaussian random variables such
that

EZk = 0, E|Zk|2 = 1, and EZ2
k = (EW 2

11)
k.

is a well-defined Hδ–valued random variable. The sequence (Fn) is tight in Hδ , and the
sequence (κn) satisfies for each compact set K⊂D(0,1− δ):

(3) 0< lim inf
n

min
z∈K
|κn(z)| ≤ lim sup

n
max
z∈K
|κn(z)|<∞.

Finally, it is true that

(4) qn(z)∼n κn(z) exp(−Fn(z))

as Hδ–valued random variables.

Theorem 1.3 can be deduced from Theorem 1.4 by an argument provided in Section 3.6.

REMARK 1.5. In the case where the variances of the elements of X(n) are equal to 1/n,
we have S(n) = n−11n1

>
n where 1n is the vector of all ones in Rn. In this case, it is obvious

that κn and Fn are independent of n and are given as κn(z) = κ(z) :=
√

1− z2EW 2
1,1 and

Fn(z) = F (z) :=
∑∞

k=1 z
kZk/

√
k. By a straightforward modification of the proof of Theo-

rem 1.4, the asymptotic equivalence (4) in the space of Hδ–valued random variables can be
replaced with the convergence in distribution of qn towards κ exp(−F ) in the space of H–
valued random variables, as stated in [11]. In our more general situation, we need to replace
H with Hδ , as the following example shows: when EW 2

11 = 1 and ρ(S(n)) > 1 for each n,
no function κn exp(−Fn) belongs to H. We thank one of the referees for pointing out this
remark.
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2. Case studies. In this section, we describe some matrix models for which Assump-
tions 1.1 and 1.2 are satisfied. The proofs related with this section are provided in Section 4.

2.1. Block variance profile. Fix d,m ∈N\{0}, and let A be a d×mmatrix with positive
entries. Set p=md. For each n > 0, define the matrix A(pn) as

A(pn) =
1

pn
A⊗ (1mn1

>
dn) ∈Rpn×pn,

where ⊗ denotes the Kronecker product of matrices. Thus, A(pn) consists in md rectangular
blocks of positive numbers, and the dimensions of each block scale with n.

PROPOSITION 2.1. In the above setting, ρ(A(pn))> 0, and the matrix

S(pn) = ρ(A(pn))−1A(pn)

satisfies Assumptions 1.1 and 1.2.

PROOF. We check these assumptions with Kn = n. Since all the elements of A are
positive, the minimum row sum of A(pn) lies in a compact interval of R+ away from
zero. Thus, ρ(A(pn)) ≥ c for some constant c > 0 [22, Th. 8.1.22]. As a consequence,
S(pn) exists and complies with Assumptions 1.1. Furthermore, ρ(S(pn)) = 1, and the rank
r of S(pn) is upper bounded by min(d,m). Assumption 1.2 follows from the inequality
det(I − γS(pn))≥ (1− γ)r for γ ∈ [0,1).

We thus obtain from Theorem 1.3 that P[ρ(X(pn)) ≥ 1 + ε]→n 0 for each ε > 0. If we
take out the normalization by ρ(A(pn)) in the construction of S(pn), we of course obtain that
P[ρ(X(pn))≥

√
ρ(A(pn)) + ε]→n 0 for each ε > 0.

2.2. Sampling a continuous variance profile. It is well known that any continuous func-
tion S : [0,1]2→R+, seen as an integral operator on the Banach spaceC([0,1]), is a compact
trace-class operator [26]. If its spectral radius ρ(S) is positive, we normalize our operator
with ρ(S) which amounts to assuming that ρ(S) = 1. If ρ(S) = 0, then, we replace S with
CSS where CS > 0 is an arbitrarily large constant.

For n > 0, our variance profile matrix S(n) will be obtained by sampling regularly the
function S on the rectangle [0,1]2, namely, by setting s(n)ij = n−1S(i/n, j/n).

It is obvious that Assumption 1.1 is satisfied by S(n) with Kn = n. The validity of As-
sumption 1.2 is the object of the following proposition which proof follows from standard
arguments. We include it in Section 4 for completeness.

PROPOSITION 2.2. In the setting described above, it holds that

lim
n

min
γ∈[0,1−ε]

det(In − γS(n)) = lim
n

det(In − (1− ε)S(n)) = det(I − (1− ε)S)> 0

for each ε ∈ (0,1], where I is the identity operator on the Banach space C([0,1]), and
det (I − (1− ε)S) is a Fredholm determinant.

Thus, Assumption 1.2 holds true, and Theorem 1.3 follows. Consequently, if we get back
to our original operator S (before the multiplication by ρ(S)−1 or by CS), we obtain that
P[ρ(X(n))≥

√
ρ(S) + ε]→n 0 for each ε > 0. In particular, ρ(X(n))

P−→ 0 if ρ(S) = 0.
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2.3. Random sparse sampling à la Erdős–Rényi of a continuous variance profile. We
now provide an example of a (semi-)sparse model covered by our result. In this example, the
sequence of matrices (S(n)) will be random and independent of the array (Wij)ij≥1. We shall
show that Assumptions 1.1 and 1.2 will be satisfied with high probability (to be made precise
below). In these conditions, Theorem 1.3 will be obtained by conditioning on an appropriate
event which indicator is S(n)–measurable.

Let S : [0,1]2 → [0,1] be a continuous function as in the previous section. Assume for
simplicity that the spectral radius ρ(S) of S, seen as an operator, is positive. Let us consider
that ρ(S) = 1. Our variance profile matrix S(n) will be obtained by randomly sampling the
function S. Define the matrix

S(n) =
[
S
(n)
ij

]n
i,j=1

=
1

n

[
S(i/n, j/n)

]n
i,j=1

.

Let (Kn) be a sequence of positive numbers such that Kn→∞ and Kn = o(n). For some
large enough integer n0 > 0, define the sequence of random matrices (B(n) = [B

(n)
ij ])n≥n0

as
follows:

B
(n)
ij =

{
1 with probability KnS

(n)
ij

0 with probability 1−KnS
(n)
ij ,

and the random variables {B(n)
ij }i,j∈[n] are independent. Let

S(n) =
1

Kn
B(n).

Trivially, Kn‖S(n)‖∞ ≤ 1 for each elementary event, where ‖ · ‖∞ is the max norm. There-
fore, Assumption 1.1–(ii) is satisfied. Moreover,

PROPOSITION 2.3. Assume that Kn ≥ logn. Then, there exists a constant CS > 0 such
that lim supn

∣∣∣∣∣∣S(n)
∣∣∣∣∣∣≤CS w.p. 1.

Furthermore, for each ε ∈ (0,1], it holds that

(5) min
γ∈[0,1−ε]

det
(
In − γS(n)

)
P−−−→

n→∞
det (I − (1− ε)S)> 0,

where P−→ is the convergence in probability.

COROLLARY 2.4. Assume that Kn ≥ logn. Then, P
[
ρ(X(n))≥ 1 + ε

]
→n 0 for each

ε > 0.

REMARK 2.5. If W1,1 is a Rademacher random variable, then the matrix X(n) can be
considered the centered adjacency matrix of a directed inhomogeneous Erdős–Rényi graph.
In recent years, there has been tremendous attention on the spectrum of undirected inhomo-
geneous Erdős–Rényi models (see, for example, [4], [8], [12], and [13]). A similar result to
Corollary 2.4, is proven in Theorem 3.4 of [9]. In the case where Kn = no(1), an analogue of
Corollary 2.4 is proven in Theorem 3 of [18], see also Remark 4.

