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Abstract—In this article, the joint fluctuations of the extreme
eigenvalues and eigenvectors of a large dimensional sample
covariance matrix are analyzed when the associated population
covariance matrix is a finite-rank perturbation of the identity
matrix, corresponding to the so-called spiked model in random
matrix theory. The asymptotic fluctuations, as the matrix size
grows large, are shown to be intimately linked with matrices
from the Gaussian unitary ensemble (GUE). When the spiked
population eigenvalues have unit multiplicity, the fluctuations
follow a central limit theorem. This result is used to develop
an original framework for the detection and diagnosis of local
failures in large sensor networks, for known or unknown failure
magnitude.

I. INTRODUCTION

In the field of fault detection and diagnosis, one of the
elementary requests is the fast, reliable and computationally
light identification of a system failure. In dynamical scenarios,
these systems are composed of several fluctuating parameters
whose evolutions are tracked by a mesh of sensors reporting
successive correlated and noisy data measurements to a central
decision unit. With the growth in size and complexity of such
systems, it becomes increasingly difficult for decision units
to process simultaneously and at a low computational cost
the augmenting load of reported measurements. Examples of
such systems are the recent cognitive radio networks [1] and
smart grid technologies [2]. In the former, multiple cooperative
wireless communication devices, referred to as the secondary
network, exchange sensed data in order to decide collectively
which communication bandwidths are left unused by the
licensed, also called primary, network users. Fast detection
of sudden changes, e.g. new primary user communications, is
here demanded to minimize the interference generated by sec-
ondary users. In the smart-grid framework, a large dimensional
graph of interconnected electricity producers, transportation
systems, and consumers evolve in real-time, their behaviour
being reported by diverse sensors such as voltage phasor
measurements [3] at the nodes of the electricity grid to regional
controllers. Fast detection of link and node failures is requested
in this scenario to minimize the risk of cascaded failures
leading to regional blackouts [4]. There exists a rich literature
on failure detection, diagnosis and change-point estimation,
ranging from off-line detection methods of uncorrelated data
[5], [6] to fast change detection methods in time correlated
signals [7], [8], [9]. Subspace methods were in particular
proposed to detect system changes from modifications in the
eigenstructure of sampled covariance matrices for dynamical

systems [10], [11]. In this article, we propose a novel sub-
space approach to solve the problem of off-line detection and
identification of local failures from independent or linearly
time-correlated samples.

We precisely assume the observation of measurements sug-
gesting an error has already occurred in the network. We
wish the detection of a failure to be fast so we will assume
that the number n of successive sensor data reports is not
extremely large with respect to the size N of the network. We
will also assume that the hypothetical failure scenarios are, to
some extent, known in advance. In this context, calling H
the hypothesis that the system does not undergo any failure
and Hy, 1 < k < K, the hypothesis that a failure of type
k occurs, the question of failure detection and localization
consists in proceeding to the successive hypotheses tests:
(i) decide whether the concatenation matrix of n successive
network observations ¥ = [sq,...,5,] € CN*" suggests
hypothesis 3y or its complementary J{, (i.e. the event union
of the J(;), and (ii) upon decision of Ko, decide what H
is the most likely. Both problems are optimally solved by
multi-hypothesis Neyman-Pearson tests [12] with maximum
likelihood performance given the observation . However,
this procedure is computationally intense for large system
dimensions and large K.

The approach under consideration here follows the theory
of large dimensional random matrices. Precisely, we consider
the setting where both N and n grow large and such that
ey = N/n — ¢, with 0 < ¢ < 1, as N,n — oco. Under
this assumption, we develop asymptotic results on the extreme
eigenvalues and associated eigenvectors of a certain family of
random matrices to provide novel subspace methods for failure
detection and localization. Our interest is on random matrices
of the spiked model type, introduced by Johnstone [13],
specifically here of matrices modeled as ¥ = (Iy + P)2 X,
where X is a left-unitarily invariant random matrix and P
is a rank-r Hermitian matrix with » < N. Such matrix
models have been largely studied in the recent random matrix
literature, very often in the special case where X is a standard
Gaussian matrix, which refers in this article to a random
matrix with independent CN(0, 1/n) entries. In [14], [15], for
X a standard Gaussian matrix, it is first shown that there exists
a natural mapping between the extreme (empirical) eigenvalues
of ¥X¥* and the (population) eigenvalues of P. It is then
proved that, almost surely, the extreme empirical eigenvalues
converge to deterministic limits in the asymptotic setting,
found either at the edges of the support of the Marcenko-Pastur



law [16], i.e. the (almost sure) weak limit of the eigenvalue
distribution of X X*, or away from them, depending on the
corresponding population eigenvalues. This induces a phase
transition having important consequences on fault detectability
in sensor networks [17]. This observation is extended to the
non-Gaussian case and generalized to other spiked models in
[18]. The fluctuations of the extreme eigenvalues are studied
with different approaches depending on whether the limiting
eigenvalues are found at the edge or outside the support of
the Marcenko-Pastur law. When at the edge, it is proved
successively in [19], [13], [20], [21], [22] that the (centered
and scaled) limiting eigenvalue has Tracy-Widom fluctuations.
When outside the support, those fluctuations are linked to the
distribution of the eigenvalues of GUE matrices, as shown in
[21]. In the specific case where the spiked eigenvalues of P
have unit multiplicity, the fluctuations are Gaussian.

In this article, the properties of the extreme eigenvalues in
a spiked model will be used to provide failure detection tests,
in the same line as [23], [24]. For failure localization, the
information on the eigenvalue position can be used to reduce
the number of hypotheses K. However, tests solely based on
the limiting properties of the eigenvalues will turn out to be
inefficient to discriminate the remaining hypotheses and we
therefore develop novel results on the eigenspaces associated
to these eigenvalues. In [25], it is shown, in the real Gaussian
case, that the projection of the eigenvectors associated with
the extreme empirical eigenvalues of >:3.* on the subspace of
the corresponding population eigenvectors of P has a positive
limiting norm, which is close to 1 for ¢ small. This remark
is extended in [18] to the non-Gaussian case. This property
is the basis of our novel failure diagnosis method. However,
the fluctuations of the eigenvector projections, fundamental
here to derive test statistics for failure localization, have
never been derived before for either the Gaussian or the non-
Gaussian cases. The main mathematical result of this article,
Theorem 4, provides the joint fluctuations of the eigenvalues
and eigenspace projections for the eigenvalues found away
from the limiting support of X X™*. Our proof technique is
largely inspired by [18], [26], [27]. We also use some tools
from [28] and [29]. Based on these results, we suggest an
original framework for local failure detection and identification
in large sensor networks.

The remainder of this document unfolds as follows. Section
Il introduces elementary examples of sensor networks for
which local failures translate into small rank perturbations of
the identity matrix. Section III reminds important notions of
random matrix theory and introduces the main mathematical
results of this article. Practical application algorithms along
with simulations are then carried out in Section IV. Finally,
Section V concludes the article.

Notations: In this document, capital characters stand for
matrices while lowercase characters stand either for scalars or
vectors, with Iy € CN*¥ the identity matrix. The i*® entry of
a vector x is denoted x (7). The symbol (-)* denotes complex
transpose. For a function f and a Hermitian matrix X €
CVAN| F(X) = U diag(f(M(X)),..., [ (X)))U" with
A1 (X), ..., An(X) the eigenvalues of X and U € CV*¥ the
unitary matrix of its respective eigenvectors. The symbol S,

denotes the support of the probability measure 7. The notation
Span(uy, ..., uy) designates the space generated by the vec-
tors uy,...,ug. The notation S+ is the space orthogonal to
S. We denote C* = {z € C, 3(z) > 0}. The norm || X|| of a
Hermitian matrix X is understood as the spectral norm, and the
norm ||z|| of a vector x is understood as the Euclidean norm.
The notations ‘223’ ‘=’ and ‘l>’ denote convergence
almost surely, weakly, and in probability, respectively. The
symbol E[-] denotes expectation. The notation 14(z) is the
indicator function on the set A.

II. DETECTION AND LOCALIZATION OF LOCAL FAILURES

To motivate the study of the fluctuations of extreme eigen-
values and eigenvectors of sample covariance matrices in the
context of local failures in large dimensional sensor networks,
we introduce in the following two basic examples of sensor
network failure scenarios, which can all be modeled as small
rank perturbations of the identity matrix, as well as related
engineering applications.

A. Node failure

Consider the following model
y=HO+ow (1)

where H € CN*P is deterministic, § = [0(1),...,0(p)]" €
CP, w € CN have independent and identically distributed
(i.i.d.) complex standard Gaussian entries, and o > 0. We
denote y = [y(1),...,y(N)]T € CV. In a sensor network
composed of N nodes, y represents the observation through
the channel H of the vector 6, constituted of centered and nor-
malized independent Gaussian system parameters,! impaired
by white Gaussian noise. Therefore, E[yy*] = HH*+0%Iy £
R.

