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Abstract

This article presents a randomized linear-dispersion esgiate block code for decode-and-
forward synchronous relays. The coding matrices are obdass a set of columns (or rows) of
randomly-generated Haar-distributed unitary matriceghWespect to i.i.d.-generated codes, this
particular isometric structure reduces the intersymbtdrierence generated within each relay. The
gain over i.i.d. codes in terms of spectral efficiency is wpradl for both the LMMSE and the
ML receivers under the assumption of frequency-flat quiatiesfading. In this setting, the spectral
efficiency is a random quantity, since it depends on the mandoding matrices. However, it is
proven that the spectral efficiency converges in probgbitit a deterministic quantity when the
dimensions of the matrices tend to infinity while keepingstant their ratio, i.e. the coding rate
Consequently, when the random coding matrices are largegéndohe presented system behaves as
a deterministic one. This result is achieved by means ofghtangular R-transform, a powerful tool
of free probability theory which allows determining thetdizution of the singular values of a sum

of rectangular matrices.
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I. INTRODUCTION

Relay communications have raised a lot of interest in thé yasrs as a potential means of
introducing space-diversity techniques [2]-[5] in syssewhere the limited dimensions of portable
terminals prevent them from having multiple co-locatedeants (see [6]-[9] among others). The
main idea is that idle terminals overhear other users’ comaations and, thus, can act as relays,
forwarding the information they receive. In other words,idual array is built from multiple single-
antenna terminals.

To reduce power consumption and signaling among termimealays should be low-complexity
devices. It is therefore reasonable to assume they do netdrgvchannel state information, especially
in their transmitting phase. In these circumstances, ptsvexperience in Multiple-Input-Multiple-
Output (MIMO) systems (e.g. [2]) leads us to believe thatc®p@ime Coding (STC) is one of the
best options to achieve full spatial diversity. Referenf#¥—[14] are just few examples on that
direction.

Classical STC'’s, however, are not very suitable for mosayraietworks. On the one hand, the
design of a code is strongly related to the number of trartersjtand its complexity increases with
the latter. On the other hand, modern mobile communicati@taorks are very dynamic, with users
continuously dropping in and out of the system and wheredted humber of terminals may possibly
be quite large. It would hence be advisable to implement & eduich is flexible and easy to design,

even for a large and time-varying number of users.

A. Previous work

This need for flexibility in wireless relay networks has lohgen known. In [11], J. Laneman
and G. Wornell suggest employing space-time codes fronogahal designs as a possible solution.
These space-time block codes, originally proposed by \bKraet al. [4], are designed for a given
numberL of transmitters but maintain their orthogonality propestiwhen some of the antennas are
shut down. This implies that the maximum number of relayshm system must be known a priori.
Moreover, for more than four transmitters, the coding rateomly 1/2, thus limiting the spectral
efficiency.

The solution proposed in [13] is based on Linear-DisperSipace-Time Block Coding (LD-STBC):
each relay is assigned a specific unitary matrix which predwlinear transformation of the vector
of source symbols. The system is quite flexible, since noiquéatr relation is assumed among the
different coding matrices: when a new terminal joins themoek, a new matrix is generated without
modifying the existent ones. In this work, however, no difgtk between the transmission source
and its destination is considered. Furthermore, the choiagnitary matrices constrains the coding

rate (defined here as the number of columns divided by the aumbrows of these matrices) to
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one. As shown in [14], this is not always the best choice fdf-taplex relays: it may be enough

for the relays to send a compressed version of the messagedding rate larger than one), since
they only complement the information received directlynfréhe source. This is especially true for
orthogonal relaying protocols, that is when the source nesnsilent during the relaying phase.

A completely different approach appears in [12]. From therse message, each relay generates a
new vector of symbols by doing a random linear combinatiothefcolumns of a matrix codeword,
which is obtained from a common (within the relay set) detristic space-time mapping. It turns
out that the system performance is limited by the minimunwken the number of relays and the

number of virtual transmitters of the underlying deterrsiici STC.

B. The proposed scheme

The coding scheme presented in [14] is an LD-STBC where tliingomatrices are filled with
entries that are drawn from independent and identicallyridiged (i.i.d.) random variables. In this
paper, we try to improve the spectral efficiency by introdgctodes with more structure, while still
randomly generated. More specifically, the columns (or thesr respectively) of the matrices are
constrained to be orthogonal: the aim is to cancel (or to cedrespectively) interference generated
within the relays. For coding rate (ratio between the number of columid$ and the number of
rows N of the linear-dispersion matrices) equal to one, the lhtispersion matrices are unitary and
the system is similar to the one in [13]. However, simulatiesults show that this trivial choice is
not always the best one.

Using a similar approach as in [14], we analyze the asymppaiiformance of the system assuming
coding matrices with infinitely large dimensions, but camstcoding ratey, 0 < « < +oo. Indeed,
in this asymptotic regime, the spectral efficiency converge a deterministic value which is an
excellent approximation of the finite reality, even for soHarge dispersion matrices. Contrary to the
i.i.d. case, however, classical random matrix theory tesah the convergence of the eigenvalues of
infinite-dimensional matrices are not enough to charazgetie asymptotic behavior of the system.
New tools are borrowed from free probability in order to dedéh the present problem.

The paper is structured as follows. In the next section, ipeas model is introduced and all the
assumptions are presented. Then, general expressione sp#ttral efficiency are derived for both
the Linear Minimum-Mean-Square-Error (LMMSE) and the Maum-Likelihood (ML) receivers,
together with their asymptotic equivalents for large cgdimatrices. Next, Section IV analyzes two
special cases with closed-form solution and introducesveclomplexity approximation for the general
case. Section V presents the rectangular R-transformdnted by F. Benaych-Georges in [15] and
shows how to apply this free-probability tool to compute #symptotic spectral efficiencies of the

two receivers considered here. A numerical assessmeneafefults is given in Section VI, while
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Section VIl characterizes the low-power regime. Finallgc®on VIII concludes the paper.

II. SYSTEM DESCRIPTION

This section provides a more thorough description of théesysunder consideration. As usual,
italic, bold lower-case and bold upper-case letters demespectively, scalars, vectors and matrices.
The superscipts, 7 and ¥ stand for, respectively, complex conjugate, transpose Headnitian
transposeE|[-] is the statistical expected value operator. Given any ertegmbem, I,, is then x n

identity matrix.

A. Signal model

We consider a classical multiple-relay system with halfléx synchronous relays over frequency-
flat quasi-static fading channels [10], [11]. Communicasicare split into two phases: the source
broadcasts its message in the first phase and remains sil#mt isecond one, which is used by the
relays to forward the information they have just receivedtHis relaying phase, space diversity is
achieved by means of a spatially distributed LD-STBC, aslB],[[14]. Here, however, relays adopt
a Decode-and-Forward (DF) strategy, whereby only the tehwithat can correctly decode the source
message in the first phase participate in the second one.thlgit¢he proposed coding scheme may
also be applied to Amplify-and-Forward (AF) relays (alln®nals forward the whole signal received
in the first phase, including noise). However, the analysisve much more complex, due to the
forwarded noise.