REMARK 2.6. The condition Kn ≥ logn in the statement of Proposition 2.3 is required
to obtain that lim supn

∣∣∣∣∣∣S(n)
∣∣∣∣∣∣≤CS w.p.1., which leads to Corollary 2.4 by the conditioning

on the event En that we make in Section 4.3. We believe that this condition is not necessary
to obtain Theorem 1.3. Indeed, it is possible to obtain a an analogue of Theorem 1.4 by
including all the randomness of our model within the matrix X(n) (without conditioning),
and by simply taking S(n) as the variance profile matrix. We shall not develop this issue here.

Let us provide a simple example where the condition Kn ≥ logn is avoided while still
using our Theorem 1.4 to obtain the spectral radius confinement stated by Theorem 1.3.
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2.4. Random sparse sampling of a continuous variance profile with a fixed outer degree.
We still consider a operator represented by a continuous function S : [0,1]2 → [0,1] such
that ρ(S) = 1. Our variance profile matrix S(n) is now obtained by randomly sampling the
function S as follows. Let (Kn) be a sequence of positive integers such that Kn→∞ and
Kn = o(n). Let I(n) a random sub-set of [n] which is uniformly distributed among the

(
n
Kn

)
sub-sets of [n] with cardinality Kn. Let I(n)1 , . . . ,I(n)n be i.i.d. subsets of [n] such that I(n)1 is
equal to I(n) in distribution. Define the {0,1}n×n–valued random matrix R(n) = [R

(n)
ij ] as

R
(n)
ij =

{
1 if j ∈ I(n)i

0 if j 6∈ I(n)i

Finaly, let S(n) = [S
(n)
ij ] be defined as

S
(n)
ij =

n

Kn
S
(n)
ij R

(n)
ij .

Trivially, Kn‖S(n)‖∞ = ‖S‖∞ and
∣∣∣∣∣∣S(n)

∣∣∣∣∣∣ ≤ ‖S‖∞, where ‖S‖∞ is the norm of S on
C([0,1]). Regarding Assumption 1.2, we have:

PROPOSITION 2.7. For ε ∈ (0,1], it holds that

min
γ∈[0,1−ε]

det
(
In − γS(n)

)
P−−−→

n→∞
det (I − (1− ε)S)> 0.

We close this section with a final remark.

REMARK 2.8. One can show that in the last three application examples, Theorem 1.4
can be reformulated by stating that the sequence (qn) converges in distribution in the space
H. We state without further comment the expression of the limit in distribution q ∈H, which
is the same in the three cases. This limit reads:

q(z) =
√

det(I − z2EW 2
1,1S) exp

− ∞∑
k=1

zkZk

√
trSk

k

 , z ∈D(0,1),

where

(6) trSk =

∫
[0,1]k

S(x1, x2)S(x2, x3) . . .S(xk, x1)

k∏
i=1

dxi.

3. Proof of Theorems 1.3 and 1.4. In all the remainder, C > 0 is a generic constant
independent of n that can change from a display to another. In the proofs, the superscript
(n) such as in X(n) will be often removed for notational simplicity. Given a matrix M ∈
Cn×n and a set I ⊂ [n] with cardinality |I|, we denote as MI the C|I|×|I| sub-matrix of M
consisting of the rows and columns which indices belong to I . Given a function f : [0,1]2→

R, we denote as f
(
x1 x2 · · · xk
x1 x2 · · · xk

)
the k× k matrix which element (i, j) is f(xi, xj).

We start with the proof of Theorem 1.4.
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3.1. Proof of Theorem 1.4: preliminary results on random holomorphic functions.. Be-
fore entering the proof of Theorem 1.4, it will be useful to recall first some basic results on the
convergence in distribution of random holomorphic functions. The reader is referred to e.g.
[25] (see also [11]) for more details on this subject. In the three following propositions, we let
ε≥ 0 and we consider the space Hε of holomorphic functions on the open disk D(0,1− ε).

PROPOSITION 3.1. Let (fn) be a sequence of random elements valued in Hε. If, for each
compact set K⊂D(0,1− ε), the sequence of random variables (maxz∈K |fn(z)|)n is tight,
then, (fn) is tight. For this condition to hold, it is enough that E|fn(z)|p ≤ g(z) for p ≥ 1,
where g(z) is bounded on the compacts of D(0,1− ε).

PROPOSITION 3.2. Let (fn) be a tight sequence of random elements valued in Hε. De-
note as fn(z) =

∑∞
k=0 a

(n)
k zk the power series representation of fn in D(0,1− ε). Assume

that there exists a sequence a0, a1, . . . of random variables such that for each positive integer
m, the m–tuple (a

(n)
0 , . . . , a

(n)
m ) converges in distribution to (a0, . . . , am) as n→∞. Then,

the function f(z) =
∑∞

k=0 akz
k is well-defined as a random element valued in Hε, and (fn)

converges in distribution to f .

This proposition can be easily modified to obtain the following result, which is better
suited to our context:

PROPOSITION 3.3. Let (fn) and (gn) be two tight sequences of random elements valued
in Hε. Denote as fn(z) =

∑∞
k=0 a

(n)
k zk and gn(z) =

∑∞
k=0 b

(n)
k zk the power series represen-

tations of fn and gn in D(0,1− ε) respectively. If for each fixed positive integer m, it holds
that (a

(n)
0 , . . . , a

(n)
m )∼n (b

(n)
0 , . . . , b

(n)
m ), then fn ∼n gn.

To establish Theorem 1.4, we start by writing qn(z) as

(7) qn(z) = det(1− zX(n)) = 1 +

n∑
k=1

(−z)kP (n)
k ,

where

P
(n)
k =

∑
I⊂[n]:|I|=k

detX
(n)
I .

3.2. Tightness of (qn). Our first result pertains to the tightness of the sequence of Hδ–
valued random variables (qn):

PROPOSITION 3.4. The sequence (qn) is tight.

To prove this proposition, we need the following result.

LEMMA 3.5. Let Assumption 1.2 hold true. Then,

∀ε > 0, sup
n

perm
(
I + (1− ε)S(n)

)
<∞,

where permM is the permanent of the matrix M .
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PROOF. Given n > 0, we identify the matrix S(n) with an integral kernel to which we ap-
ply the Fredholm permanent theory developed in [23]. Our kernel S(n) : [0,1)× [0,1)→R+

is defined as S(n)(x, y) = nS(n)(i, j) when (x, y) ∈
[
i−1
n , in

)
×
[
j−1
n , jn

)
, i, j ∈ [n]. Follow-

ing [23], define the function p(n) : C→C through the power series

p(n)(w) = 1 +

∞∑
k=1

p
(n)
k wk,

with

p
(n)
k =

1

k!

∫ 1

0

∫ 1

0
· · ·
∫ 1

0
permS(n)

(
x1 x2 · · ·xk
x1 x2 · · ·xk

)
dx1dx2 . . . dxk.

Notice that |p(n)
k | ≤ (n‖S(n)‖∞)k. Thus, the radius of convergence R(n) of this series sat-

isfies R(n) ≥ 1/(n‖S(n)‖∞)> 0, which shows that there exists a centered open disk where
p(n)(w) is well-defined and analytic. Let d : C→C be given by the series

d(n)(w) = 1 +

∞∑
k=1

(−1)kd
(n)
k wk,

with

d
(n)
k =

1

k!