In case of failure of sensor k, y(k), the k*" entry of y, will
start suddenly to return noisy outputs inconsistent with the
model (1). Assuming this noise Gaussian with zero mean and
variance o7 and denoting 3’ the observations of the network
with failure at sensor k, we can write

y' = (In — exer)HO + opererd + ow

where ¢’ is distributed like @ but independently and e, € CV
is such that ex (k) = 1 and ey (z) = 0, for all i # k.

Therefore, 3’ is Gaussian (as the sum of Gaussian variables)
with zero mean and variance

Ely/y*] = (In — exe}) HH*(Ix — ere}) + oiere; + a*Iy.
Denoting s = R_%y’ , we have
E[ss*] = Iy — R HH"ezefR™?

+ R %ey (e HH ey, + 02)e iR~ — e;;HH*R*%] .

1Up to a right-product of H by a positive diagonal matrix, the variance of
the entries of 6 can be assumed all equal to one without loss of generality.



Therefore, the population covariance matrix E[ss*] is a per-
turbation of the identity matrix by

Py 2 R e, [(eZHH*ek tod)eiR™E — eZHH*R‘%}
~ R *HH"epejR™%. @)
Notice that the image of Pj is included in the subspace
1 1 . .
Span(R™ zey, R-2HH"ey) and is therefore at most of di-
mension two. Generalizing the above to M node failures at
nodes k1, ..., ks, the vector s is now such that
E[ss*] = Iy — R *HH*EE*R™?
+RAE[(B"HHE+ N)E*'R ™% — B"HHR™} |
with £ = [eg,,..
now (2) becomes

ek, A = diag(ok,,...,0k, ), where

Py by 2R ZE[(E*HH*E + N)E* — E*HH*| R™*
R :HH*EE*R": 3)

which is a matrix of rank at most 2M.

B. Sudden parameter change

Consider again the elementary model (1) and now assume
that, instead of a sensor failing, (k), the k' entry of 6,
experiences a sudden change in mean and variance. The
resulting observation 3’ can be modeled as

v = H(I, + axexer)0 + pHey + ow

for some real parameters iy, g, and where e;, € CP is defined
by ex(k) = 1 and e (i) = 0, i # k. For this particular model,
we may or may not suppose that p and ay, are a priori known
to the experimenter. In this scenario, we now have that 3’ is
Gaussian with zero mean and variance

Ely'y*] = H(I, + [} + (1 + ag)? — erep) H* + 0?1y

Denoting R = HH* + 02Iy as in the previous example and
taking s = R~ 2/, we finally have

E[ss*] = In + [13 + (1 + a)®> — 1]R *Hepe,l H*R™?

which is a rank-1 perturbation of the identity matrix by the
matrix

P2 ByR *Heye, H*R™*

with 8 = p? + (1 + a)? — 1. Note that, in this scenario,
the eigenvector of Pj associated with the non-zero eigenvalue
is independent of uj and «y. For practical applications, this
has the interesting advantage that simple localization can be
performed even if uj and oy are unknown. This is further
discussed in Section IV.

The derivation above generalizes to sudden changes of
multiple parameters. If the means and variances for the sen-
sors ki, ...,ky are modified simultaneously with respective
parameters fg, , ..., [k, and ag,,...,ay,,, then

E[ss*] = Iy + R *HEAE*H*R™»

with ' = [elﬁ A ’ekJVI] and A = diag(/gkl Yo >BkM)a Br; =
,uii + (14 ag,)? — 1, which is a rank-M perturbation of the
identity matrix by the matrix

Pty = R2HEAE*H*R™3.

Note that, contrary to the one-dimensional case, the eigenvec-
tors of Py, . depend here explicitly on the parameters p,
and oy, .

In the following section, we introduce the novel detection
and localization framework and we discuss engineering appli-
cations referencing the examples described in this section.

waVI

C. Detection and localization in sensor networks

For either of the models above, let us assume a gen-
eral scenario with K possible failure events, indexed by

1 < k < K and let now s1,...,5, be n successive

independent observations of the random variable s. We denote

Y2 Lisy,...,s,] € CVN*" From the fact that s is Gaussian
N

with zero mean and covariance (I + Py) for a certain k, we
can write )
Y= (IN + Pk) 2 X

where X € CN*" is a given matrix with independent
Gaussian entries of zero mean and variance 1/n. We also
denote for simplicity Py = 0 for the extra event £k = 0
corresponding to the no-failure scenario.

The natural approach to detect and identify a failure event
in a sensor network upon the observations si,...,S, is to
systematically perform a maximum likelihood test on the
K +1 hypotheses H, ..., Hg, with H;, defined as the event
s ~ CN(0, Iy+ Py). However, this optimal approach has some
intrinsic limitations. From a computational aspect, evaluating
the probability of each hypothesis k requires to evaluate the
term tr X*(Iy + P;) ™'Y, an operation whose cost is of order
O(N3) (which can be brought down to O(N?) using matrix
inversion lemmas). When the number of hypotheses K and the
system size N are large, these operations become extremely
demanding. Pre-calculus of the inverses (Iy + Pp)~' also
requires possibly large memory storage.

Since the node failure information is entirely captured by
the perturbation matrix Py, we provide in the following a
suboptimal test relying on the properties linking Pj to the
observation matrix ¥, for large system dimensions (N,n).
Precisely, based on recent advances in the field of large
dimensional random matrix theory [30], we provide a two-
step approach to successively (i) decide on the existence of a
failure from the location of the extreme eigenvalues of ¥X*
and (ii) identify the failure event from eigenspace projections.
This diagnosis framework relies on the asymptotic statistics
of these extreme eigenvalues and eigenspace projections. This
subspace approach has multiple advantages compared to the
optimal hypothesis testing method discussed above. From
a computational aspect, step (i) requires to determine the
eigenvalues of XX*, hence a singular value decomposition.
This step already provides sufficient information for step (ii) to
become computationally cheap: on the one hand, the position
of the extreme eigenvalues of ¥X* may be used to reduce
the set H{;,...,J{x to a possibly small subset of consistent



hypotheses; on the other hand, for the remaining hypotheses,
the localization test will merely consists in the characterization
of eigenvector projections, an operation of computational cost
O(N). No matrix inverse needs to be computed and only the
eigenvectors and non-zero eigenvalues of P}, need to be stored.
The technique also has the advantage to be consistent in its
usage of eigenvalues and eigenspace projections to perform
hypothesis tests. Finally, as will be discussed in Section IV,
the framework can be extended to account easily for unknown
failure amplitudes, which would be much more involved from
a maximum-likelihood approach.

Before presenting our main results, we briefly discuss
practical applications in the failure diagnosis context. The
application of the aforementioned results to failure diagnosis
in sensor networks consists in deriving subspace methods for
failure detection and identification when the system undergoes
sudden changes that can be modeled as small rank perturba-
tions of the data covariance matrix. The scenario of Section
II-A may be exploited in particular to rapidly detect failures
in sensors that may suddenly return inconsistent data. Fast
detections of such sensor errors are of fundamental importance
when decisions on system actuators are taken from these data.
The scenario of Section II-B finds applications in the cognitive
radio setting where Gaussian baseband signals 6(1),...,60(p)
arising from a set of p fixed access points, forming the so-
called primary network, are sensed by a network composed of
N cooperating sensors, constituting the secondary network.
Assuming that at a reference time instant a subset P of the
p access points transmit data, the communication channel
H € CN*P between primary and secondary networks (which
can be assumed static during a channel coherence interval)
will contain non-zero entries in the columns indexed by P.
The objective of the secondary network is here to rapidly
detect and identify changes in H (column elimination or
creation), corresponding to evolutions of the subset P of
transmitting access points. These fast change diagnoses will be
used to exploit the available radio spectrum as well as to avoid
secondary transmissions to interfere primary communications.
We also mention that in [31], a similar system model for failure
diagnosis in power systems is analyzed. In this setting, the
observation vector y is composed of voltage measurements
at the N network nodes, the variable 6 contains the current
inputs at the nodes which naturally vary due to the presence of
unreliable renewable energy production units, and the transfer
matrix H is closely related to the square matrix containing at
entry (4, j) the inverse impedance of the power line connecting
i to j (and equal to zero if ¢ and j are not connected). The
objective in this system is to detect local power line outages
corresponding to impedance changes in H, which can be seen
as rank-two perturbations of the population covariance matrix.

The following section is dedicated to the study of the
asymptotic eigenvalue and eigenspace projection statistics as
the dimensions of the matrix > grow large.

III. MAIN RESULTS

The derivation arguments found in this section follow the
ideas of [32], [26], and [27]. In our proofs, we shall also

borrow some of the arguments of [29] whose context is close
to ours.