Lets = [s; --- sx]” denote the vector containing the message from the sourae.syimbols
sg, k=1,..., K, are assumed i.i.d., with zero medh[{;| = 0) and varianceP; (E[|sk|2] = Py).

Let £ denote the set of all relays an®l the decoding subset, i.e. the set of relays that are able to
decode the source message, have a perfect copyavthe end of the first transmission phase and,
thus, participate in the relaying phase. Let= |£'| be the cardinality of£’ and, without loss of
generality, £’ = {1,..., L}. Now, denoting byh, the direct source-destination link, the destination
receives the vectadi,s during the first phase. Next, in the second phase/-theelay in£’ transmits
g:C;s, whereC; is the N x K encoding matrix described below. The complex gaircan be set

to fulfill some power constraint. Denoting by the downlink channel coefficient between thth

relay and the destination, the received signal can be wrate

hsI
d= | "|s+n, (1)
vC
where both transmission phases have been included in theulfation. In the previous equation,

n ~ CN(0,021y) represents additive white Gaussian noise and the blockiaestr

~ T
‘I’:[thdllN thdLIN C= C{ Cz]
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have been introduced to simplify the notatioB € = 3", g/haC)).

In the following sections, the spectral efficien€{f”) (conditioned on the decoding subs&) is
computed both for the LMMSE receiver and the optimum ML reeeiassuming that the channels
and the codes are known at the destination (observe thatuhs-gtatic fading assumption implies
that the channel coefficients are constant over the trasgmiof the whole source messagje A
direct application of this result is the outage-probapiliinalysis for a target transmission rafe
Indeed, according to the total probability theorem

Pout(R) = ) Pr[I*) < R| Pr[L'is the decoding skt 2)
L£cL
where the sum is over all possible subsetsCond probabilities follow from channel distribution.
However, this paper focuses on the spectral efficiency angrdperties, leaving the non-trivial outage

analysis for further contributions (see also Section VI).

B. The coding matrices

The introduced coding scheme is similar to the one preséantfb] or in [14] for AF relays. As
mentioned in the introduction, however, we propose herdferdnt model for the coding matrices;.

Observe that the vector corresponding to the signal geseiat thel-th relay is given byC;s =
Zﬁzl c; 1Sk, Wherec;y, is the k-th column of C;. Thus, a straightforward analogy with DS/CDMA
systems [17] suggests that the intersymbol interferencéheatreceiver will be reduced when the
columns ofC; are orthogonal. Note that interference will not completeyish since orthogonality
is required only within each individual relay. Extendingetbonstraint across all the relays would
imply a very significant loss of flexibility, since all mateés would have to be jointly designed to be
mutually orthogonal. Here, we are more interested in a dynaystem where the number of active
terminals can vary without significantly jeopardizing thelmal coding scheme. Furthermore, global
orthogonality is equivalent to TDMA, which is shown to be performed by STC in [11].

As a result, we model thé&/ x K matrices{C;: [ = 1,..., L} as mutually independent random
matrices with orthogonal columns. More specifically, eaotiig matrix is constructed by selecting
K different columns of av x N Haar-distributed unitary matrix, i.e. a random unitary nxaivhose
distribution is invariant by left- or right-multiplicatio by a constant unitary matrix (we say that it is
bi-unitarily invariant). We will refer to this model as Haemdes or, equivalently, as random isometric
codes.

A matrix with orthogonal columns must be such that< N, i.e.a = K/N < 1. For completeness,
the analysis is extended to the case- 1 by considering coding matrices with orthogonal rowé (
rows of aK x K Haar-distributed unitary matrix). A scaling factgfw, such thaiClcjH = aly, must

be included to guarantee that the same power constraint the ini.d. case is satisfied, which leads
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to a fair comparison of the results for the two different cesi of the dispersion matrices. Although
not as intuitive as the case< 1, fat linear dispersion matrices still improve spectralaincy with
respect to i.i.d. codes of, e.g., [14], [16]. The reason &,ttvhatever the value ef, isometric codes
result in an equivalent channel matrix that is closer to amiily matrix (the difference between
maximum and minimum singular values is lower).

To conclude this introduction, let us mention that Haar coldave been extensively studied in the
literature (see, for instance, [18]-[20]). In particulfr8] explains how to generate Haar-distributed

matrices from a random matrix with i.i.d. Gaussian entriagitng zero mean and unitary variance.

I11. MAIN RESULTS

In this section, the spectral efficiency of the presentedesysis computed assuming that the
destination has access to the code matrix and the channfficeoe# of each active relay. Two

classical receivers are considered, namely the LMMSE veceaind the ML receiver.

A. Spectral efficiency

1) The LMMSE receiverit is well known that the LMMSE filter is the best linear reosivin
terms of Signal-to-Interference-plus-Noise Ratio (SINBge, e.g. [21]). Since each symhql is
estimated independently of the others, let us focus on thedire,s;, without loss of generality, and

rewrite (1) asd = as; + ng, where

hs 0 S9
a= |0 and ng = |hdg 1| | i | +n
\ilcl “i’D SK

are the effective channel seen by the symbpland the equivalent interference-plus-noise vector,
respectively. In these definitions, we have introduced thetor c; and the matrixD such that
C= [c1 D]. Now, the LMMSE filter coefficients and the correspondingpoitSINR can be written,

respectively, as
SINR; = Pa"R'a,

where Ry = E[ngnf]. After some algebra, it is straightforward to show that tHBIFS of the
considered system can be expressed as
P P, .~ P/o2  ~ ~ -l
SINR; = =S |hs|* + =i @ (%\IIDDH\IIH + IN) ey, ©)
og ag 1+ Ps|hs|" /o
for symbols; and analogously for the other symbols.
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Considering the contribution of all the symbols, the spdatfficiency can be computed by means

of the Shannon’s formula as
K

1
TN kZ:lln(l + SINRy,), (4)

I vMvsE =

in nats per degree of freedom. The facgg_rL—N takes into account the fact that a total é&f - N)
channel accesses are employed to transmit éhiynwformation symbols.

2) The ML receiver:For a system with colored interference like the one preseimeéhis paper,
linear filters are sub-optimal receivers. To extract all itifermation contained in the received signal
d, the ML receiver is needed. Assuming independent Gaussiding at the source, the spectral

efficiency of the ML receiver in our scenario is known to be [5]

PS hsIK ~ o~
Indet Ty + o5 | 25| (Wil CHE|
71 | B¢

1
J -
ML K+N

ISH

(07

P Py/o?
- ln<1—|——;|hs|2) + /0
1+« o

1+ Py|hs|?/o?