∫ 1

0

∫ 1

0
· · ·
∫ 1

0
detS(n)

(
x1 x2 · · ·xk
x1 x2 · · ·xk

)
dx1dx2 . . . dxk.

It is easy to see that for each k ∈ [n], it holds that

d
(n)
k =

∫ 1

0
dx1

∫ x1

0
dx2 · · ·

∫ xk−1

0
dxk detS(n)

(
x1 x2 · · ·xk
x1 x2 · · ·xk

)
=

∑
I⊂[n],|I|=k

detS
(n)
I ,

and d
(n)
k = 0 for k > n. Therefore, d(n)(w) coincides with the reverse characteristic polyno-

mial

d(n)(w) = det
(
I −wS(n)

)
.

Theorem 4.4 (a) of [23] states that

(8) d(n)(w)p(n)(w) = 1

for w in the open disk of radius R(n). Since p
(n)
k ≥ 0 for each k, the spectral radius R(n)

is a singular point of p(n)(w) (see [28, Fact 7.21]), and thus, it is a zero of d(n)(w) by
the previous identity. By Assumption (1.2), we then obtain that lim infnR

(n) ≥ 1, and by
Identity (8) again, it holds that

∀ε > 0, sup
n

p(n)(1− ε)<∞.

Let p(n)(w) = perm
(
I +wS(n)

)
. As is well known (see, e.g., [24, Th. 1.4]), p(n)(w) =

1 +
∑n

k=1 p
(n)
k wk with

p
(n)
k =

∑
I⊂[n],|I|=k

permS
(n)
I for k ∈ [n].

Writing

p
(n)
k =

∫ 1

0
dx1

∫ x1

0
dx2 · · ·

∫ xk−1

0
dxk permS(n)

(
x1 x2 · · ·xk
x1 x2 · · ·xk

)
,
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it is easy to see that p(n)k ≤ p
(n)
k for each k ∈ [n], therefore,

∀ε > 0, sup
n
p(n)(1− ε)<∞,

which is the required result.

PROOF OF PROPOSITION 3.4. To prove our proposition, we bound E|qn(z)|2 and use
Proposition 3.1.

Denoting as SI the group of permutations over a set I ⊂ [n], and sign(σ) the signature of
a permutation σ, we first observe that

EdetXI =
∑
σ∈SI

sign(σ)E
∏
i∈I

Xi,σ(i) = 0,

since the entries of X are centered.
Similarly for J, I ⊂ [n] such that I 6= J it is true that

EdetXI detXJ = 0.

Lastly, for any I ⊂ [n],

E|detXI |2 = EdetXI detXI =
∑
σ∈SI

∏
i∈I

si,σ(i)E|Wi,σ(i)|2 = permSI .

We therefore have

E|qn(z)|2 = E

∣∣∣∣∣∣1 +

n∑
k=1

(−z)k
∑

I⊆[n]:|I|=k

detXI

∣∣∣∣∣∣
2

= perm
(
I + |z2|S(n)

)
,

which is bounded by the previous lemma on the compacts of D(0,1).

3.3. Asymptotics of the finite-dimensional distributions when W11 is bounded. Having
established the tightness of (qn), it remains to examine the distributional large–n properties
of the random vector (P

(n)
1 , . . . , P

(n)
k ) for each fixed integer k > 0, and apply Proposition 3.3

above. To this end, we temporarily assume that the random variables Wij are bounded by a
constant. We also rely on the fact that in order to study the distribution of (P

(n)
1 , . . . , P

(n)
k ), it

is enough to study the distribution of (trX(n), . . . , tr(X(n))k) for large n, a much easier task.
Specifically, for z ∈C, the series

∑∞
k=1(z

k/k)(X(n))k is well-defined for |z| small enough,
and we can express qn(z) as

(9) qn(z) = exp

(
−
∞∑
k=1

tr((X(n))k)
zk

k

)

for |z| small enough. Recalling the identity (7), we obtain that the k–tuple (P
(n)
1 , . . . , P

(n)
k )

is a polynomial function of (trX(n), . . . , tr(X(n))k) independent of the dimension n, by an
expansion to a power series on both sides of (9) and by examining at the first k terms of the
expansion. Thus, we end up that in order to prove the asymptotic equivalence in (4), it is
sufficient to examine the large-n distributions of the vectors (trX(n), . . . , tr(X(n))k) for any
integer k > 0. We shall analyze the distributions of these vectors with the help of the moment
method, which explains why the assumed boundedness of the Wij is important in our proof.
Of course, the finiteness of all their moments would have been enough.
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PROPOSITION 3.6. Assume that the random variables Wij are bounded by a constant.
Consider the sequence of independent complex-valued Gaussian random variables (Z`)`≥1

defined in the statement of Theorem 1.4. For each integers n, ` > 0, define m
(n)
` as

m
(n)
` =

{(
EW 2

11

)`/2
tr((S(n))`/2) if ` is even,
0 if ` is odd.

Then, for each fixed integer k > 0, the asymptotic equivalence

(10)
(

trX(n), . . . , tr(X(n))k
)
∼n
(√

trS(n)Z1 +m
(n)
1 , . . . ,

√
k tr(S(n))kZk +m

(n)
k

)
holds true.

Most of the remainder of this section is devoted to the proof of this proposition. We start
with a simple lemma.

LEMMA 3.7. Let Assumptions 1.1 and 1.2 hold true. Then

∀k > 0,∃C > 0, trSk ≤C and ‖Sk‖∞ ≤C/Kn.

PROOF. Using Assumption 1.2 and recalling the development (2), we obtain the first
bound by setting, e.g., γ = 1/2.

Assumption 1.1–(ii) asserts that ‖S‖∞ ≤ C/Kn, thus, the second bound is effective for
k = 1. Assume without generality loss that |||S||| ≤ C from Assumption 1.1–(i). For k > 1,
we have ‖Sk‖∞ ≤ |||S|||‖Sk−1‖∞ ≤ · · · ≤ |||S|||k−1‖S‖∞ ≤C/Kn.

Given a k–tuple I = (i1, . . . , ik)⊂ [n]k, we write

XI =Xi1i2Xi2i3 . . .Xik−1ikXiki1 .

As in [11], we write tr(Xk) =
∑

I∈[n]k XI as

tr((X(n))k) =R
(n)
k +Q

(n)
k ,

where, denoting as Dk the sub-set of [n]k defined as

Dk = {(i1, . . . , ik) ∈ [n]k : ∀j 6= ` ∈ [k], ij 6= i`},
we set

Rk =
∑
I∈Dk

XI , and Qk =
∑

I∈[n]k\Dk

XI .

It is obvious that ERk = 0. The analogues of Rk and Qk are called in [11] the “random term”
and the “deterministic term” respectively. We shall deal with these two terms separately. The
following two lemmas are proven in Section 3.3 below.

LEMMA 3.8. Let the m–tuple (k1, . . . , km) be as in the statement of Proposition 3.6.
Given x ∈ C, use the notation xs = x when s = · and xs = x̄ when s = ∗. Let s1, . . . , sm ∈
{·,∗}.

If m is even, and if there exists at least one partition P of [m] into pairs such that k` = k`′
if ` and `′ are a pair (notation {`, `′} ∈ P ), then,

E
[
Rs1k1R

s2
k2
. . .Rsmkm

]
−
∑
P∈P

∏
{`,`′}∈P

(
k` (EW s`

11W
s`′
11 )

k` trSk`
)
−−−→
n→∞

0,

where P is the set of such partitions. Otherwise,

E
[
Rs1k1R

s2
k2
. . .Rsmkm

]
−−−→
n→∞

0.
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LEMMA 3.9. It holds that

Qk −mk
P−−−→

n→∞
0.