A. Notations, assumptions and basic results

We start by summarizing the major notations and facts
needed here. We consider a generic small rank perturbation
model and define

Y= (Iy+P)2X

with X € CNxn left-unitarily invariant, and where the rank-r
Hermitian matrix P has the spectral factorization P = UQU*
with
w1 I j1
0 =
welj,

and wy > ... > ws > 0> wey1 > ... > wy > —1. Of course,
J1+--+7: = r. We write accordmgly U= [ . Ut] where
U; € CN*Ji, We denote by AN > > /\N the eigenvalues
of X¥*. For i € {1,...,s}, we let K(z) =1+ -+ Ji-1,
taking by convention jo = 0. For i € {s+1,...,t + 1}, we
let X(i) = N — (j; + -+ + j¢). One of the purposes of this
section is to establish an asymptotic relation between w; and
the )\g< (iy4¢ for £ =1,..., j; which holds under a condition on
w; that will be specified. We also denote by H the orthogonal
projection matrix, when it exists, on the eigenspace of XX*
associated with the eigenvalues {)\K(Z H}e ;. Similarly, we
denote by II; = U;U;* the orthogonal projection matrix on the
eigenspace of P associated with the eigenvalue w;. Finally,
we denote by Q(z) = (XX* — zIx)~ " the resolvent of the
matrix XX* and by a(z) = 4 tr Q(2) its normalized trace,
both analytical on C*.

In the remainder of the paper, we shall consider the asymp-
totic regime where n — oo and N/n — ¢ € (0,1). The
notation n — oo will henceforth refer to this asymptotic

regime.
We now state our basic assumptions:
Al  The probability law of X is invariant by left multi-

plication by a deterministic unitary matrix.

Thanks to the left unitary invariance of X, Q(z) writes
as Q(z) = W(A — zI,)"'W* where A is the matrix of
eigenvalues of X X*, W is a unitary random matrix Haar
distributed on its unitary group, and W and A are independent.

A2  For every z € C*, a(z) converges almost surely to
a deterministic function m(z) which is the Stieltjes
transform? of a probability measure 7 with support
[a, ] C (0, 0).

A3 Wehave | X X*|| 2% band (||(XX*)7Y)~
This last assumption implies in particular that A2 is satisfied
for all z € C\ [a, b].

The most classical model of a matrix X that satisfies Al-
A3 is when X is standard Gaussian, i.e. with independent
CN(0,1/n) elements, as introduced in the system models of
Section II-A and Section II-B. For this model, the limiting

1 a.s,

— a

2We recall that the Stieltjes transform m(z) of a real measure 7 is defined
for z outside the support of 7 by m(z) =




probability distribution 7 is the well known Mar¢enko-Pastur
distribution [16]. Its Stieltjes transform m(z) is given by

Y (l—c—z+\/(1—c—z)2—4zc) 4)

where the branch of the square root is chosen such that
m(C*T) Cc C* and m is analytic on C \ [a,b], where
a=(1—+/c)?and b= (1 ++/c)%

The unitary invariance of X is the basis of the following
important lemma, shown in [29] using an inequality of [28]
which involves Haar unitary matrices:

Lemma 1: Assume Al. Let u € CV and v € C¥ be two
vectors with norm ||u|| = ||v|| = 1. Denote by o(XX*) the
eigenvalue spectrum of X X*. Givene >0 and z € C\ [a —
e,b + €], denote by d, the distance from z to [a — &,b + ¢].
Then for any p > 0,

m(z)

* K
E [|10(XX*)C[a—5,b+a]u (Q(Z) — Oé(Z)IN)U|p] < Wi)ﬂ
where the constant K, depends on p only. Similarly, for any
2,2/ € C\ [a —&,b+ €], we have
l
Ky

d

We now start our analysis of the extreme eigenvalues and
eigenspace projections of X¥* by studying the first order
behavior.

Lo(xx+)Cla—epiet’ |Q(2)Q(2) — %

[N:|U

B. First order behavior
1) Eigenvalues: Suppose that x € R is not an eigenvalue
of X X*. We first write
det(X¥X* — xly)
=det(Iy + P)det(XX* — Iy + z[Ix — (In + P)7Y))
=det(Iy + P)det(XX™* — zly)
x det(Ix +xP(Ix +P) M (XX* —zly)™Y)
after noticing that Iy — (Ix + P)7! P(Iy + P)~%
Therefore, if x is an eigenvalue of XX* but not of X X*, it
must cancel the rightmost determinant. This determinant can
be further rewritten
det(Iy +zP(Ixy + P)7'Q(x))
= det(I, + 2QU*(Ixy + UQU*) ' Q(x)U).
From the identity U*(Ixy + UQU*)~t = (I, + Q)~1U*, we
then have
det(S8* —zly) = det(Iy +P) det (X X* —2Iy) det(H(z))

where H(z) = I, + 2Q(I, + Q)U*Q(2)U.
Given any z € C\ [a, ], Assumptions A1-A3 in conjunction
with Lemma 1 show that H(z) is defined for all n large, almost
surely, and converges with probability one to

H(z) = I, + 2m(2)QI, + Q)~*

®)

(take v and v in Lemma 1 as any couple of columns of U,
take p > 2 and use Borel-Cantelli’s lemma [33]). We therefore

expect the solutions of the equation det H(z) = 0 which
are outside [a,b] to coincide with the limits of the isolated
eigenvalues of X3.*.

Let us now study the behavior of the solutions of this
equation. Let h(z) = xm(z) on R\ [a,b]. Since a > 0, we
have

W) = ama)) = [ 2

The function h(x) is therefore increasing on R\ [a, b] and with
limit 0 as x — 0 and —1 as « — oco. Therefore, for w; > 0,
(5) leads to

dr(X) > 0.

1—|—wi

Wi

h(p) + =0
having a unique real solution p; satisfying p; > b if and only
if A(b%) + (1 + w;)/w; < 0.> When w; < 0, (6) has a unique
solution 0 < p; < a if and only if h(a™) + (1 + w;)/w; > 0.
We therefore have the following result, for which a rigorous
proof is found in [32]:

Theorem 1: Assume A1-A3. Let p be zero or the maximum
index such that w, > 0 and h(b*) + (1 + wp)/w, < 0. For
1 =1,...,p, let p; be the unique solution of (6) such that
pi > b. Then,

(6)

5\3<(i)+€ 25 Pi

fori=1,...,pand £=1,...,7;, while

Axc(pa1)41 = b,

Let g be t + 1 or the minimum index such that w, < 0 and
ha™) + (14+wg)/wg > 0. For i = q,...,t, let p; be the
unique solution of (6) such that p; < a. Then,

Agc(iye ~= pi

fori=gq,...,tand £ =1,...,7;, while
;\x(q)ﬂa.

In the remainder of the article, the variables wy, ..., w, and
Wq, - - -, wy satisfying the conditions of Theorem 1 will be said
to satisfy the separation condition.

When X is standard Gaussian, applying Theorem 1 shows
after some simple derivations the following result:

Corollary 1: Consider the setting of Theorem 1. Assume
additionally that X is standard Gaussian. Let p be zero or the
maximum index for which w, > \/c and ¢ be t + 1 or the
minimum index such that w, < —y/c. Then

N .S, 1—|—w1
Axc(iyre = pi = 14w + e ™
forie {1,...p,q,...,t}, £=1,...,4;, while

Axcpan)41 =3 (1+ /)
)‘K(q) ﬂ (1 - \ﬁ)Q

Corollary 1 implies that, for w; sufficiently far from zero
(either positive or negative) or, equivalently, for ¢ sufficiently
small, the spectrum of X3 * exhibits j; eigenvalues outside the
support S of the MarCenko-Pastur law 7 which all converge

3We denote by zz+ and ™~ any quantity infinitesimally greater and smaller
than the real x, respectively.



to p;. For failure detection purposes, upon observation of
3., we may then test the null hypothesis ¥ = X (call it
hypothesis o) against the hypothesis ¥ = (Iy 4+ P)zX
(call it hypothesis J{), depending on whether eigenvalues of
33 are found outside S,. Depending on the scenario, for ¢
small enough, it may be that a mere evaluation of the number
of eigenvalues outside the support suggests the number of
simultaneous failures in the sensor network. This is the case of
the two failure scenarios described in Section II-A and Section
II-B. However, the information on the extreme eigenvalues of
.32*, if sufficient for failure detection purposes, is usually not
good enough to perform accurate failure localization. This is
because different failure scenarios, characterized by different
perturbation matrices P, may exhibit very similar eigenvalues.
Also, if the failure amplitude is a priori unknown, then
eigenvalues are in general irrelevant to discriminate between
failure hypotheses; see the application Section IV-C. In such
scenarios, we then need to consider eigenspace properties of
P. This is the target of the following section.

2) Projections on eigenspaces: Given i < t, we now
assume that w; satisfies the separation condition. Given two
deterministic vectors by,by € CV with bounded Euclidean
norms, our purpose is to study the asymptotic behavior of
b711;b2. We shall show that this bilinear form is simply related
with b71I;b2 in the asymptotic regime.