In det (IK + GH@HE@), (5)

1
K+ N

in nats per degree of freedom.

B. Asymptotic results

Observe that both the spectral efficiencies in (4) and (5yamdom quantities, since they intrinsi-
cally depend on the randomly generated coding matr{€&g. In other words, for each realization
of the code, the system performs differently. However, avgm in Section V, both yivsg and Iy,
quickly converge to deterministic quantities when the disiensK and N of the linear-dispersion
matrices grow indefinitely while keeping constant theiiaathat is the coding rate. Before giving
more details, we need to introduce some useful quantities.

The asymptotic behavior ofyyvisg and Iy, is dictated by the asymptotic distribution of the
eigenvalues ofCH WH ¥ C, which is studied next. More specifically, we will now chamize the
asymptotic eigenvalue distribution in terms of its momeiitsen, we will show that these moments
are sufficient to compute the asymptotic spectral efficieséor largeK and N.

Let \; < Xy < --- < Mg be theK real non-negative eigenvalues of thex K interference matrix
CHGHEC. We define the empirical distribution of the eigenvaluesa®wst:

1 K
VA =2 D0 (6)
k=1

IWe use the square in?, in order to emphasize that it is a law on the eigenvalues, andm the singular values.
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whered, is the Dirac distribution (mass point) at Since the eigenvalues are generally random, their
empirical distribution is also random. However, the follog theorem states that the distributiof
converges whetk = aN — +oo, i.e. K and N grow indefinitely while their ratio tendso a.
Theorem 3.1:Let K, N — +oo0 and K/N — « € (0,1]. Then, the empirical eigenvalue distri-
bution 2, of the interference matrisxC” ¥ ¥ C converges weakly in probability to a probability

. P .
measure/? (and we writev?, — 1), meaning that

Ko / FHwk(dt) = / f(O)r3(db) @)

in probability for any continuous and bounded functipf).
Moreover:
« the support of? is compact and included if0, max;{|g;ha|* }];
« naming {m; = [t?(dt);i = 1,2,...} the moments of/?, the moment generating series

M,2(z) = Z;ff m;z' of v2 is the unique formal power series that satisfies the fixedtpoin

equation
My2(2) = Cu[2T (M2 (2))];
whereC,(z) = 2% ¢;2" is the formal power series withth coefficient
i— i—1 L
(20)° ' i
=" H(1 — 2k) Z \gihar|?
k=0 I=1

and whereT'(z) = (az + 1)(z + 1).
Proof: See Section V. [ |
Note that the sequence of momefits,; : i = 1,2, ...} is sufficient to characterize and univocally
identify the distributionz? since the latter has a compact support. Furthermore, theepeeries
M,2(z) = S m;2* can be seen as a series expansion near 0 of the Moment Generating
Functior? (MGF) of v, defined as

M) = [ o) ®)

and analytic onC \ Ry.
Note. The interference matrilCH T H W C is full rank only if K < N (a < 1). Conversely, when
K > N the matrix hask’ — N null eigenvalues andV positive eigenvalues that are equal to those

of WCCHWH . Then, whena > 1, let ;2 be the eigenvalue distribution of the full rank matrix

2with some abuse of notation, we denote dyboth the finite coding ratee = K/N for finite X and N and the
asymptotic coding rat% — a, when bothK and N tend to infinity. For each particular instance, the contéatiftes the
meaning.

®Note that this is different from the classical moment getiegafunction, usually defined &8 x [e**].
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ﬁé (recall thatC;C!" = oIy whena > 1). Denoting

by &y the Dirac delta distribution, the distributiar? is related tou? by the following identity:
— 150(dt) 1M2<dt>
[0

Mya(z) = éMw (az).

TWWHEH where we have define&v =

vA(dt) =

or, equivalently,

Since it is totally equivalent to characterize the distiitn 2 when o < 1 or the distributiony?
whena > 1, we concentrate on the caae< 1 in what follows.

Knowing that the asymptotic eigenvalue distribution exeshd is unique, we have all the necessary
tools to study the asymptotic deterministic spectral efficies (see also [1]):

Theorem 3.2:Consider the relay channel described in Section 1I-A, whk fsometric linear-
dispersion matrices defined in Section II-B. When the madiimensionsK and N grow without
bound but with constant coding rate = K/N, the LMMSE spectral efficiency (4) converges in
probability to the deterministic quantity

«
IHaar —— In(1 SINRHaar 9
LMMSE = 7 11( + )> 9)
where
P Haar
SINRM* = 2 \h ?+ _2777}17 (10)
d 1 X77 aar
P, /o2 1
X = % and e — _Z M (—).
1+ Pslhg|" /o3 X
Similarly, the deterministic limit of the ML spectral effaricy (5) is
M 2
IHaar _ 1 (1 h v ) 11
ML g n{l+ 2\ ‘ 1 T / (11)
Proof: See Section V. [

As explained above, the main motivation behind Haar-dlistéd random coding is the interference
reduction with respect to i.i.d. coding introduced in, g[@)4]. Thus, for the sake of comparison, we
report here the asymptotic spectral efficiencies of thd.idase.

Theorem 3.3:Consider the relay channel described in Section II-A, arsi@e that the linear-
dispersion matrice$C; } are filled with i.i.d. random variables with zero mean andaragel/N. The
spectral efficiency for the LMMSE receiver and the ML recei@ee given by (4) and (5), respectively.

Then, whenK, N — +oo while K/N — «a, one has

.S 7ii « P, P h
d
S. i « P, P Lf h 2 1 1
I, &5 7iid — 1+a1n<1—|— —3lhaf® + SZlﬁg’j” al ) + ( B+3- 1>, (12b)
d d
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10

where is the positive solution t@ = 1 + aﬁ%, namely
=1

2
5= 1= (1= o)X XL lghal® + \/(1 — (=o)X X lghal®) + 4x Sy lghal?
— 5 :

Proof: These results can be proven following the same guidelineengin [14] for AF relays
(see also [16], [22]). [ |

In summary, large Haar-distributed (and i.i.d.) randonedindispersion matrices asymptotically
behave as deterministic systems. Since convergence istlfestlimiting spectral efficiencies are
excellent approximations of the finite reality for practisalues of K and N, as evidenced from
the numerical simulations in Section VI.

Observe that the limits in (12) hold almost surely and noyamlprobability as those derived above
for the isometric coding scheme. It seems only natural tgemure that these convergence results
also hold in the almost-sure sense. However, the matheshstickground used here has only been
able to establish convergence in probability; besides,difference between the two convergence
modes has no real importance in practical aspects.