Proof of Proposition 3.6.. By Lemma 3.7, for each sequence (n) of integers, there exists
a sub-sequence such that for every integer ` > 0, tr(S(n))` converges to some real number
s` along this sub-sequence. Fix an integer k > 0. Lemma 3.8 along with the Isserlis/Wick
theorem show that (R

(n)
1 , . . . ,R

(n)
k ) converges in distribution along this sub-sequence to

(
√
s1Z1, . . .

√
kskZk). By Lemma 3.9, for ` ∈ [k], Q(n)

` converges in probability along this

sub-sequence to
(
EW 2

11

)`/2
s`/2 if ` is even and to zero if ` is odd. The result stated by

Proposition 3.6 follows.

Proofs of Lemmas 3.8 and 3.9. The following preliminary result will be needed.

LEMMA 3.10. Let Assumptions 1.1 and 1.2 hold true. Let k1, . . . , km be positive integers,
and write k = k1 + · · ·+ km. Decomposing a k–tuple I ∈ [n]k as I = (I1, . . . ,Im) where
Ij ∈ [n]kj , it holds that there exists C > 0 such that

0≤ trSk1 . . . trSkm −
∑
I∈Dk

SI1
. . . SIm

≤C/Kn.

PROOF. Observe first that trSk1 . . . trSkm =
∑

I∈[n]k SI1
. . . SIm

. If k = 1, the result is
trivial. Assume not. The indicator function 1Dk

(I) with I = (i1, . . . , ik) can be encoded into
the product of the k(k− 1)/2 indicators of the type
1ij 6=i` for j 6= ` ∈ [k]. Let us order the constraints ij 6= i` in some way from 1 to k(k −

1)/2, and let us write 1(m)(I) as the product of the indicators on the first m constraints, so
that 1(k(k−1)/2)(I) = 1Dk

(I). Writing 1(0) ≡ 1, we have

∑
I∈[n]k

SI1
. . . SIm

−
∑
I∈Dk

SI1
. . . SIm

=

k(k−1)/2−1∑
m=0

∑
I∈[n]k

(1(m)(I)− 1(m+1)(I))SI1
. . . SIm

.

Write 1(m)(I)− 1(m+1)(I) = 1
(m)(I)1ij=i` for some j 6= ` ∈ [k]. Assuming, e.g., k1 ≥ 2,

j = 1, and `≤ k1, we obtain∑
I∈[n]k

(1(m)(I)− 1(m+1)(I))SI1
. . . SIm

≤
∑

I∈[n]k
1i1=i`SI1

. . . SIm

=
∑

i1,...,i`−1,i`+1,...,ik1

si1i2 . . . si`−1i1 si1i`+1
. . . sik1

i1 trSk2 . . . trSkm

≤C
∑
i1

[
S`−1

]
i1i1

[
Sk1−`+1

]
i1i1
≤ C

Kn
trSk1−`+1 ≤ C

Kn

by Lemma 3.7. The cases where the indices j and ` belong to two different tuples Ir are
treated similarly.

PROOF OF LEMMA 3.8. We deal with the expression

Rs1k1R
s2
k2
. . .Rsmkm =

∑
(I1,...,Im)∈Dk1×···×Dkm

Xs1
I1
. . .Xsm

Im
.
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We introduce some new notation. We let k = k1 + · · ·km, and we write

I = (I1, . . . ,Im) =
(
(i11, . . . , i

1
k1), . . . , (i

m
1 , . . . , i

m
km)
)
∈ [n]k.

In what follows, it is always meant that i`k`+j = i`j for j = 1, . . . , k` − 1.
When k = 1 (=m), it is obvious that ERs11 = 0, thus the lemma is true. Assume that k > 1,

and define the two sets A,B ⊂Dk1 × · · · ×Dkm as

A=
{
I ∈Dk1 × · · · ×Dkm : each couple (i`j , i

`
j+1) appears exactly twice in I,

each index i`j appears exactly twice in I
}
,

B =
{
I ∈Dk1 × · · · ×Dkm : each couple (i`j , i

`
j+1) appears at least twice in I,

there exists an index i`j that appears three times at least in I
}
.

Since the elements of the matrix X are centered, EXs1
I1
. . .Xsm

Im
is equal to zero if there exists

a couple (i`j , i
`
j+1) that appears only once within I . This implies that

(11) ERs1k1R
s2
k2
. . .Rsmkm =

∑
I∈A

EXs1
I1
. . .Xsm

Im
+
∑
I∈B

EXs1
I1
. . .Xsm

Im

We now show that

(12)

∣∣∣∣∣∑
I∈B

EXs1
I1
. . .Xsm

Im

∣∣∣∣∣≤ C√
Kn

.

There are 2k(k−1)/2 ways of constructing an indicator function on [n]k defined as a product
of indicators of the type 1i`i=i`′i′ and indicators of the type 1i`i 6=i`′i′ , where this product involves
all the k(k − 1)/2 sets of the type {(`, i), (`′, i′)} with cardinality 2. There is a sub-set of
these functions that completely describes the set B in the sense that we can write

1B(I) =

CB∑
r=1

fr(I)

where the functions fr are chosen appropriately in the family that we just defined, and where
CB = CB(k1, . . . , km) is the number of these functions. To establish (12), we show that
for each r ∈ [CB], it holds that

∑
I∈[n]k |EX

s1
I1
. . .Xsm

Im
|fr(I) ≤ C/

√
Kn. Relying on the

boundedness of the elements of X , we write

(13)
∑

I∈[n]k
|EXs1

I1
. . .Xsm

Im
|fr(I)≤C

∑
I∈[n]k

√
SI1

. . . SIm
fr(I).

To deal with this expression, we need to introduce some new notations. Given two d–tuples
J = (j1, . . . , jd) ∈ [n]d and a = (a1, . . . , ad) with ai ∈ {1,3/2,2,5/2, . . .}, we write |J | =
|a|= d,

Sa
J = sa1

j1,j2
sa2

j2,j3
. . . sad

jd−1,jd
sad

jd,j1
and Sa

◦
J

= sa1

j1,j2
sa2

j2,j3
. . . sad

jd−1,jd
.

Of course, SJ = S1d

J . We also write S ◦
J

= S1d
◦
J

. With these notations, the right-hand side

of (13) can be re-expressed as follows. By merging all the couples (i`j , i
`
j+1) that are forced

to be identical in the encoding by fr , and keeping after a merger the couple (i`j , i
`
j+1) with

the smallest value of `, we can observe after a possible index renumbering that there exists:
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• An integer p > 0, tuples J1, . . . ,Jp, and a1, . . . ,ap such that |J `|= |a`| ∈ {k1, . . . , km}
for ` ∈ [p],

• An integer q ≥ 0, and, when q > 0, tuples Jp+1, . . . ,Jp+q and ap+1, . . . ,ap+q with
|Jp+`|= |ap+`|,

such that ∑
I∈[n]k

√
SI1

. . . SIm
fr(I)

=
∑

J1,...,Jp,Jp+1,...,Jp+q

Sa1

J1
· · ·Sap

Jp
S
ap+1
◦
Jp+1

· · ·Sap+q
◦
Jp+q

g(J1, . . . ,Jp+q) := χ,(14)

an expression that we now explain. The function g(J1, . . . ,Jp+q) is a product of indicators
that encodes the residual constraints after the merger of the couples. Let us see an initial tuple
I` as constituting a cycle i`1→ i`2→ · · · → i`k` → i`1. After the merger, I1 gives rise to J1.
The cycle in J1 is not broken when performing the sum in (14), since the couple (i`j , i