Our starting point is to express biﬁibg as a Cauchy integral
[34]. Denoting C; a positively oriented contour encompassing
only the eigenvalues ;\K(i)+é of X¥* for £ = 1,...,7;, we
have

b T1;b,
1

=—— ¢ VXX —zIy) by d
s BLEST = 21, d

1 ,
=—— ¢ bi(Iy+P)?

s iy + )
x [XX* = 2In + 2P(Ix + P)"'] ' (Iy + P)"%by dz.

Using Woodbury’s matrix identity, we have

[XX* =2y +2P(Ix + P)"'] "

= Q(2) — 2Q(2)U [I, + 2Q(I, + Q)_lU*Q(Z)U}
x QI +Q)~U*Q(2)
= Q(2) = 2Q(x)UH(2)(I, + ) ~'U"Q(=)

-1

and taking

i1(2)" = 2b(Iy + P)"2Q(2)U
as(z) = QI + ) 'U*Q(2) Iy + P) " 2by

we obtain

biTL;by

a1(2)* H(2) as(z) da. (8)

By Assumption A3 and Theorem 1, with probability one for
all large n, the first term on the right-hand side is zero, while
the second is equal to

1

2m

a1(2) H(2) ag(2)dz
Vi
where y; is a deterministic positively oriented circle away from
[a, b] enclosing p; but none of the p;, j # i. Using Lemma 1
in conjunction with the analyticity properties of the integrand,
one can show that a1(2)*H(2) las(z) converges uniformly
to a1(2)*H(z) taz(z) on 7; in the almost sure sense, where

a1(z)* = zm(2)bi(In + P) 32U
as(z) = m(2)QU, + Q) U*(In + P) " 2bs.

It results that b1y — T; 2 0, where
1
T }’{ a1 ()" H(2)as(2)dz.

Details can be found in [29] in a similar situation. Let us find
the expression of 7;. Noticing that

t
1
Hz) ' =) ——————0 ©)
(=

- 1+ z2m(2) T
where

0j1+~~+j271
9, = I, ecCrxr
Ojl+1+-~~+jt

we obtain

t 2
wp 1 zm?(z)
T, = E 75{1_[45277{ o 4=
p (14 we)? 2m ), 14 2m(2) 55

! 2m?(2)

= — 2.
14w 2m ), B2 4 2m(z)

From the discussion prior to Theorem 1, it is clear that the
denominator of the integrand has a zero in the interior Int(~y;)
of the disk delineated by ~; only when ¢ = ¢, and then this
zero is simple due to the fact that A'(x) = (zm(z))’

never
vanishes on R\ [a, b]. Applying the residue theorem [34] and
observing from (6) that 1/(1 4+ w;) = (14 h(p;))/h(p;), we
obtain the following limits:

Theorem 2: Assume A1-A3. Given 7 < t, assume that w;
satisfies the separation condition. Let b; € CV and by, € CV
be two sequences of increasing size deterministic vectors with
bounded Euclidean norms. Then

biILby — by 25 0

where

G = m(pi) (1 + h(ﬂi))'
’ W (p:)
In particular, we find after some derivations:
Corollary 2: Under the assumptions of Theorem 2, let X
be standard Gaussian. Then
-2
%bm@ 250,

K3

biTl;by —



This result is consistent with [25] derived in the real Gaussian
case for eigenvalues with unit multiplicity.

Theorem 4 and Corollary 4 provide an interesting charac-
terization of the eigenspaces of P through limiting projections
in the large dimensional setting. In the context of local failure
in large sensor networks, it is therefore possible to detect and
diagnose one or multiple failures by comparing eigenspace
projection patterns associated with each failure type. Precisely,
an appropriate diagnosis consists in determining the most
likely failure type among all hypothetical failures, given the
extreme eigenvalues and associated eigenspace projections of
33", To this end though, not only first order limits but also
second order behaviour need be characterized precisely. This
is the target of the following section.

C. Second order behavior

Before studying the fluctuations of 5‘9((i)+2’ L=1,....7,
when w; satisfies the separation condition, we first remind
for later use in our applicative framework the fluctuations of
5\g<(i)+g when w; does not satisfy the separation condition, and
when X is a standard Gaussian matrix. For this, we have the
following theorem [20], [22], [21].

Theorem 3: Let X be standard Gaussian, then if 0 < w; <

\/E’
gXxm+z—(1+v@V

N3 I =T,
(1++/c)s+/c
and, if —/c < w; <0,
Asc(iyae — (1 — 1/€)2
N3t = A =VoT

—(1-e)iye
for{=1,...,j;, as n — oo, where T5 is the complex Tracy-
Widom distribution function [19].

The tools used to derive Theorem 3 are much different from
those exploited here and will not be discussed. Note that in
[35], an extension to the case where X may be correlated
is provided but only considers the fluctuations of the largest
eigenvalue. Similar to [24], Theorem 3 will be used to derive
tests to decide on the presence of eigenvalues outside the
support of the Maréenko-Pastur law. For failure detection
purposes in sensor networks, this will be used to declare a
failure prior to diagnose the fault. Then, to diagnose a failure,
second order statistics of both eigenvalue and eigenspace
projections when the separation property arises are needed.
This is the aim of the remainder of the section.

We now turn to the second order analysis of the eigenspec-
trum of XX* when w; satisfies the separation condition, and
when X is only assumed to satisfy A1-A3. We first need the
following additional assumption:

A4  Forall z € C\ [a,b],
VN (a(z) — m(2)) — 0

as m — oo.
In practice, this assumption means that the fluctuations of
the spectral measure of XX™ are negligible with respect
to those of the 5\k and b7II;by, which will be shown to

be of order v/N. This assumption is satisfied by most of
the random matrix models of practical importance in our
context, provided v/ N(N/n — ¢) — 0. The classical illus-
trating example in this regard concerns the standard Gaussian
case. Denote by m,(z) the Stieltjes transform (4) where ¢
is replaced with N/n, and let 7, the MarCenko-Pastur law
associated with m,,(z). For any z € C\ [a,b], the function
f(xz) = (z — z)~! is analytic outside the support of m,, for
n sufficiently large. As a consequence, Theorem 1.1 of [36]
shows that v/ N (a(2) — my(2)) 0. Assuming in addition
that vN(N/n — ¢) — 0, it is not difficult to show from (4)
that /N (m,(z) — m(z)) — 0.4

For practical purposes, we shall also assume:

AS

The main result of this section is the following theorem.
Theorem 4: Assume A1-AS. For:=1,...,t, let

Each w;, 1 <7 < t, satisfies the separation condition.

Vin = VNU; (ﬁz - CiIN) U;

and )
Agc(iy+1 — Pi
Li,n = \/ﬁ :
AK(i)+j; — Pi
For p € R\ [a, b], let

h(p)(1+/h(p%)h"(p) _ h(p)(/1+'g(p))
D(p) = ) ")
R (p)

and

(0)/2 =m(p)m'(p)  m®(p)/6 —m/(p)?

where m®) is the third derivative of m. Consider the matrices
Gi| _ . ) A*\3 2\ | Mg
| = (@eoreopp o) [

where My 1, Ms1,..., M, Ms, are independent GUE ma-
trices such that M; ; and My ; are both j; x j; matrices.” Let
L; be the R7:-valued vector of eigenvalues of K; arranged in
decreasing order. Then®

((Vis Lin))izy = (Gis Li)iz,y -

Remark 1: To be more precise, (V; », Li ) can be cast into
an R7/+i-valued random vector after rearranging the real and
imaginary parts of the elements of V; ,, and taking into account
the Hermitian symmetry constraint. Hence, the convergence in

law specified by (10) acts on the space of probability measures
on R7‘+jf+'“+]}2.

Rlp) = [m// m'(p) —m(p)* m"(p)/2 — m(p)m’(p)}

(10)

“It is useful to note that when the convergence rate of N/n is slower than
1/v/N, our analysis remains true if we replace m(z) with a finite horizon
deterministic equivalent [37], [38]. For simplicity, we have chosen not to enter
into these details here.

SWe remind that matrices from the Gaussian unitary ensemble, or GUE
matrices, are random Hermitian matrices with independent standard real
Gaussian diagonal entries and independent standard complex Gaussian upper-
diagonal entries [39].

OIt is clear that if A5 is not fulfilled, Theorem 4 generalizes by letting the
index ¢ in (10) span only the subset {1,...,p,q,...,t}.
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Fig. 1. Empirical and theoretical distribution of the fluctuations of @ with

r =1, X has i.i.d. zero mean variance 1/n entries, N/n = 1/8, N = 256
and w1 = 1 (top) or w1 = 0.5 (bottom).

Theorem 4 provides a very general expression of the joint
limiting fluctuations of both eigenvalues and eigenspace pro-
jections. It is particularly interesting to note that the fluctua-
tions of (V;., L; ,,) are asymptotically independent across i.