Before delving into the mathematical details of the prodf3ioeorems 3.1 and 3.2 (which are not
very insightful from the engineering point of view), let ustgsome more understanding about the

asymptotic eigenvalue distribution and the consequegtlar, N spectral efficiencies.

IV. MGF DERIVATION AND SPECIAL CASES

Theorem 3.2 expresses the asymptotic spectral efficiemtieeyms of M,2(z), the MGF of the
asymptotic eigenvalue distribution? of the interference matrbxCH# wH ¥ C. Even though Theo-
rem 3.1 univocally defined/,-(z), it does not describe an operative algorithm to evaluates i a
function of z at anyz € [—x, 0). Indeed,)M,(z) is defined in Theorem 3.1 as a formal power series,
which may not accept a closed-form analytical represenmtaftor all = € [—x,0). The following
lemma provides us with a more practical solution.

Lemma 4.1:For anyz € R_, the MGF M,:(z) satisfies the system of equations
L
My (2) =Y M(2),
I=1

M (2)(1+ aMi(z)) lgtha1|” (13)
: - z(l + aMyz(z)) (1 n MV2(2)) N
M (2)(1 4+ aMp(z)) lgrharl?

together with the constraints
—1<M,/2(Z)§0 —1<MZ(Z)§O,ZZ RN S
Proof: See Appendix A-A. |
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11

The system in (13) is not linear and, hence, its solution naybe trivial. In what follows, two
special cases that accept closed-form solutions are gezsamamely (i) when there are only= 2

relays in the system and (ii) when all the relay—destinatbannels are equal.

A. Some special cases

We first consider the two-relay case. As shown in SectiontM§ in this case that isometric codes
present the highest gain over i.i.d. codes.

Proposition 4.1: Consider the relay channel presented in Section II-A. Asstivat Haar-distributed
random LD-STBC is employed and that the number of relays is= 2. Then, the MGF of the

asymptotic eigenvalue distribution of the interferencerimaCH ¥H ¥ C is given by

[1 + oz(zw(_))z —z(1+ a)w(ﬂ} .

My2 (Z) = —
a1+ (240)? = 2:9)]
)2 )2
[a(290) = 2299 [1+ (290)° = 229

1— |1-« 5 , (14)

{1 + a(zv(*))Q —z(1+ a)ry(ﬂ}

where we have writtery (") = |g1ha1|> + |g2hao|* and~(7) = |g1har | — |g2has|?.
Proof: See Appendix A-B. |

As mentioned in the introduction, it is clear from (14) thhae tasymptotic spectral efficiency of
the considered system (which is expressed in term&/of(z), see (9) and (11)) depends neither on
the specific instance of the code nor directly on its size,dmly depends on the coding rateand
on the relay—destination channel gains.

A simpler expression can be found when assuming that all tieeti’e downlink channels are
equal. This is clearly a purely didactic case study, sineeettexists a null probability that all relay—
receiver channels are equal (see also [1]). However, itvallas to to get some insight into the
isometric coding scheme when comparing with the i.i.d. chsieed, the comparison readily extends
to the general case, as it will be clear in the following swti

Proposition 4.2: Consider the relay channel presented in Section II-A. Asstivat Haar-distributed
random LD-STBC is employed and th|@thdl|2 =1,l=1,...,L. Then, the MGF of the asymptotic

eigenvalue distribution of the interference mat€i¥! W7 CW is given by

iL(a—i—l)z—l—k\/(L(l—a)z+1)2—4(L—a)z

M, =
v2(2) 2c¢ 1— L2z

(15)

Proof: See Appendix A-C. [ |
As a remark, it is straightforward to verify that (15) and YXépresent the same function when

setting L = 2 and |g1ha1|* = |gahaa|” = 1 (i.e. 7)) = 0 and () = 2).
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In the general case, the solution of the non-linear syste(t3ih can give rise to equations whose
order increases fast with the number of relays. To avoid ftp¥o deal with such complicated

equations, we propose next a low-complexity procedure fzaqimate M, (z).

B. A moment-based approximation

We have already mentioned (see Theorem 3.1) that the distib.? of the eigenvalues of
CHUHWC has a compact real support, containedtnmax;{|ghq|?}], and, hence, is univocally
determined by the sequence of its momepts,i =1,2,... }.

The basic idea behind the approximation proposed hereiafter replace the measute€ by a
new discrete measure of the ford} = >°}_, 7k, .., such that their firskn — 1 moments are
respectively equal, whene € N, will depend on the allowed complexity (see also [1]). Forrgve,
the points{\; ,,};;_, should fall in the support of? and, obviouslyy, > 0,Vk € {1,...,n}, with
> k—1 Ykn = 1. The motivation behind this choice is that well-known réswin the moment problem
[23]-[25] tell us that the point-wise convergengé,(z) — M,2(z) is exponential inn, where we

denote by

- A
Mn(z) — Yk,nAk,n
P 1—2M\en

the MGF of 72, Thus, we propose the following approximations:

n
Haar o N~ ek

n )
b1 1+ X)‘k,n

Qo P, - -
Iﬁiar ~ 1 111(1 + J—S|hs|2) + 1o Z’Yk,n In(1 4+ XAkn)-
k=1

+a 2 —
Observe that, according to the last equation, the propgggebaimation is equivalent to splitting the
transmission oven parallel channels, thé-th one having channel gaik ,, and carrying a fraction
Yk, Of the total information.

1) The Gauss-Jacobi mechanical quadratuleremains to explain how to compute the coefficients
Yk.n @nd Ag . The problem of approximating/,:(z) by M, (z) is known in the literature as the
Gauss-Jacobi mechanical quadrature and makes use of iy ifeorthogonal polynomials [23],
[24]. We summarize hereafter its main points.

For the probability measure® with momentsm; = [ ¢‘v%(dt), we define the scalar product

(f.g) = / FVgA(AN)

on the space L?(v?). Then, the Gram-Schmidt orthogonalization procedure campplied to the

“Recall that, given a measure spa® X, 1), the spacel?(p) is, roughly speaking, the vector space of all functions
£() such that[ [£()]*p(dt) < +oo.
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sequence of polynomialg\" : n = 1,2,... }, defined as non-negative powers xfAs a result, we
get a sequencép, (M)}, such as

« the polynomialp,,(\) has degrees and positive leading coefficient;

« the polynomials are orthonormal, i.,,p,) = 1 if and only if n = ¢ and zero otherwise.
Equivalently, the polynomialg,,(A) can be computed recursively, thanks to the following result

Proposition 4.3 (The three terms recursion relation [24])he family of polynomials{p;} satis-
fies the relation

APk(A) = br—1pp—1(A) + appr(N) + beprs1(A),

where the coefficients;, and by, defined bya, = (App(A), pr(N)) andb, = Apr(N), pry1(V)), are
positive. The recurrence formula is initiated by; = 0 andpy(A) = 1.