`
j+1)

with the smallest value of ` is kept after a merger. Pursuing, the tuples J2, . . . ,Jp give rise
to unbroken cycles in the expression (14). The other Jp+`’s, when they exist, correspond to
broken cycles. Let us consider Jp+1. An important feature of this tuple is that its extremities
are connected to the J `’s for ` ∈ [p] by the merger procedure. In other words, writing in the
remainder J ` = (j`1, . . . , j

`
|J`|), there exists within the function g a product of indicators of the

type 1jp+1
1 =×1jp+1

|Jp+1|
=×′ where the indices × and ×′ belong to the J ` for ` ∈ [p]. Pursuing

this process, the extremities of the tuple Jp+q are connected to the J `’s for ` ∈ [p+ q− 1].
We now use these observations to bound χ. We shall repeatedly use the bound Sa`

J`
≤CSJ`

and Sa`
◦
J`

≤ CS ◦
J`

due to ‖S‖∞ ≤ 1 for all large n. According to the form of the function fr ,

at least one of the three following situations occurs:

• q > 0. Assume for the sake of example that q = 1, and write jp+1
1 = j`i and jp+1

|Jp+1| = j`
′

i′

where j`i and j`
′

i′ are found in J1, . . . ,Jp. Using Lemma 3.7, we have

χ≤C
∑

J1,...,Jp,Jp+1

SJ1
· · ·SJp

S ◦
Jp+1

1jp+1
1 =j`i

1jp+1
|Jp+1|

=j`
′

i′

=C
∑

J1,...,Jp

SJ1
· · ·SJp

[
S|Jp+1|−1

]
j`i j

`′
i′
≤ C

Kn
trS|J1| . . . trS|Jp| ≤ C

Kn
.

For general q, we get the bound C/Kq
n by iterating this argument backwards, starting with

Jp+q .
• q = 0, and there exists an exponent within the a` that is ≥ 3/2. Here it is easy to observe
that χ≤C/

√
Kn.

• q = 0 and all the vectors a` are made of ones. Since there is an index that appears at least
three times in fr(I) by the definition of B, there is an index that appears at least two times
in the J `’s. Say this index is j11 with j11 = j21 . Then,

χ≤
∑

J1,...,Jp

SJ1
· · ·SJp

1j11=j
2
1
≤C

∑
J1,J2

SJ1
SJ2

1j11=j
2
1

≤C
∑
j1

[
S|J1|−1

]
j1j1

[
S|J2|−1

]
j1j1
≤ C

Kn
.

This establishes Inequality (12).
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Getting back to (11), we now deal with the term
∑

I∈AEX
s1
I1
. . .Xsm

Im
. Here, one can check

that a necessary condition for A to be nonempty is that m is even and the tuples I1, ..., Im
can be grouped into pairs of equal length. In other words, the set P of pair partitions P of
[m] as specified in the statement of the lemma is not empty. The case being, we have

1A(I) =
∑
P∈P

hP (I)
∏

{`,`′}∈P

 k∏̀
j=1

1i`j=i
`′
j

+

k∏̀
j=1

1i`j+1=i
`′
j

+ · · ·+
k∏̀
j=1

1i`j+k`−1=i
`′
j

 ,

where hP (I) ∈ {0,1} forces the indices i`1, . . . , i
`
k`

within the pair {`, `′} ∈ P to be differ-
ent, and to be different from the indices within all the other pairs. To better understand the
previous formula, let us see once again the tuples I` as cycles. When {`, `′} ∈ P , we need
to make the cycles associated to I` and I`′ coincide, and there are k` ways to do this. This
corresponds to the sum of products within the parenthesis of the last display.

With this identity, we have∑
I∈A

EXs1
I1
. . .Xsm

Im

=
∑
P∈P

∑
I∈[n]k

hP (I)
∏

{`,`′}∈P

 k∏̀
j=1

1i`j=i
`′
j

+

k∏̀
j=1

1i`j+1=i
`′
j

+ · · ·+
k∏̀
j=1

1i`j+k`−1=i
`′
j

EXs1
I1
. . .Xsm

Im

=
∑
P∈P

 ∏
{`,`′}∈P

k` (EW s`
11W

s`′
11 )

k`

∑
6=

∏
{`,`′}∈P

SI`
,

where
∑
6= is the sum over all the m/2 tuples I` such that {`, `′} ∈ P , with the constraint

that all the indices that belong to these tuples are different. Thanks to Lemma 3.10, we obtain
that ∑

I∈A
EXs1

I1
. . .Xsm

Im
=
∑
P∈P

∏
{`,`′}∈P

(
k` (EW s`

11W
s`′
11 )

k` trSk`
)

+ ε,

where |ε| ≤C/Kn. Recalling (12), our lemma is proven.

PROOF OF LEMMA 3.9. We first evaluate the asymptotics of EQk. Assuming k is even,
let us focus on the case where the indices of I = (i1, . . . , ik) satisfy the constraints
ij = ik/2+j for all j ∈ [k/2] and |{i1, . . . , ik/2}| = k/2, generating the double cycle i1 →
· · · ik/2→ i1→ · · · ik/2→ i1. The expectation of the sum over the I with these constraints

is
∑

J∈Dk/2

(
EW 2

11

)k/2
SJ =

(
EW 2

11

)k/2
trSk/2 +O(1/Kn) = mk +O(1/Kn) thanks to

Lemma 3.10. When they exist, all other possibly non-zero contributions to EQk, including
k being odd, correspond to the couples (ij , ij+1) appearing two times at least and one index
appearing three times at least. By treating these cases similarly to what we did for the term∑

I∈B · · · in the previous lemma, we can show that these cases are bounded by C/
√
Kn. We

thus have

EQk −mk −−−→
n→∞

0.

To establish the result of the lemma, we now show that the variance Var(Qk) ofQk converges
to zero. Write

VarQk =
∑

I1=(i11,...,i
1
k),I2=(i21,...,i

2
k)∈[n]k\Dk

E(XI1
−EXI1

)(XI2
−EXI2

).
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We observe here that

|E(XI1
−EXI1

)(XI2
−EXI2

)| ≤C√si11i12 . . . si1ki11√si21i22 . . . si2ki21 .
Moreover, the left hand side is equal to zero unless every couple (i`j , i

`
j+1) appears at least

twice in I = (I1,I2), and at least one of these couples is common to I1 and I2. In a manner
similar to what we did in the proof of the previous lemma, these constraints can be encoded
into functions that have the form of products of the type 1i`j=i`′j′ . The number of such functions
does not depend on n. Fixing one of these functions, we merge the identical couples within
I1 and within I2, keeping the lowest indices, and then we merge what remains in I1 and
I2, keeping the lowest exponent. By doing so, we get an expression similar to (14) in the
proof of the previous lemma. Re-using the notations of that proof and repeating the argument
there, the case where q > 0 and the case q = 0 with an exponent ≥ 3/2 have negligible
contributions. Let us deal with the case where q = 0 and where all the exponents are equal
to 1. In this case, each couple (i`j , i

`
j+1) appears exactly twice, and we recall that there is one

couple common to I1 and I2. Also observe that since I1,I2 ∈ [n]k \Dk, there is at least one
index repetition within I1 and I2. In these conditions, one can check that the only available
possibilities are of the form

∑
J1,J2

SJ1
SJ2

1×, where 1× links an index in J1 to an index
in J2. This leads to a negligible contribution. Lemma 3.9 is proven.