This theorem is an interesting new result to the field of
large dimensional random matrix theory, although it might be
difficult to use in practice since one needs to derive explicitly
the joint density of (G, L;)i_,. Nonetheless, Theorem 4 can
be immediately put to practice in two scenarios. The first
scenario corresponds to the case where only the fluctuations
of the eigenspace projection vector (V; ,)!_; is of interest. In
this case, (G;)!_; is a correlated Gaussian random variable.
Reminding that M, ; can be seen as an R -valued Gaussian
vector with entries of zero mean and unit variance, Gi)ﬁz%
can then be seen as a random Gaussian vector in RJ1F++J¢
with entries (52, — 1) to j2 of zero mean and variance
[D(pi)R(pi)D(pi)*]yy, for each i € {1,...,t} with jo = 0.
The second scenario of interest, which is discussed at length in
the following, corresponds to the case where the multiplicities
of the eigenvalues of P are all equal to one. In this case,

M ; and My ; are independent Gaussian variables and we
immediately have the following corollary:

Corollary 3: Consider the setting of Theorem 4. Assume in
addition that j; = 1 for all ¢. Then

((‘/i,na Li,n))izl,_”’r = N(O7 R)
with
D(p1)R(p1)D(p1)*
R P—
D(p)R(pr)D(pr)*

After some calculus, in the standard Gaussian case, we
further have:

Corollary 4: Under the assumptions of Corollary 3, if X is

a standard Gaussian matrix, then D(p;)R(p;)D(p:)* = C(pi),
where

A (14w;)? ( (14w;)? +1) (14w;)3c?
Clpy) & |Ererr@i=a \“lera)? (wi+e)?w:
Pi) = (1w c(14wi)* (w2 —c)

Due to its simple expression, Corollary 4 is particularly
handy to use in the context of failure diagnosis when hypo-
thetical failures are characterized by distinct values of w;, as
will be shown in Section IV.

In Figure 1, the histogram of a simulation of 10000 re-
alizations of the projection V;,, = v/ N(|aju1]? — (1), with
uy = Uy € CN, aqaf = II;, of unit rank, and X standard
Gaussian, is depicted against the asymptotic Gaussian law
derived in Corollary 4, for r = 1, N/n = 1/8, N = 256
and w; successively equal to 1 and 0.5. In this scenario,
/N/n ~ 0.35. For w; = 1, the simulation shows a rather
accurate fit between asymptotic theory and simulation. For
wy = 0.5, the Gaussian approximation is much less accurate.
This is due to the value w; = 0.5, which is rather close to
v/N/n ~ 0.35. The value N = 256 is here insufficient for the
large dimensional behaviour of the fluctuations of |@ju;|? to
arise. This behaviour will have important consequences for the
question of diagnosing failures which are difficult to observe.

The remainder of this section is devoted to the proof of
Theorem 4. We start with the following lemma, which deals
with the asymptotic behavior of the V; ,,. This lemma will be
proved in Appendix A-A.

Lemma 2: Assume A1-AS. Let

_ h(p:) (L + h(p:))h" (p;

Vi,n=\/ﬁ< (pi)( h/(p(;))g)) (i)
_h(pi)(1 + h(p:))

W (pi)?

Then for any i € {1,...,t},

U (Q(pi) — m(pi)I)U;

UAQ (pi) — m'(pi)I)Ui) .

‘/i,n - ‘_/i,n i> 0.

We now consider the isolated extreme eigenvalues. In order
to study the asymptotic behavior of these eigenvalues, we shall
adapt to our situation the approach of [26]. For ¢ = 1,... ¢,
consider real numbers x1(7) > y1(i) > z2(i) > y2(i) >

- > y;,(4). Since the separation condition is satisfied by
assumption for each i = 1,...,t, the equation det H (x) =0



has r roots outside [a, b] with probability one for all n large.
Therefore, we have the equivalence relation

() > VN Qe = pi) > weli),
i=1,....1, 6:1,...,;‘1-)
=

(Njidetﬁ(pi—kxe\/%)) detﬁ(pﬂ— W\/%)) <0,

i=1,...,t, 4:1,...,35).

This equivalence leads us to study the limits of the finite
dimensional distributions oft the Rf-valued random process
[Nji/g det H(p; + x/\/ﬁ)} '
given by the following lemma, proved in Appendix A-B.

Lemma 3: Assume A1-AS. Define the R’-valued random
process

1)

in the parameter x. This is

Xn(z) =
(N9 det B (pr + 2/ VW) — (1~ e/ 5" )
04
 det (VEBpiU; (Q(o0) — m(p) DU+ il (o )|

where 3; = w;/(1 4+ w;). Then

(xXn (1) -, X (7)) = 0

for every finite sequence (z1,...,2,).

Let B be a rectangle of RJi++37 . The real and imaginary
parts of the elements of the V;, defined in Theorem 4 can
be stacked into a RIi++37 valued vector V,, when taking
into account the Hermitian symmetry constraint. A vector V,,
with the same size can be constructed similarly from ‘7“1
defined in Lemma 2. Let L,, be the R"-valued vector L,, =
[L],,...,L{,]" (see Theorem 4) and let C' be the rectangle
of R" determined by the left hand side of (11), so that this
event is written [L,, € C]. Let L,, be the vector obtained by
arranging the eigenvalues of the matrices

T p *
Tin = =7V NU; (Q(pi) — m(pi) Ui
h(pi)
forv=1,...,t, similarly to the elements of L,,. From Lemma

2, Lemma 3, and the discussion preceding Lemma 3, we have
PV, €B,L,€C]-P[V, €B,L,€C|] =0

as n — oo, for arbitrary rectangles B and arbitrary rectangles
C specified at the left hand side of (11). Observe that

Vim| _ U7 (Q(pi) —m(pi) 1)U
] = F e |G T

In order to terminate the proof of Theorem 4, we shall make
use of the following lemma, that we state in a slightly more
general form than needed here.

Lemma 4: Assume A1-A4. Let f1,..., frand g1,...,9; be
real functions analytical on a neighborhood of [a,b]. Let S,
be the t-uple of random matrices

_ Ur fi{( XX*)U,; — (f fiN)dm(
0= (VI [0 00— (i) £

>

N

—

<

o
\/
o~ ~
&

For i = 1,...,t, define the covariance matrices

Ri /( [g: ~ %ﬁﬂ [(fi = [ fidm) (gi — fgidﬂ)]> dm.

Then S, converges in distribution towards

(Ren) i)

i=1

(12)

where the matrices (Mi 1, Ma 1, ..., My, Mo ) are indepen-
dent GUE matrices such that M, ; and M5 ; have dimensions
Ji X Ji-

The proof is provided in Appendix A-C.

Applying this lemma with f;(A\) = 1/(A— p;) and ¢;(\) =
1/(A—pi)?, R; takes the value R(p;) provided in the statement
of Theorem 4. It results that

()= (&),

where the convergence ta;kes place on the space of probability
measures on R2U1+ %) This completes the proof of The-
orem 4.

IV. APPLICATION

In this section, we provide a general framework for local
failure detection and diagnosis in large sensor networks, such
as the examples proposed in Section II, based on the results
of Section III. This framework is a two-step approach for
successively (i) detecting failures within a given maximally
acceptable false alarm rate and (ii) upon positive detection,
diagnosing the failures with high probability. Simulations are
then run to validate the proposed algorithms.

We recall that we assume a number K of failure scenarios
indexed by 1 < k < K. Scenario k is characterized by the
population covariance matrix Iy + Py. We additionally denote
Py = 0 for convenience. We consider precisely the detection
and localization to be made for failure models of the type
S = (In+P:)3X,1< k< K, with Py = Y05 wie, iUi,iUj
of rank r, = Z:’”Zl Jk,i» where Uy ; € CN*Jri and wy 1 >
> Whe, > 0> Whger1 > - > Wiy, and X standard
Gaussian. The eigenvalues of ¥¥* are denoted and ordered as
before by ;\1 > ... > h\ ~. We denote H the null hypothesis
for the model ¥ = X and J{; the hypothesis for a failure
of type k. For the failure scenario k, we also take p; to be
zero or the smallest index ¢ such that wy; > Ve, and g to
be ¢ + 1 or the largest index 4 such that wg ; < —/c.

Remark 2: This model (and in particular the models of
Section II-A and Section II-B) may be extended by introducing
deterministic linear time correlation between the successive
observations si,...,S,. That is, we can write X = XT3
for some time-correlation matrix 7" and a standard Gaussian
matrix X. In this scenario, X being left-unitarily invariant,
the localization scheme proposed extends naturally to this
scenario, as long as the eigenvalue distribution of 7' converges
weakly to a compactly supported distribution as N grows
large and that T" has asymptotically no eigenvalue outside this
support. Alternatively, a whitening procedure may be used
prior to failure detection using Y/ = T2 as the random
matrix under study, provided that 7" is invertible.