The coefficient{a;} and {b;} will be functions of the moments of? as, for example:

5 m3—2m1m2+m‘z’
apg = my b(]: mo —my a] = m m2 b1:
27"

Finally, for a givenn, the points{\; ,},_, simply are then zeros ofp,(\). The Christoffel-

Darboux formula permits to compute the coefficies , },_;:
1
>0 pi(Aen)?

V. PROOFS OF THEMAIN RESULTS

Yen =

In Section lll, the spectral efficiency of the consideredteyswas said to converge in probability
to a deterministic constant when the dimensiéghsnd N of the coding matrices grow indefinitely
but with constant ratiox = K/N. Furthermore, the limit was expressed in terms of the asytiept
distribution2 of the eigenvalues of the interference mat@¥ ¥ ¥ ¥ C. In what follows, we will first
discuss the convergence of the empirical eigenvalue liigioin /2, to »? and show how to compute
the asymptotic distribution®. Then, we will prove the results stated in Theorems 3.1 apdRaders
that are not interested in mathematical technicalities sidy this section since it is not prerequisite
for the following sections.

The results below are based frae-probability theory[26], [27], which describes the behavior of
random variables defined on non-commutative algebras. itncitntext, free random variables are
the equivalent of independent random variables in classimamutative probability, meaning that
the distribution of sums and products of free non-commeatandom variables can be expressed in
terms of the singular distributions of the original varedal

It is a well-known result of random-matrix theory and freelpability that largeN x NV independent
Hermitian unitarily invariant random matrices can be seeasymptotic almost sure models for free

non-commutative random variables [28]. Now, assume Matand M, are two such matrices and
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that the distributions of their eigenvalues (which are rdak to Hermiticity) tend to the measures
and i, respectively, asv — +oo. Then, the eigenvalue distribution df; + M5 tends tou; B o,
the free additive convolution gfi; and us [27], [28]. As a consequence of [29, Proposition 3.5], a
similar result can be stated for bi-unitarily invariant m@ags and the distributions of their singular
values (singular law or singular distribution). L@t and/i» be the asymptotic singular lawsf two
N x N independent bi-unitarily invariant random matridek, and M. Denote byu, and uo their
symmetrization, i.eu;(B) = 3(fi,(—B) + fi;(B)) for any Borel setB. Then, the symmetrization of
the singular law ofM; + M, tends tou; B us.

Now, consider the interference mat@? & ¥ C. Denote byv the asymptotic distribution of the
singular values of’C, which is related to the asymptotic eigenvalue distributid CZ &7 ¥ C by

the identity
/ A (dr) = / ) dr),

for any measurable functiofi(-). Since®wC = Zle g1hgCy, intuition suggests that the distribution
v may be computed from the singular value distributions ofrtragrices{g;74C;}.

Unfortunately, the traditional free additive convolutiis not helpful in the general case where
K # N, since the matrice€,; are not square and, thus, not covered by classical free Ipilitpa
results. An analogous theory for rectangular matrices e lieveloped by F. Benaych-Georges
in [15] (see also [30]). Since these concepts are very regedtprobably not widespread through
the technical community, we summarize here the main poindsraefer the interested readers to the
cited papers for a more detailed analysis of the topic. SiheanatricesC; and C{{ have the same
non-zero singular values, we will only consider the case 1, the extension to the case > 1

being straightforward.

A. Preliminaries

Let us focus on a symmetric distributign(recall that a generic distributiofa can be symmetrized
by taking u(B) = 3(i(—B) + i(B)) for any Borel setB) and define the probability measure
p? on Ry to satisfy [ f(t*)u(dt) = [ f(t)u?(dt) for any positive measurable functiof(-). The

moment generating series pf is defined as the formal power serig§,» (z) = toe

mnp2", where
my, = [t"p?(dt) is the n-th moment ofu?.
For a givena € (0, 1], we denote byH,,(z) the rectangular Cauchy transform with ratioof the

distribution ., defined as

H,(2) = 2T o M,2(2) = z(aMy2(z) + 1)(M,2(2) + 1), (16)

5The empirical distribution of the singular values ofAa x N matrix is defined as in (6), replacing eigenvalues with
singular values. Analogously, its limit faV — +oo is intended as in (7).
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whereo denotes composition in the ring of the formal power series], where we introduced the
function T'(z) = (cz + 1)(z + 1). Let us denote byH,, !(z) the formal inverse of the power series
H,(2), thatisH,(H,'(z)) = H, '(H,(z)) = =, which exists since,,(0) = 0 and H,,(0) = 1 (the
first derivative of ,,(z) computed at = 0).

Similarly we defineU(z) as the formal inverse df'(z) — 1 (observe thaf’(0) = 1 and7"(0) =

a + 1, so thatU (z) always exists) and write theectangular R-transform with ratiev of 1 as

Cpu(z) = U(H;(Z) - 1), 17)

which is well-defined since'H,!(z) is invertible with respect to multiplicationi@,'(z) =

% + ...). The formal power serie§’,(z) identifies unambiguously the underlying probability
measureu.

To recovery from C,(z), we may proceed as follows. Noting th@lz) is the formal inverse of
T(z) — 1, from (17) one can Writeﬁ = T(Cu(2)). Since H,(H, ' (z)) = H, ' (Hu(2)) = =,
the last equation implies

H,(2) = 2T[C,(H,(2))]. (18)

By comparing this with (16), we readily see that we can compuf-(z) as the formal power series
satisfying the equation
My (2) = C[2T (M2 (2))]. (19)

It is shown in Appendix A-A that there exists a unique formeuver series\/,:(z) that is a solution to
this equation. Hence (19) completely characterizgs(z) from C,(z). Recall thath/,- (z) univocally
identifies the underlying distributiop? by means of its moments, which can always be computed
from (19). Further details are given in Section V-B.

We are now ready to restate [15, Theorems 3.12 and 3.13]vdrie at the basis of the technical
results below. First, let us recall that the singular law df & N (K < N) matrix X is % Zszl Ocy.s
where{gk}kK:1 are the singular values &. Also, a random matrix is called bi-unitarily invariant if
its probability measure is invariant by left- and right-iplication by constant unitary matrices.

Theorem 5.1 ([15, Theorem 3.13]ket K (V) be a sequence of integers such thatN)/N —

€ (0,1]. Let Xy and Yy be two sequences ok x N independent random matrices, one of
them being bi-unitarily invariant. Assume that the symiaetions of their singular laws converge
in probability towards the probability measures and iy, respectively. Then, the symmetrization
of the singular law ofX + Y converges in probability to a new distribution that we denby
ux By py, the rectangular-free additive convolution with ratio of the measuregx and uy .