3.4. Proof of Theorem 1.4 when W11 is bounded. We begin by establishing the prop-
erties of the functions κn and Fn provided in the statement of Theorem 1.4. Recalling that
lim supρ(S(n)) ≤ 1, the function κn is well-defined as an element of Hδ for all large n.
Moreover, using Assumption (1.2) and recalling the development (2), we obtain that for all
small ε > 0,

max
γ∈[0,1−ε]

∞∑
k=1

γk
tr(S(n))k

k
<∞.

Therefore, for each compact K⊂D(0,1), it holds that

lim sup
n

max
z∈K

∣∣∣log det(In − z2EW 2
11S

(n))
∣∣∣= lim sup

n
max
z∈K

∣∣∣∣∣
∞∑
k=1

(z2EW 2
11)

k tr(S(n))k

k

∣∣∣∣∣
≤ lim sup

n
max
z∈K

∞∑
k=1

|z|2k tr(S(n))k

k
<∞,

and the bounds in (3) hold true. Regarding Fn(z), we can check by, e.g., a moment calculation
that for each n > 0, it holds that

lim sup
k→∞

|Zk|1/k(tr(S(n))k)1/(2k)

k1/(2k)
≤ ρ(S(n))1/2 w.p. 1

therefore, Fn(z) is well-defined as a Hδ–valued random variable for all large n. Moreover, we
can see that E|Fn(z)|2 =

∑
k≥1 |z|2k tr(S(n))k/k =− log det(1− |z|2S(n)) which is upper

bounded on the compacts of D(0,1). Therefore (Fn) is tight.
As a consequence, the function gn(z) = κn(z) exp(−Fn(z)) is a well-defined Hδ-valued

random variable, and the sequence (gn) is tight. Write gn(z) = 1 +
∑

k≥1G
(n)
k (−z)k, and

recall that qn(z) = 1 +
∑n

k=1P
(n)
k (−z)k. We need to show that for each fixed integer k > 0,

the asymptotic equivalence

(15) (P
(n)
1 , . . . , P

(n)
k )∼n (G

(n)
1 , . . . ,G

(n)
k )
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holds true. By applying Propositions 3.4 and 3.3, Theorem 1.4 will then be proven.
Recalling the discussion that precedes Proposition 3.6, we can write (P

(n)
1 , . . . , P

(n)
k ) =

Q(trX(n), . . . , tr(X(n))k) for some polynomial Q independent of n. Notice also that gn can
be written as

gn(z) = exp

(
−
∞∑
k=1

zk

(
Zk

√
tr(S(n))k

k
+

m
(n)
k

k

))
.

Therefore, by applying the same argument as for qn, we obtain that

(G
(n)
1 , . . . ,G

(n)
k ) =Q

(
Z1

√
trS(n) +m

(n)
1 , . . . ,Zk

√
k tr(S(n))k +m

(n)
k

)
,

for the same polynomial Q, and (15) follows from Proposition 3.6.

3.5. Releasing the boundedness assumption on W11. End of the proof of Theorem 1.4.
To finish the proof of Theorem 1.4, all what remains to prove is the truth of the asymptotic
equivalence (15) when W11 has a second moment without any additional assumption. As
in [11], we truncate theWij’s by writingW (M)

ij = 1|Wi,j |≤MWi,j−E1|Wi,j |≤MWi,j for some
M > 0, and we show that the truncation error is negligible when M is large. One of the ideas
of [11] is that it is much easier to control the effect of this truncation on the coefficients P (n)

k

rather than on the traces tr(X(n))k, as it is frequently done in random matrix theory.

LEMMA 3.11. For M > 0, let W (M)
ij be defined as

W
(M)
ij = 1|Wi,j |≤MWi,j −E1|Wi,j |≤MWi,j .

Define the matrix X(n,M) =
[
X

(n,M)
i,j

]
i,j∈[n]

as X(n,M)
i,j :=

√
s
(n)
i,j W

(M)
i,j for i, j ∈ [n]. For

k ∈ [n], let P (n,M)
k be given as

P
(n,M)
k =

∑
I⊂[n]:|I|=k

detX
(n,M)
I for k ∈ [n].

Then, for each fixed integer k > 0, the bound

sup
n

E|P (n)
k − P (n,M)

k |2 ≤ εM

holds true, with εM → 0 as M →∞.

PROOF. Recalling that the polynomial p(n)(w) = perm
(
I +wS(n)

)
introduced in the

proof of Lemma 3.5 can be written as p(n)(w) = 1 +
∑n

k=1 p
(n)
k wk with

p
(n)
k =

∑
I⊂[n],|I|=k

permS
(n)
I

for k ∈ [n], we write

E|P (n)
k − P (n,M)

k |2 =
∑

I⊂[n]:|I|=k

E
∣∣∣detX

(n)
I − detX

(n,M)
I

∣∣∣2

=
∑

I⊂[n]:|I|=k

∑
σ∈SI

E

∣∣∣∣∣∏
i∈I

X
(n)
i,σ(i) −

∏
i∈I

X
(n,M)
i,σ(i)

∣∣∣∣∣
2



18

= E
∣∣∣W1,1 · · ·W1,k −W

(M)
1,1 · · ·W

(M)
1,k

∣∣∣2 ∑
I⊂[n]:|I|=k

∑
σ∈SI

∏
i∈I

si,σ(i)

= E
∣∣∣W1,1 · · ·W1,k −W

(M)
1,1 · · ·W

(M)
1,k

∣∣∣2 p(n)k .

Observing that

sup
n
p
(n)
k ≤

supn p
(n)(1/2)

(1/2)k
<∞

by Lemma 3.5, we can clearly choose εM as

εM = E
∣∣∣W1,1 · · ·W1,k −W

(M)
1,1 · · ·W

(M)
1,k

∣∣∣2 sup
n
p
(n)
k .

Fix an integer k > 0, and let ϕ : Ck → R be a Lipschitz and bounded function. De-
fine the sequence of independent Gaussian random variables (Z

(M)
` )`≥1 as EZ(M)

` = 0,
E|Z(M)

` |2 = E|W (M)
11 |2, and E[(Z

(M)
` )2] = E[(W

(M)
11 )2]`. By a slight modification of the

proof of Proposition 3.6, we obtain an asymptotic equivalence similar to (10), namely, for
M > 0 large enough,(

trX(n,M), . . . , tr(X(n,M))k
)
∼n
(√

trS(n)Z
(M)
1 +m

(n,M)
1 , . . . ,

√
k tr(S(n))kZ

(M)
k +m

(n,M)
k

)
.

where m
(n,M)
k has the same expression as m(n)

k with W11 being replaced with W (M)
11 . As in

the last sub-section, we have (P
(n,M)
1 , . . . , P

(n,M)
k ) =Q(trX(n,M), . . . , tr(X(n,M))k), where

Q is a polynomial independent of n. Therefore the quantity

Eϕ(P
(n,M)
1 , . . . , P

(n,M)
k )−Eϕ◦Q

(√
trS(n)Z

(M)
1 +m

(n,M)
1 , . . . ,

√
k tr(S(n))kZ

(M)
k +m

(n,M)
k

)
.

tends to 0 as n tends to∞.
We also know that

Eϕ(G
(n)
1 , . . . ,G

(n)
k ) = Eϕ ◦Q

(
Z1

√
trS(n) +m

(n)
1 , . . . ,Zk

√
tr(S(n))k

k
+m

(n)
k

)
.