A. Detection algorithm

As stated in the introduction, the detection phase relies on
existing results, and more specifically on the fluctuations of
the largest eigenvalues given by Theorem 3. The detection
algorithms proposed here parallel that introduced in [24] in
the context of collaborative signal sensing. The objective is to
decide between hypothesis H and its complementary (.

First assume that all P, only have non-negative eigenvalues.
From Theorem 1, the largest eigenvalue ;\1 of ¥X* tends to
the right edge of the support S, of the MarCenko-Pastur law
for all large n under H,, while A1 is found away from this
edge under Ho if the largest eigenvalue wy ; of Pj exceeds
v/e. We will therefore assume in the following that wy, 1 > /c
is verified for all k. That is, we assume that cy = N/n < ¢y
where c is defined as

c+éinf{w,€71, 1§k§K}.

This condition allows for a theoretically almost sure error
detection, as N, n — co. We then rely on Theorem 3 to design
an appropriate hypothesis test. Our test consists in rejecting
hypothesis H if the probability in favor of H is sufficiently
low. That is, for a given acceptable false alarm rate n,” the
statistical test is defined as

Ho
1s (To) '(1-n)
Ho

13)

where 5\’1 is given by
5 2 M — (1+/en)?
N & N3 Ll
(1+en)sek

That is, the test verifies whether ;\1 exceeds some threshold
above which the probability for Hy is less than 7.

If the matrices P, are now all non-positive definite, then,
symmetrically, we need to set cy such that the smallest
eigenvalue A ~ of XX* is visible on the left-hand side of S.
That is, we take N, n to be such that cy < c_, with c_ defined
as

c_ éinf{witk, 1 Sk‘SK}.

The decision test is in that case given by

~ H

0
v s () (11—
Fo

(14)

where A} is defined as
N 2 AN — (1—/en)?
Ny £ N5 —.
—(1—/en)sc
The above test is particularly suited to the model of Section
II-B in which the matrices Pj are non-positive definite when
pr = 0 and o = —1 for all £, corresponding to a sudden
drop of a zero mean random parameter (k) to zero.
When the matrices Pj, have both positive and negative

eigenvalues, a deterministic choice has to be made by the
experimenter. In the most general setting, to ensure a false

7We recall that the false alarm rate is the probability of declaring Fo under
true hypothesis Ho.

alarm rate lower than 7, one has to choose two scalars
a(n),b(n) € RU{—o0,00} such that

P ({5\’1 > a(n)} U {S\’N > b(n)}) <.

The choice of a(n), b(n) depends primarily on the structure of
Py and will impact the correct detection rate for fixed false
alarm rates.

In [40], the asymptotic independence of the fluctuations of
the largest and the smallest eigenvalues of GUE matrices is
proved, while the same result for the eigenvalues A1 and Ay
of ¥3* under Hy is conjectured. Following this conjecture,
(15) would become asymptotically

Ty(a(n)T2(b(n)) > 1 —n.

For any fixed b, taking b(n) = b, the hypothesis test now
becomes

. N 1 ({1—n < Ho
min o= Y. (0 () -4 2o

In particular, for b = oo, T2(b) = 1 and then the test reduces
to

15)

N Ho -1
1S (I2)7 (1-n)

FHo
which is the same test as proposed in (13). Taking instead
a(n) = —oo, we obtain the test (14).

For rather symmetrical distributions of the eigenvalues wy, ;
of Py around zero, it may be interesting to set b(n) = a(n),
in which case

o) = (1) (V=)

In this setting, the decision test is now

N A FHo
max{/\’N,)\’l} s (Ty)~! (\/1 — n) .
FHo
In the following section, we assume that the procedure of
failure detection was achieved successfully and that we are
now interested in localizing the failures.

B. Localization algorithm

We now wish to detect all possible failure events from a
set of failures indexed by k € {1,...,K}. The index set
{1,..., K} may gather all events accounting for a single,
as well as multiple, local failures. Similar to the previ-

. Lwp i
ous sections, we denote pr; = 1+ wg; + c% and
1-cw,

k,i

Ck,i 1+cw,;} 5
that Ky (i) = Jeka + oo+ Jri— if 1 < ¢ < s and
K (i) = N — (Jkyi + - -+ Jrte) if sk +1 <@ <. Finally,
we denote I ; any projector on the subspace generated by
the eigenvalues Agc, (i) 415« - > Adcy ()i

An initial hypothesis rejection may be performed at this
stage to select only those hypotheses J; such that the py ;
are consistent with the observations 5\1, ey Aw. For instance,
if the largest eigenvalue A1 is significant in the system model,

we define the mapping K to be such



one may preselect from the set {1,..., K} the L hypothesis
indexes defined by

max [A1 — pr; 1

ar min
(kl,...,k?L)C{l,...,K} ki,....kL

However, if K is large, many hypotheses may have very
close parameters py ;, so that it is hazardous to conclude on
the most likely hypothesis based only on the eigenvalues of
33*. However, since different P, matrices have in general
very distinct eigenspaces, we propose the following subspace
localization test, which decides on the hypothesis J(y« for
which £* is given by

k" = argmax gy ((V;-’fm Lﬁn)ieﬁ(pk,qk)) (16)

with g, the actual density of the vector (Vk ,LF ) ,
6 hn)ie £ (pryar)
L(pr,ar) ={1,..., Pk, qk,---,7k}, S the set of (remaining)

indexes k such that £(pg, ¢x) is non-empty, and where
Vi, & VNUL, (ﬁ,m. - Ck,ifjk,i) Ui

and R
AgC, ()41 — Phii
Lk, 2VN
— Pk,i
Note that we need here to specify the indexation ¢ € L(p, qx)
since we do not assume AS.

From Theorem 4, this probability can be approximated for
large n, which provides immediately a maximum likelihood
test for the most asymptotically likely JHj hypothesis. In
the particular case where the wy; all have multiplicity one,
according to Corollary 4, as N,n grow large, the vectors in
the test (16) are asymptotically independent and Gaussian. We
therefore substitute the test (16) by the following test, leading
to the estimator & defined as

k= arg max H F (Vi L) Clpr.a)

1€L (Pr,qK)

A% (i) 4.

a7

where f(x;Q), z € C™, Q € C™*™, is the m-variate real
normal density of zero mean and covariance C' at point x, and
C(p,:) is defined similarly as in Corollary 4, with w; replaced
by wy ;. Taking a log-likelihood notation, this is explicitly

7. : k k N—1y/k k \T
k= arg gcnelgl Z [(Vvi,n’Li,n)C(pkﬂ«) (V;,n?Lz,n)
i€L(Pr,qK)
+logdet C(pg;) + 2log(2m)] .

In the general case where wy; has multiplicity ji;, as
discussed previously, it is simpler to restrict the detection
test to the eigenspace projections (Vlkn)ze L(pe,qr) ONly. In
this case, denoting V%, = (V%, 5, V2V, ;) € Rits with
VE. p € Riri the vector of the diagonal entries of V" and
Vlan € RUk.i~5.4) the vector of the real and imaginary parts
of the upper-diagonal entries of V;* , we obtain the test

R 1 _ _
k = arg min Z (VI )TVE,
hes 1€L (Pr,qK) { [O(Pk,i)]ll
+ 5. 108([C (o)1) + 2 s 1og(2m)|.

(18)

Remark 3: We provide below some remarks and discuss the
advantages of the detection tests proposed in Section IV-A and
the localization algorithms (17)—(18) compared to the optimum
maximum likelihood approach:

o the detection algorithms proposed in Section IV-A are
very versatile, as they adapt to multiple failure scenar-
ios showing small rank perturbations in the population
covariance, and provide a theoretical expression of the
minimum ratio ¢y = N/n necessary for detectability;

o unlike the traditional maximum-likelihood approach
which tests the joint distribution of X for all hypotheses
1 < k < K, and therefore leads to calculus of the order
O(N?) (or O(N?) with some simplification methods) for
each k, the proposed localization algorithm (17) is based
on a test requiring for each k (taken from a possibly
reduced subset of {1, ..., K}) eigenvector projections of
computational load of order O(N);

« we may decide not to consider the joint fluctuations
of all eigenvalues found outside S, but only some
of them. This leads to an asymptotically less efficient,
although much faster, algorithm, where £(py, qx) in (17)
is replaced by L(p’,q’) for given p’ < pi, ¢’ < g, for
all k. For N not too large, it is in fact preferable to con-
sider only a few eigenvalues and eigenspace projections
simultaneously, due to convergence speed limitations of
the limiting normal distributions;

o the entries L}, of the vector (V%  LF ) may also be
discarded, especially in scenarios where eigenvalues of
Py are very similar for each hypothesis J{;. This may
again increase the convergence speed of the asymptotic
approximation for not-too-large N, while it is expected
to perform worse for large N.

So far, we have performed failure detection under the
important assumption that the failure scenarios form a discrete
set {1,...,K}. This assumes in particular that the failure
amplitudes are known prior to detection and localization. In
the next section, we use Corollary 4 to improve this approach
in the particularly simple example of Section II-B, when the
failure amplitude is a priori unknown.