Using the rectangular R-transform introduced in SectioA,the resulting distribution can be

computed by means of the following theorem.
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{p, ..., 00} — M2 (2),..., M2(2)} —— {Hy (2),...,Hy,(2)}

{Cu(2),...,C(2)}

v=yp1 By By pur +—— v — M, (z)

Fig. 1. Algorithm for computingy = p1 Bq -+ - B pr.

Theorem 5.2 ([15, Theorem 3.12]Biven« € (0, 1] and the two symmetric probability measures
px anduy on the real line, the function’,, (2) + Cy, (2) is the rectangular R-transform with ratio

« of the symmetric probability measurey B, p1y. Equivalently

CMXEHQMY = CMX (Z) + CMY (Z)

This implies that the binary operatéi,, is commutative and associative.

By associativity, Theorem 5.1 can be readily extended t(sequences of) bi-unitarily invariant
matricengé), e ,Xg\f) with asymptotic singular lawg, .. ., uy,: the symmetrization of the singular
law of XS) 4+ X%) isv = u By --- B, pur, and can be evaluated following the algorithm

summarized in Fig. 1. Now we are ready to prove Theorems 3d13ah

B. Proof of Theorem 3.1

Let us denote by?, the empirical eigenvalue distribution 67 &/ ¥ C, namelyv? = + K 4, |
where{\; : k =1,..., K} are theK positive eigenvalues of the matrix.

Note that{\/A; : k = 1,...,K} are the singular values a#C = >, ghqC;. According
to the isometric coding scheme described in Section lI-Bheaatrix C; is built by extractingiK
columns of aN x N (K < N) Haar-distributed unitary random matrix. Then, each majrhy C;
is bi-unitarily invariant and the symmetrization of its girlar law is 1y = 3(3_ g5 + Ogihu)s
independently ofV. Theorem 5.1 implies that the singular lawB T converges weakly in probability
to v = puy B, - - B, pr and, equivalently, that?, B2 whenK = aN — +oc.

Besides, according to the theory presented in Section \W& MGF of 2 satisfies the identity
M,y2(z) = Cy[2T(M,2(2))], (20)

whereC,(z) = Zle C,,(z) as stated by Theorem 5.2.
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Appendix B shows that the rectangular R-transformuptan be expressed as the series expansion

A/ 1+ 4a]glhdl]22 —1
CM(Z) =

20 ’

of the function

analytic On[—(4a|glhdl|2)_1, +00). This implies that the rectangular R-transform of the stion
v accepts the analytic representation
L L L 5

Cu(2) :;Cm(z) = %;[\/Hmwmdﬂ -1, (21)
whenz > —(4a max{|glhdl|2})71. The coefficients{c;} in Theorem 3.1 are those resulting from
the Maclaurin expansion of (21).

By rewriting (20) asM,:(z) = S+ ciz' (M2 (2) + (a + 1) M,z2(z) + 1)’, and inserting\, - (z) =

Z;L:Of m;z', the momentgm;} of 2 can be computed by comparing corresponding coefficients of

equal powers of. The first two moments are

L
my=c1 =Y |ghal® and (22a)
=1
L 2 L
my = (a+ 1) + ¢ = (a +1) <Z |9lhdl|2> —a ) |ghal’. (22b)
=1 =1

Any symbolic computation software can help in writing theesssions of higher order moments.

C. Proof of Theorem 3.2

The asymptotic spectral efficiencies follow directly fronetresults above. Lety denote the relay

contribution to the SINR (3), namely
~ ~ ~ -1
— L (X\IIDDH\IIH + IN) Fe,.
Recalling thatC = [c; D], the matrix inversion lemma implies that

NN

N — 57— >
7 I —xnn
where

~ ~ e~ g~ -1 -
— (X\IICCH\IIH n IN> Te,.

~ o~~~ -1~ ~  ~~
Let Ay = (XCH\IIH\IIC + IK) CHWHWC. Then, the following result holds true:
Proposition 5.1: Considerny and A i as defined above. Assume thgy N converges tax as N

tends to infinity. Then

. 1
. ("N K “{AN}> =0

almost surely.
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Proof: Sincetr{Ay} = tr{éH\f’H (X@GGH@H 1 IN> _1(176}, the previous result is a direct
consequence of the symmetric distribution of the column€ofhe formal proof follows the same
guidelines as that of [18, Proposition 3] and is thus omitted [ |

Now, the quantity% tr{A} can be written in terms of the empirical eigenvalue distitu (6)

of CHWHYC as

1 t
—tr{An} = x(d).
Ay} = [ ork(an
Theorem 3.1 tells us that?, = 12 when K = aN — +cc. Since 17 is a bounded function of

t > 0, we can state that
1y {An} — / ! 2(dt) = 1 (—x) in probabilit
K AN 1+ Xty X priTX P Y

The last identity follows from direct comparison with (8)in&lly, Proposition 5.1 implies

1
li _ pHaar _ __M2 —).
podm v =7 Mo (=)

Note thatn"#®" is independent of the actual symbg). Then, fork = 1,..., K, SINR, LN
SINR122* as in (10) andliyvvsE LA IE&%SE as in (9) due to continuity ofiy = yn(nn) and of
the logarithmic function.

The asymptotic ML spectral efficiency can be easily derivgddzalling that
d 1 1
—-Indet(I+B) = - tr{xB(I +2B) }
for any square matriB. Then, the spectral efficiency can be written as

a P a 0111 e~ ~ -1
Inip, = 1 (1 5 2) —[—t{ CH\IIH\I'C(I _ CH\I'H\IIC) Hd
ML 1—|—an —i—agl!s\ +1+a ,XzKrZ K—Z Z,

sincelndet I = 0. The asymptotic spectral efficiency (11) can be obtdingdnoting that

L R Tt DRI T 1.0 7o) N DL S UV B P
iz (1x - ) SR v ()

1— 2zt
and that the last expression tends in probability to the rmirgenerating function (8) whek =

aN — +o00, as seen before.

VI. NUMERICAL ILLUSTRATIONS AND SIMULATIONS

This section gives a numerical assessment of the resulteaBammarizing, the presented system
behaves (converges in probability to) a deterministiceaysivhen the size of the randomly-generated
coding matrices grows large keeping constant the codirggaaiThe asymptotic spectral efficiency

is given by (9) or (11), according to the chosen receiver.eblisthat both expressions dependwon

Formally, one should show that the argument of the integralpper-bounded by a positive integrable function before
taking the limit. However, this step is a straightforwarehsequence of, e.g., Montel's theorem [31] and is thereforited.
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Fig. 2. Simulation results: average spectral efficiency miative standard deviations. System assumptidhgo2 = 1,
hs =0, L =2, {|giha|’} = {1,1}, « = 3/4 and K = 3M, N = 4M. The ordinates are normalized with respect to the
asymptotic spectral efficiency at = 3/4, see Fig. 3(a) and Fig. 3(b).

only and not onK or NN directly. It turns out that these limiting values are exeetlapproximations
of the finite-dimensional codes, even for not-so-largedirdispersion matrices. To illustrate this, in
Fig. 2, we represent the average spectral efficiency overtlomegsand different realizations of the
codes, together with the corresponding standard deviafibthe values are normalized with respect
to the asymptotic spectral efficiency. The coding ratés fixed to 3/4, but the dimensions of the
code increase withh/, namely K = 3M and N = 4M. Note that forM = 10, which corresponds
to K = 30 and N = 40, the error is lower than 2%.