Now, by the previous lemma, it holds that

sup
n

∣∣∣Eϕ(P
(n,M)
1 , . . . , P

(n,M)
k )−Eϕ(P

(n)
1 , . . . , P

(n)
k )

∣∣∣−−−−→
M→∞

0.

Moreover, using that the traces tr(S(n))` are bounded by numbers independent of n, we also
have

sup
n

∣∣∣∣Eϕ ◦Q(√trS(n)Z1 +m
(n)
1 , . . . ,

√
k tr(S(n))kZk +m

(n)
k

)
−Eϕ ◦Q

(√
trS(n)Z

(M)
1 +m

(n,M)
1 , . . . ,

√
k tr(S(n))kZ

(M)
k +m

(n,M)
k

)∣∣∣∣−−−−→M→∞
0.

It results that

Eϕ(P
(n)
1 , . . . , P

(n)
k )−Eϕ(G

(n)
1 , . . . ,G

(n)
k )−−−→

n→∞
0,

and the asymptotic equivalence (15) is established when W11 satisfies our general assump-
tions. This concludes the proof of Theorem 1.4.
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3.6. Proof of Theorem 1.3 from Theorem 1.4. Denoting as D(0, r) the closed centered
disk of C of radius r, the probability event [ρ(X(n))≥ 1 + ε] satisfies[

ρ(X(n))> 1 + ε
]

=

[
min

z∈D(0,r)
|qn(z)|= 0

]
,

where r = 1/(1 + ε). Fix δ ∈ (0,1− r). The function Hδ→ [0,∞), f 7→minz∈D(0,r) |f(z)|
is continuous. Therefore, recalling the notation gn = κn exp(−Fn), we obtain from Theo-
rem 1.4 that

(16) min
z∈D(0,r)

|qn(z)| ∼n min
z∈D(0,r)

|gn(z)|.

By Theorem 1.4, the deterministic sequence (κn) is precompact in Hδ by the normal family
theorem, and the random Hδ–valued sequence (Fn) is tight. Take a sub-sequence, call it
(n), along which (gn) converges in distribution towards g∞ = κ∞ exp(−F∞), where κ∞ ∈
Hδ and F∞ is a Hδ–valued random variable. From (16), we obtain that minz∈D(0,r) |qn(z)|
converges in distribution to minz∈D(0,r) |g∞(z)| along the sub-sequence (n). But g∞(z) =

0 if and only if κ∞(z) = 0, and furthermore, the equation κ∞(z) = 0 has no solution on
D(0,1− δ) by (3). Therefore,

lim
n

P

[
min

z∈D(0,r)
|qn(z)|> 0

]
= 1,

and Theorem 1.3 is proven.

4. Proofs for Section 2.

4.1. Proof of Proposition 2.2. Let log be the branch of the logarithm on the open unit
disk such that log(1) = 0, and observe that | log(1 + z)| = |

∑∞
i=1 z

i/i| ≤ |z|/(1 − |z|) for
|z|< 1. Denoting as {λ1, λ2, . . .} the (eigenvalue) spectrum of the compact operator S, and
recalling that S is trace-class with ρ(S)≤ 1, it holds that

∀γ ∈ [0,1),

∞∑
k=1

|log(1− γλk)| ≤
∞∑
k=1

γ|λk|
1− γ|λk|

≤ γ

1− γ

∞∑
k=1

|λk|<∞.

Therefore, the Fredholm determinant det(I − γS) can be written for γ ∈ [0,1) as

det(I − γS) =

∞∏
k=1

(1− γλk) ,

and satisfies minγ∈[0,1−ε] det(I − γS)> 0 for ε ∈ (0,1].
We can also express det(I − zS) as an analytic expansion for z ∈ C. Namely, consider

the series

f(z) = 1 +

∞∑
k=1

(−1)kdkz
k, z ∈C,

where

dk =
1

k!

∫ 1

0

∫ 1

0
· · ·
∫ 1

0
detS

(
x1 x2 · · ·xk
x1 x2 · · ·xk

)
dx1dx2 . . . dxk.

Since, by Hadamard’s inequality, |dk| ≤ kk/2‖S‖k∞/k!, the function f is entire, and it is well-
known to coincide with det(I − zS). Now, as in the proof of Lemma 3.5, we interpret the
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matrix S(n) as a piece-wise constant approximation S(n) : [0,1]2→ R+ of the operator S,
by writing S(n)(x, y) = ns

(n)
ij = S(i/n, j/n) when (x, y) ∈

[
i−1
n , in

)
×
[
j−1
n , jn

)
, i, j ∈ [n]

(completions on the right and upper borders irrelevant). With this, we have

det
(
I − zS(n)

)
= det

(
I − zS(n)

)
= 1 +

n∑
k=1

(−1)kd
(n)
k zk

where

d
(n)
k =

∑
I⊂[n],|I|=k

detS
(n)
I =

1

k!

∫ 1

0

∫ 1

0
· · ·
∫ 1

0
detS(n)

(
x1 x2 · · ·xk
x1 x2 · · ·xk

)
dx1dx2 . . . dxk.

Similarly to dk, it holds that |d(n)
k | ≤ ‖S‖

k
∞/k!. Furthermore, d(n)

k →n dk for each k thanks
to the continuity of the kernel S. With this at hand, one can check that the sequence of
polynomials

(
det
(
I − zS(n)

))
n

is bounded on the compacts of C and converges point-wise
to det (I − zS). Thus, this convergence is uniform on the compacts of C, and Proposition 2.2
follows.

4.2. Proof of Proposition 2.3. Write S(n) = [S
(n)
ij ]ni,j=1. For i ∈ [n], define b(n)i as

b
(n)
i =

n∑
j=1

ES(n)
ij =

1

n

n∑
j=1

S(i/n, j/n)≤ ‖S‖∞.

By Chernoff’s theorem [29, Th. 2.3.1], it holds that

P

 n∑
j=1

S
(n)
ij ≥ t

= P

 n∑
j=1

B
(n)
ij ≥ tKn

≤(eb(n)i

t

)tKn

≤
(
e‖S‖∞

t

)tKn

for t > 0 large enough. By the union bound, we therefore have

P
[∣∣∣∣∣∣∣∣∣S(n)

∣∣∣∣∣∣∣∣∣≥ t]≤ exp (logn+ tKn log(e‖S‖∞/t)) .

Using that Kn ≥ logn, choosing t large enough and invoking the Borel-Cantelli lemma, we
obtain the first assertion of Proposition 2.3.

To prove the second assertion, we work on the reverse characteristic polynomials

qSn (z) = det(In − zS(n)).

Following the general canvas of the proof of Theorem 1.4, we consider (qSn ) as a sequence
of H–valued random variables. We first establish the tightness of this sequence. Second, we
show that for each fixed integer k > 0, it holds that

(17) tr(S(n))k − tr(S(n))k
P−−−→

n→∞
0

By an obvious continuity argument, we further know that tr(S(n))k→n trSk, where trSk is
given by (6). As a consequence,

tr(S(n))k
P−−−→

n→∞
trSk.

The tightness and these convergences for each k > 0 lead to the convergence qSn (z)
P−→

det(I − zS) in H following the approach developed in the proof of Theorem 1.4, and the
convergence (5) follows.
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To establish the tightness of (qSn ), we write as in (7)

qSn (z) = 1 +

n∑
k=1

(−z)k
∑

I⊂[n],|I|=k

detS
(n)
I .