C. Extension to unknown failure amplitude

In this section, we assume the scenario where the eigen-
vectors of the perturbation matrix Pj are independent of the
amplitude of the failure parameters, in the sense that a change
in magnitude of the failure of type k& does not affect the
eigenspaces of Pg. This is for instance the case of the single-
failure scenario of Section II-B, for which we recall that
Py expresses as P, = ﬂkR_%HekeZH*R_% with ) the
failure parameter. We now assume [ unknown, which is a
more realistic assumption than assuming it perfectly known in
advance. We also suppose that X has i.i.d. Gaussian entries.
Based on a simple extension of the algorithm presented in
Section IV-B to unknown wy, we provide hereafter a second
localization algorithm.

For notational convenience, we assume Py = wkukuz; for
each k and that wy > +/c, unknown. We then denote A the
largest eigenvalue of ¥¥* and 4 its associated eigenvector.
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Fig. 2. Network of N = 10 sensors. The correlation E[y(z)*y(j)] between
data on sensors i and j, i # 7, can be read on the link (4, j), while E[|y(3)|?]
variances are shown in parentheses.

Obviously, since wy, is not known, neither is p. Therefore,
we cannot proceed here to localization based on the fluctua-
tions of \. Instead, we will use \ precisely as an estimate of
Pk, which we know is consistent with growing N, n. From A
assumed larger than (1+ +/c)?, we want to derive an estimate
w of wy, (k is the effective failure index). This is obtained from
an inversion of the relation (7). Precisely, we obtain

G2 Z(A—(1+¢)+

%\/(;\—(1+c))2—40

N |

_ 1+c))—%\/(5\—(1+c))2—4c
if A < (1—+/0)2

From this estimate, we then obtain an estimate é of ;. as
follows
s l—cw?
¢= 1+cp—t

A natural object to consider for the failure localization is
now |uja|?— é . To provide a diagnosis test, we need to derive
the fluctuations of this random variable. From Theorem 4,
the fluctuations of v'N(|uj@|? — () depend on wy but not
on uy. From the expression of (, it is immediate that the
fluctuations of v/ N(C — (i) also depend on wjy, only. But
since wy, is estimated by w, irrespective of the failure index k,
the diagnosis test leads to finding the most likely argument
k' among K variables with same Gaussian statistics. This
therefore simplifies the estimator k' of the most likely index
k to the following minimum-distance estimator

min

K =a
'8 ke{l,...,K}

[ugaf* - ¢

Note importantly that, contrary to our proposed scheme,
the optimal maximum-likelihood localization method cannot
be easily extended to the scenario of unknown failure ampli-
tude, therefore bringing another significant advantage of the
subspace approach.

In the next section, we provide simulation results for
single failure localization for the detection and localization
algorithms assuming the failure amplitude known or unknown,
applied to the scenarios of Section II-A and Section II-B,
respectively.

D. Simulations

In this section, we focus on the application of the algorithms
designed in Sections IV-A and IV-B for single node failure in
the scenario of Section II-A and single parameter change in
the scenario of Section II-B.

1) Node failure in the scenario of Section II-A: Our first
application example relates to the sensor network model
y = HO + ow of Section II-A for N = 10 nodes, p = N,
and 02 = —20 dB. This is depicted in Figure 2, where
the entries of HH* + o2Iy are presented. We also take
ol = Zf\il(H H*)y;, which is a natural assumption to avoid
that a mere energy detector on y (k) provide a simpler solution
to our problem. This failure amplitude is assumed known
by the experimenter. In practical scenarios, this may arise
if a sensor starts returning time delayed data, supposedly
uncorrelated with real-time data but with same variance. We
assume a single failure scenario. In this context, it appears
that, for all k, wp1 > 0, wg2 < 0 and wg; is much
larger than |wyo|. It is therefore more interesting only to
consider the largest eigenvalue of ¥¥* to detect and locate
an hypothetical node failure. Under these conditions, the
theoretical threshold for cy = N/n (if N, n were large) is 0.8
with the worst-case failure corresponding to a failure of node
10. We therefore carry out 100 000 Monte Carlo simulations
of node 10 failures for n varying from 8 to 140 and under
false alarm rates varying from 10~2 to 10—, This is depicted
in Figure 3, where it can be observed that, for n = 8, detection
and localization are barely possible, although it is clearly
the starting point where detection becomes feasible. For not
too large n, while detection rates increase, we observe that
localization capabilities are still unsatisfying. This is mainly
due to the inappropriate fit of the large dimensional model
with N = 10 and with the eigenvectors corresponding to
the extreme eigenvalues of ¥3* being too loosely correlated
to their associated population eigenvectors. Larger values
of n show much better performance with miss localization
probability going to zero as n — oo. In particular, about
five times the asymptotically optimal ratio n/N is required
for localization to be very efficient. In this case, the large
dimensional model for the fluctuations of the eigenvalues and
eigenvectors is more adapted.

The same conditions are simulated for a system with N =
100 nodes in which each node has eight neighbors and with
correlation values of the same order of magnitude as in Figure
2. The detectability threshold for N/n is here 0.85 and we
still consider the worst case failure scenario. This is depicted
in Figure 4, where one can see that smaller ratios n/N over
the asymptotically optimal threshold are demanded for high
detectability and localization ability to appear, when compared
to the scenario N = 10.

2) Sudden unknown parameter change: In this section, we
consider the parameter change scenario of Section II-B. We
still consider the network of Figure 2, and 02 = —20 dB
as above. We now assume a sudden change of parameter
6(10) with 819 = 2, being the worst case scenario for failure
identification if 8j = 2 for all k. We depict the performance of
the failure detection and localization algorithms and compare
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Fig. 3. Correct detection (CDR) and localization (CLR) rates for different
levels of false alarm rates (FAR) and different values of n, for node 10 failure
in the sensor network of Figure 2. The minimal theoretical n for observability
isn =8.
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Fig. 4. Correct detection (CDR) and localization (CLR) rates for different
levels of false alarm rates (FAR) and different values of n, for worst case
node failure in a 100-node sensor network. The minimal theoretical n for
observability is n = 85.

the settings where /3, is known or unknown in advance to the
experimenter. In the former scenario, we apply the localization
algorithm of Section IV-B based on the joint fluctuations of
the extreme eigenvalues and eigenspace projections, while in
the latter, we apply the localization algorithm of Section IV-C,
where a prior step of eigenvalue inference is performed before
the study of the fluctuations of the eigenspace projections. The
results are presented in Figure 5.

It appears from Figure 5 that the suboptimal algorithm of
Section IV-C performs only slightly worse than the algorithm
of Section IV-B for large n, and that it even performs better for
small n. This last observation is explained by the inadequacy
of the theoretical value of (; for too small values of n. It
is therefore interesting to see that, for practical purposes, the
absence of prior knowledge on the amplitude of the failure
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Fig. 5. Correct detection (CDR) and localization rates for different levels
of false alarm rates (FAR) and different values of m, for sudden change
of parameter 10 in the Scenario of Section II-B. Comparison is made
between localization assuming Sj known (CLR) and localization assuming
By, unknown (CLR-2). The minimal theoretical n for observability is n = 22.

does not severely reduce the efficiency of the localization
algorithm.

V. CONCLUSION

In this article, a characterization of the joint fluctuations of
the extreme eigenvalues and corresponding eigenspace projec-
tions of a certain class of random matrices is provided. This
characterization was used to perform fast and computationally
reasonable detection and localization of multiple failures in
large sensor networks through a general hypothesis testing
framework. The main practical outcomes of this article lie first
in a characterization of the minimum number of observations
necessary to ensure failure detectability in large networks and
second in the design of flexible but simple algorithms that can
be adapted to multiple types of failure scenarios consistent
with the small rank perturbation random matrix model. We
also extend the detection and diagnosis approach to scenarios
where the amplitudes of the hypothetical failures are not a
priori known. Practical simulations suggest that the proposed
algorithms allow for high failure detection and localization
performance even for networks of small sizes, although for
those much more observations than theoretically predicted are
in general demanded.

APPENDIX A
PROOFS OF RESULTS OF SECTION III

A. Proof of Lemma 2

We shall assume without loss of generality that ¢ = 1. In
Section III-B2, we saw that

. 1 . . .
UTILU, = 2—7”% Ay (2)*H(2) "t Ag(2)dz
71



with probability one, where

Ai(2)" = 2U; (In + P)"3Q(2)U
:m U Q(2)U

and

=, +Q)'U*Q(2)(Ix + P)"2U;

= (1+w) 2 QI + Q) U Q=)

(take by and by as any two columns of U; in (8)). Similarly,

1

Ay (2)

Gl =5~ 4 Ay (2)*H(2) 7t Ay(2)dz
where 1
Ay(2)* = 2m(2)UF(I + P)" 32U
= m [, 0],
Ag(z) = m(2)QU + Q) 'U*(I + P) "2 U,

= atom 1]
Fixing z € 7y, we have
H(z)™' = H(2)"' = H(2) 'B(z)H(2)"" + O(| E(2)|*)
where
E(z) = H(z) — H(2) = 2Q(I, + Q)~'U*(Q(2) — m(2)I)U.