Fig. 2 also depicts the performance of a coding scheme bas&tlatsh-Hadamard matrices, i.e.
each linear-dispersion matrix is built @& = S; W, where theN entries of the diagonal matri; are
i.i.d. 4-PSK symbols an®V; is made of randomly-selected columns of ahx N Walsh-Hadamard
matrix. It is evident that the two coding schemes have sinpilgformances, thus suggesting that the
analysis presented in this paper can also be used to modal#ih-Hadamard-based solution.
This aspect can be particularly interesting in practicalligptions, since randomly scrambled Walsh-
Hadamard codes are already used in, e.g., UMTS cellularankséwNote however that the proposed
solution based on Haar-distributed unitary matrices isaritaxible since we can drop the constraint
N=2"n=1,2,...

Fig. 3(a) depicts the asymptotic LMMSE spectral efficien8y és a function ok for different
values of the numbeL of relays. The antiderivative of/,2(z)/z, which is needed to depict the
asymptotic spectral efficiency{ia® of the ML receiver (11) in Fig. 3(b), can be straightforwardl
computed by means of, e.g., [32, Formulas 2.261, 2.264-2a286]. To focus on the effect of the
codes, all the curves refer to the case= 0.

For both the receivers, the figures also show the asymptpéctsal efficiencies corresponding to
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(a) LMMSE receiver (b) ML receiver

Fig. 3. Spectral efficiency as a function e@ffor isometric (solid line) and i.i.d. (dashed line) COdH&|2 =0,Ps/o5=1

and different numbers of relays, all with unitary channehga

the use of i.i.d. codes as obtained from (12). By direct caimspa of the two coding schemes, one
notices that isometric codes introduce some benefits, agdearticipated. However, the gain over the
i.i.d. scheme — which is around 17% in spectral efficiencyr{paring maxima) when considering
two relays and the LMMSE filter — decays fast as the number ldyseincreases. Indeed, Haar
codes only cancel the interference generated within edaly;rimterference among different relays,
which becomes predominant when the number of relays ineseas not attenuated by the use of
Haar coding matrices. Besides, note that the benefits asearfgsortant with the ML receiver (only
around 6% with two relays), which is less sensible to colargerference.

The curves in the two graphs also highlight the fact that tbdirgg ratea. should be tuned to
maximize the spectral efficiency. Unfortunately, anabfic locating the maximum is unfeasible, due
to the complexity of the expressions involved. The congdesituations offer, nevertheless, a clear
counterexample that the trivial choiee = 1 is not always the best one: maxima can be located
both ata lower than 1 (LMMSE example) and at larger than 1 (ML example). Fig. 4(a) and 4(b)
compare the spectral efficiency achieved by the two codifgrees at their respective optimum
coding rate (numerically computed). Once again, one maicedhat the maximum gain (around 2
dB) of isometric codes over i.i.d. codes is obtained with tetays and LMMSE receiver.

The moment-based approximation introduced in Section l\éBalidated by comparison with
simulation results in Fig. 5, fol. = 2,3 and for different values oh. Observe that matching
three moments (i.en = 2) of the asymptotic eigenvalue distribution of the inteefere matrix
CHUHEC suffices to obtain a good deterministic approximation of rdcamly generated code of
length N = 100, which is realistic in practical applications.

As a final remark, we resume the considerations about théiomship between instantaneous

spectral efficiency and outage probability that we stame8ection 1I-A. As mentioned there, further
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Fig. 4. Spectral efficiency as a function of the SNR/c3 for isometric (solid line) and i.i.d. (dashed line) codes.

|hs|2 = 0, besta and different numbers of relays, all with unitary channehga

— sim., N = 10 — sim., N =100
0.5 6- approx., n=1 T 0500 approx., n=1 T __Z--d--o-_g__
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T [ |o-—eapprox, n=3 B ML 4 ¥ [ |e-approx., n=3 7
o {53 ©-----0 - _ _
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© © /o
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2 2
(a) L =2, {|glhdl| } = {0.57 0.8} (b) L =3, {|glhdl| } = {0.37 0.5, 0.8}
Fig. 5. Comparison between simulation curve and approximatforn = 1,...,4. Systems assumption®; /o3 = 1,

|hs|* = 0 and N = 100. Blue curves represent the LMMSE-receiver case, while tedes represent the ML-receiver case.

investigation outside the scope of this work is needed fanaaugh understanding of the outage
behavior of isometric LD-STBC. Indeed, the instantanequscsal efficiency either is expressed
by a very involved formula (casé& = 2, see (14)) or does not admit a closed form expression
(caseL > 2). However, a rough comparison with the i.i.d. LD-STBC sclketan already be made.
Let us consider the outage probability equation in (2) anté nfirst, the decoding set’ does not
depend on the coding scheme implemented at the relays. Mowarding to the results of this paper,
the spectral efficiency obtained by a given decoding setdghdri for isometric LD-STBC than for
i.i.d. LD-STBC. This implies that isometric coding achisviewer outage probability under equal
conditions, as it can be observed in Fig. 6, where we repatete simulation results. Equivalently,
Fig. 7 depicts the simulated = 0.1 outage capacity (more significant in the low-power regime)
C. = max{R|P,,+(R) < }. Unfortunately, at least for these two examples, the gamoismpressive

and takes values around 0.5 dB for the LMMSE receiver (ana éwger for the ML receiver).
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Fig. 6. Outage probability fol, = 2 relays, unitary Fig. 7. Outage capacitf: = max{R|Pout(R) < £}
channel variances and target transmission Rate 0.3 with e = 0.1. System parameters are set as in Fig. 6

nat/s/Hz. The coding rate is fixed to 2.3 for the ML
case and to 0.84 for the LMMSE case.

VIl. THE LOW-POWER REGIME

As mentioned in the Section I, probably the main motivati@hibhd the introduction of relays is
the desire of achieving high data rates by means of dis&ibspace-diversity techniques. However,
relays may also be helpful in systems where the receivedabtgANoise Ratio (SNR) is very low,
because of strict energy requirements (e.g. sensor netjvorfkarge source—destination distances (e.g.
satellite communications). By improving the quality of {ivk, relays may reduce power consumption
at the source or increase the communications range.