By the triangle inequality,

E|qSn (z)| ≤ 1 +

n∑
k=1

|z|k 1

Kk
n

∑
I⊂[n],|I|=k

∑
σ∈SI

E
∏
i∈I

B
(n)
i,σ(i) = perm(In + |z|S(n)).

Remembering that minγ∈[0,1−ε] det(I − γS)> 0 and using an argument similar to the proof
of Lemma 3.5, we obtain that perm(In + |z|S(n)) is uniformly bounded on the compacts of
D(0,1). By Proposition 3.1, we obtain that (qSn ) is tight.

It remains to establish the convergence (17) to finish the proof.
In what follows, let Pk denote the isomorphic classes (in the classical graph-theoretic

sense) of closed walks which use k edges. We allow the walks to have multiple edges and
loops. For each P ∈ Pk and n ≥ k, we shall denote P ([n]) the set of walks belonging to
the isomorphic class of P and having vertices in [n]. Given a matrix M = [Mij ], recall the
notation MJ =Mi1i2 . . .Miki1 for J = (i1, . . . , ik). We start by writing

E tr(S(n))k =
1

Kk
n

∑
P∈Pk

∑
J∈P ([n])

EB(n)
J .

Now, for any walk P ∈Pk, we have:

1

Kk
n

∑
J∈P ([n])

EB(n)
J ≤ C

Kk
n

n|{vertices of P}|
(
Kn

n

)|{distinct edges of P}|
,

where the |{distinct edges of P}| counts each edge of P once, ignoring repetitions.
Furthermore, the number of vertices of P is bounded by the number of distinct edges

of P . This is true because we can start a closed walk in P and assign each distinct
edge to a vertex, starting from the first edge during the walk that starts from that vertex.
Since the number of distinct edges of P is clearly bounded by k, we conclude that for
a walk P to have a non-negligible contribution in the above sum, the number of distinct
edges should equal the number of vertices. Thus, the non-negligible paths P should satisfy
k = number of vertices of P = number of distinct edges of P . Thus, denoting as Dk the sub-
set of [n]k defined as

Dk = {(i1, . . . , ik) ∈ [n]k : ∀l 6= j ∈ [k], il 6= ij},

we obtain that

E tr(S(n))k =
∑
J∈Dk

S
(n)
J + on(1).

Now, we know that the matrix S(n) complies with Assumptions 1.1 and 1.2 by replacing the
Kn in the statement of Assumption 1.1 with n. Therefore, by Lemma 3.10, it holds that

0≤ tr(S(n))k −
∑
J∈Dk

S
(n)
J ≤C/n.

Thus:

E tr(S(n))k = tr(S(n))k + on(1).
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To obtain (17), it remains to show that Var tr(S(n))k→n 0. We have here

Var tr(S(n))k =
1

K2k
n

∑
P1,P2∈Pk

∑
J1∈P1([n]),J2∈P2([n])

E[(B
(n)
J1
−EB(n)

J1
)(B

(n)
J2
−EB(n)

J2
)].

Clearly, the summand is zero when the walks P1 and P2 have no common vertex. When these
walks have a common vertex, we have by a similar argument as above that

1

K2k
n

∑
J1∈P1([n]),J2∈P2([n])

E[(B
(n)
J1
−EB(n)

J1
)(B

(n)
J2
−EB(n)

J2
)]

≤ C

K2k
n

(
Kn

n

)|{distinct edges of P1}|+|{distinct edges of P2}|
n|{vertices of P1}|+|{vertices of P2}|−1

≤ C

n
.

Thus, Var tr(S(n))k→n 0, and Proposition 2.3 is proven.

4.3. Corollary 2.4: Sketch of proof. Given a small ε > 0, let β > 0 be such that
det (I − (1− ε/2)S)≥ β, and define the probability event

En =

[∣∣∣∣∣∣∣∣∣S(n)
∣∣∣∣∣∣∣∣∣≤ 2CS and min

γ∈[0,1−ε/2]
det
(
In − γS(n)

)
≥ β/2

]
.

Then we have

P
[
ρ(X(n))≥ 1 + ε

]
≤ P

[
[ρ(X(n))≥ 1 + ε] | En

]
+ P [Ec

n] .

By adjusting δ in the statement and the proof of Theorem 1.4, we obtain by a slight
modification of the proof of Theorem 1.3 that P

[
[ρ(X(n))≥ 1 + ε] | En

]
→n 0. It is

clear by Proposition 2.3 that P [Ec
n]→n 0, and we obtain the spectral confinement result

P
[
ρ(X(n))≥ 1 + ε

]
→n 0.

4.4. Proposition 2.7: Sketch of proof. As for the previous proposition, we show that
qSn (z) = det(In − zS(n)) converges in probability to det(I − zS) in H.

Using that the rows of R(n) are independent and that ER(n)
ij =Kn/n, thus, ES(n)

ij = S
(n)
ij ,

we obtain that E|qSn (z)| ≤ perm(I + |z|S(n)), hence the tightness of (qSn ).
We now quickly show that tr(S(n))k

P−→ trSk for each fixed integer k > 0. Let E(n) =

[E
(n)
ij ]ni,j=1 be a random matrix with i.i.d. Bernoulli elements such that EE(n)

11 = Kn/n,

and define the random matrix Y (n) = [Y
(n)
ij ]ni,j=1 as Y (n)

ij = (n/Kn)S
(n)
ij E

(n)
ij . Along the

principle of the proof of Proposition 2.3, one can prove that E tr(Y (n))k →n trSk and
Var tr(Y (n))k→n 0. To show that tr(S(n))k

P−→ trSk, it is enough to show that E tr(S(n))k−
E tr(Y (n))k→n 0 and E(tr(S(n))k)2 −E(tr(Y (n))k)2→n 0.

Given a fixed integer ` > 0 and integers i1, . . . i` ∈ [n] which are all different, it holds that

ER(n)
1i1
. . .R

(n)
1i`

= P[(R
(n)
1i1
, . . . ,R

(n)
1i`

) = (1, . . . ,1)] =

(
n−`
Kn−`

)(
n
Kn

) =
(Kn − `+ 1)× · · · ×Kn

(n− `+ 1)× · · · × n
,

while

EE(n)
1i1

. . .E
(n)
1i`

=

(
Kn

n

)`
.
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We therefore have after a small calculation that

(18) 0≤ EE(n)
1i1

. . .E
(n)
1i`
−ER(n)

1i1
. . .R

(n)
1i`
≤ C`
Kn

EE(n)
1i1

. . .E
(n)
1i`
,

where C` depends on ` only. Re-using the notations of the proof of Proposition 2.3, we now
have

0≤ E tr(Y (n))k −E tr(S(n))k =
nk

Kk
n

∑
P∈Pk

∑
J∈P ([n])

S
(n)
J

(
EE(n)

J −ER(n)
J

)

≤ C

Kn

nk

Kk
n

∑
P∈Pk

∑
J∈P ([n])

S
(n)
J EE(n)

J

=
C

Kn
E tr(Y (n))k,

where, to obtain the inequality, we decomposed ER(n)
J into a product of expectations over the

different rows of R(n), and we used the bound (18). Since E tr(Y (n))k→n trSk, we obtain
that E tr(S(n))k−E tr(Y (n))k→n 0. The proof that E(tr(S(n))k)2−E(tr(Y (n))k)2→n 0 is
similar.
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