Guided by this observation, we write

Vin = %@m(m<><a*@u>
fAl(z)*H(z)*lAQ(z)) dz (as., n large)
— T\/g ﬁl(l(z)* — A1 (2))H(2) " Ay(2) dz
+ g A1 (2)*H(2) Y (Ay(z) — As(2)) dz

+ &
=7\ + 2o+ Z3+ &

where € contains all the higher order terms that appear when
we develop the integrand at the right hand side of the first
equality.

In what follows, we successively study each of the terms
at the right hand side of this equation. Recalling (9), the term
71 writes

_ VN

e m(z) U (Q(2) = m(:) )y

n (1 +wl)((1+w1)/w1 +2m(2))

21

The denominator has one simple zero in Int(y;). With prob-
ability one, the numerator has no zero in Int(y;). Using

the residue theorem and the identity (1 + wy)™! =
h(p1))/h(p1), we obtain

Zy = Lt hipy) VNUT(Q(p1) —

m nHU;.
o) (p1)I)U1
Similarly, the term Z, writes
1+ h(p1)
Zy =171 = h'(p1) \ﬁU1( Q(p1) — m(p1)1)Us.
Turning to Z3, we have
_ VN [ 2Pm(2)? U (Q(z) —m(2))Us
73 = 2m 2

v (1 wi) (1 +wi)/wr + 2m(z2))
which shows that we have a pole with degree 2 in Int(v;).
Write the integrand as G(z)/g(z) and recall that the residue of
a meromorphic function f(z) associated with a degree 2 pole
at zp is lim._,., d ((z — 20)2f(2)) /dz. After some simple
calculations, this results in
Glp)g"(pr) _ GC'lp1)
g'(p1)? g'(p1)?
_ 1+ h(p) (h(m)h”(m) _ 2)
h(p1) h(p1)?
VNUT(Q(p1) — m(p1) 1)U
hlp1)(1 + hipy)) :
- "2 V/NUY
h/(pl)z \/7 I(Q (pl)
We now show briefly that the last term € in the expression
of Vi, converges to zero in probability. A more detailed

argument is given in [29]. Recall that € accounts for all the
higher order terms that show up when we expand the integrand

Ty =

X

—m/(p1)I)Uy.

AlH A2 — A;H 1 A,. Let us focus on one of these terms,
namely
VN .
o f A
™ 71

X (ﬁ(z)—l —H(z) '+ H(z)-lE(z)H(z)—l) Ao (2)dz

and show that it converges in probability to zero. The other
terms can be treated similarly. First, we can show that

IH(z)™" = H(z) "' + H(2) ' E(2)H(2) 7| < K| E(2)|?
on 7; where K is some constant. Now we write

E(z) = 2Q(I, + Q) 'U*(Q(2) — a2))U
+ 2(a(z) - m(2)QL + Q)7

Noticing that A (z) and As(z) are bounded on 7y;, and writing
z = p1 + Rexp(2wmh) on 71, the result is shown if we show
that

1
\/N/ |E:(py + Re®™)||2d0 — 0 (19)
0

for i = 1,2. Lemma 1 shows that E||E;(2)||> < K’/n on
~1 where the constant K’ is independent of 2. By Markov’s
inequality, (19) is true for E;. Convergence for Es is obtained
from Assumption A4 in conjunction with the analyticity of
a(z) —m(z), as shown in [29].

Taking the sum Z; + Z5 + Z3, we obtain the desired result.



B. Proof of Lemma 3

Set 7+ = 1 and write

L [B,
U+ = { o BJ'

Let o = pr +2/V/N. Wiite U = [0, 0] and

Ijl +BlyanfQ(yn)Ul 51ynU1 Q(yn)Ul

H(yy,)

ynBlUl*Q(yn)Ul I”’*jl +ynB1U1 Q(yn)Ul
H11 f:hz
Hyy  Hy

Let us study

J\/vJT1 det ﬁ(yn) = det(ﬁzg) det(\/ﬁffln - \/Nﬁlgﬁ{zlﬁzl).

By Lemma 1,
(1 - 52/61)Ij2
(1= B/B1)1,

hence

det ﬁgg g H(l — ﬁg/ﬂl)jf

£>1

By the same lemma,
E [\/ﬁla(XX*)e[afe,b+5]||f:Il2H2:| < K/VN

and
E {IJ(XX*)G[a—e,b—i-s]”HélH} <K'/]VN

where K and K’ are some constants, hence
det(\/ﬁﬁln — \/Nﬁlgf‘\[;zlﬁIQl) — det(\/ﬁfln) —0
Let us study this last term. We write

VNH = VNB U7 (Q(ya) — alyn) IN)UL

+ \/N/gl (yna(yn) - pla(pl))ljl
+VNBi(pra(pr) — prm(pr)) 1,
=71+ 2y + Zs.
Writing
Q(yn) — Q(p1) = Qyn)(Qp1) ™" = Qyn) "Q(p1)
= N"22Q(y.)Q(p1)
we have
— VNByn U7 (Q(p1) — a(pr) U

= xﬁlynUl (Q(yn)Q( ) N™

0

( Q(yn)Q(pl))I)Ul

by Lemma 1. From A4, we further have

X P
— VNBip U (Q(p1) — m(pr) 1)UL — 0.
Turning to the second term, we can show using A4 that
no(yn) — pra
2y = pre U ZP100) s g

Again by A4, Z3 2% (. This results in
N2 det H(py +2/VN) = (T] (1= Be/ 1))

£>1

x det (VNB1p1Uf (Qpr) = m(pa) DU + Bzl (o))

o

The same argument for ¢ > 1 leads to the result.

C. Proof of Lemma 4

Recall that X X™* admits the spectral factorization X X* =
WAW™* where W and A = diag(A1,...,An) are indepen-
dent, and where W is Haar distributed on the group of N x N
unitary matrices.

From Assumption A4 and the analyticity of f1, we can show
as in [36] that

1 N
VN (N};flw) -/ f1<A>dw<A>> =

hence the lemma is shown if we show the result on

Ui*fi(XX*)Ui_ NZk 1fz()\k) Ji
U 9i(XX*)U; — N Zk:l 9i(\k) ) 1,

Let Z be a N x r random matrix with independent CN(0, 1)
elements, chosen independently of A. Write Z = [Z; ... Z;]
where the blocks Z, have the same dimensions as the U,. Then

S,=|VN

i=1

S,, is equal in distribution to
s (2@ D780 (£ = =502 ) (2(2°2) )
* L9x rgi (M), * -1
2(2°2)7 4] (g:(A) — 220 ) (2(272) 4],

where [Z(Z*Z)~ %], is the matrix formed by the columns j; +

.+ jii1 10 j1+...+j; of Z(Z*Z)"%. By the law of large
numbers, N=17*7 25 I,., hence it will be enough to show
the result on

5 _1({2; Efi(A) “Lor fi(A >I; D
" VN \ZF (9i(A) = N7 rgi(A) L
t
1 ZNJ Fihw) = L) (2020
VN k=1 gi(Ak) — trgz(r(A) ZikZi, — 15, i
where we have written Z = [z,1...2z; n]. Write ¢, =
fz()\k) - 71trf1( ) and dzk — g’L(>\k‘) - N~ ltI‘gl(A)

Up to an element rearrangement, S,, can be rewritten as the
R207++57) _valued vector

1 il
[ ,Ui ® ’
m;{ * [dm i1

where for every i = 1,...,t, the N vectors v; ; are valued in
RJ: . We shall show that thls sum converges in law to a Gaus-
sian R2GT++3%)_yalued random vector whose covariance
matrix is equal to the covariance matrix of (12) rearranged
similarly to S,,.

We observe that the summands of (20) are centered and are
independent conditionally to A. Observe also that for every k,

(20)

t

i=1



the vectors (v; )!_, are independent and that the elements of
each of these vectors are decorrelated. Based on A2 and A3,
we have

1 ZN c ! ¢ t '
1xhg {w)k @ [ z’,k:|:| [UM ® [ zk” A
N k=1 dik]];—4 dik}] iz
N
. 1 Gr o Cikdik
= dlag Iji ® N Z |:Ci,k:di,k dz2,k

k=1
2% diag (I;, ® Ri)§:1

i=1

which coincides with the covariance matrix of (12) after the
rearrangement.

Furthermore, thanks to A3, it is easy to see that the
Lyapunov condition

1 N + 24-2n
Ci,k a.s.
el [ | N R

is valid for any n > 0, hence (20) satisfies the conditions of
the central limit theorem, which proves the lemma.
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