For this reason, in this section we describe the low-powew{de-band) regime of the considered

relay channel. More specifically, we compute the minimummadized energy per bit that allows

) _l2
<F0)min a I(O)’ (23)

wheref(o) is the first derivative of the spectral efficiency in the lirfor the SNR tending to zero,

reliable transmission, namely [33]

expressed in nats per degree of freeddyy.denotes the noise power spectral density. Besides, as

the energy increases frofi;, /Ny) the spectral efficiency presents a slope given by [33]

. 2
So = —2[§§8;] (in bits per degree of freedom per 3 dB) (24)

being 1(0) the limit for the SNR tending to zero of the second derivatifehe spectral efficiency.

In other words, for the reference SNR= Ps/o—§ tending to zero, we need to compute the limit
of the first- and second-order derivatives of the spectfidiefcy. Letm; andms be the first two
moments of the eigenvalue distributiofdl of the interference matrixCH” ¥ ¥ C, which are given

by (22) in Section V-B. Then, the following results hold tr(sze also [1]):
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Proposition 7.1: Consider the asymptotic spectral efficiencies derived byofém 3.2 for isometric

LD-STBC. Than, the first two derivatives computedgn= 0 are

algg?ﬂ p=0 T j Q (|h3|2 + ml)’ (252)
821531%\51313 o 4 2 2
T pZO:—1+a(lhs\ + 2|hg]| m1+2m2—m1), (25b)
for the LMMSE filter and
%}M i ia(!hﬁ +my) (26a)
LA = a2l ) (26b)

for the ML receiver.
Similarly, the first and second derivatives@at= 0 of the spectral efficiencies obtained with i.i.d.

LD-STBC (see Theorem 3.3) are given by:

ore S TR +§L:| hal?* ), in both cases
o | T Trallm gihall” |, :
p =1
92 iid [ 2
ZILMMSE| D iy d oy opp h 2 hai?
02 . T+a| |hs|* + 2| |Z|gl al> + Qa+1)( > |ghal ,
p= =1 =1
82111\1/[‘}4 a | L
= — hs 2|hg h h
A +a |hs|* + 2|hg|? lz;’gz al’ + (a+1 Z’gl al?
Inserting these results into (23) and (24), one readilyiobi@;,/Ny), ;. and the slopes;MMFHaar
Sé\/[L,Haari Sé;MMSE,iid, Sé\/[L,iid.
Proof: See Appendix C. [ |

A. Slope comparison

Since the four schemes (two possible receivers and twoljessides) present the same minimum
energy-per-bit, it is interesting to compare the slopesefdpectral efficiency a&,/N, approaches
(Eb/No),in from above. From the expressions of the second-order diggga it is straightforward

to verify that Haar codes outperform i.i.d. ones for both tbeeivers. Indeed:

S r
Sé;l\/ﬂ\/[ E,Haa; . N 2 Zlel |glhdl|4 (27)
Sé;lVIMSE,ud |hs|4 + 2|h3|2m1 4 2y — m%7
Sé\/[L,Haar B a Zlel |gl hdl |4 -
ML,iid 4 2 : ( )
Sy ’hs’ +2‘h5’ my1 + mg

0
More meaningful is the comparison between the two recemdrsn employing isometric codes.

By replacing the expressions of the second derivatives,otm@ins:

ML, H
Sy mo —m3

— ____ — 14
SéMMSE,Haar |hs | + 2|hs | mi +m2

(29)
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Fig. 8. Spectral efficiency v€,/No: comparison between real curves and low-power (LP) apprations for the LMMSE

(a) and the ML (b) receivers.

It is straightforward to show that
SML,Haar

0
1 < SLMMSE,Haar <2

0
Observe that the casg)' "/ gEMMSEHar _ 1 arises only when the variance of the distribution

12 vanishes, i.e. whem; —m? = 0. This condition implies that the matri¢” &7 wC is, up to a
constant factor, an identity matrix. This is another evigeaof the optimality of the LMMSE receiver

in the white-interference signal model. Nevertheless;esin

L 2L
my —mi = a [(Z |9lhdl|2> -3 |9lhdl|4] :
1=1 1=1
the interference can never be whitened, except for theatroasea = 0.

Note that the three ratios (27), (28) and (29) tend to onmaé increases, meaning that all the
coding/receiver schemes are equivalent in that situafléne reason is that the relay contribution
becomes less important when the quality of the direct linkigh.

Fig. 8 compares simulation curves with the approximatioasvdd above, both for the LMMSE
receiver (see Fig. 8(a)) and for the ML receiver (see Fig))8(bhe gain of Haar coding over
i.i.d. coding is evident. Besides, as commented in Sectiorm¥ can notice once again that Haar
signatures are especially useful with the LMMSE receiveie do higher sensitivity of the linear

receiver to colored interference.

VIIl. CONCLUSIONS

This paper has presented a randomized distributed linepe«dion space-time block code for the
relay channel which is based on isometric matrices. Thedexshow some gain with respect to
similar i.i.d.-based ones [16], [22]. This advantage is thu¢he orthogonal structure of the coding

matrices, which removes intra-relay interference. ligaiand simulation results suggest that isometric
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codes are more suitable in systems with a low number of relageed, as we add more terminals,
the interference generated within each relay becomesgilglgliwith respect to the one due to the
superposition of all relay transmissions. Furthermore,difference between the two coding schemes
is more significant when employing a LMMSE receiver, whicmigre sensible to colored interference
than the ML receiver.

The analysis has been carried out in the asymptotic doma@&nwhen both dimensions of the
coding matrices grow indefinitely but keeping constant tbdirg rate«. Indeed, as in the i.i.d.
case, large enough random isometric codes show a detetimiméhavior, independent of the specific
realization of the matrices. Results have been derived &grtiag to the rectangular R-transform, a
recent result of probability theory that allows to estimtite distribution of the singular values of a

sum of rectangular matrices.

APPENDIX A

PROOFS OFSECTION IV

In this first appendix we report the proofs of the results ictiea 1V.

A. Proof of Lemma 4.1

First of all, let us prove formally the following result of &on V-A, namely the uniqueness of
the solution of (19).
Lemma A.l:Let C,(z) be the rectangular R-transform with ratio of v. Then, there exists a

unique formal power seried/,-(z) that satisfies
M,2(z) = Cy[2T (My2(2))],

with 7'(z) = (az + 1)(z + 1).
Proof: Recalling the definition (16) of the rectangular Cauchy $farm with ratioa of v2, the

fixed point equation can be rewritten as
M,2(2) = Cu(Hy(2)) (30)

or, as in (18),H,(z) = zT[C,(H,(2))]. SinceC,(0) = 0 andT'(0) = 1, the last equation satisfies
the assumptions of the Lagrange inversion formula [34],cwhimplies thatH, (z) is unique. From
(30), and using the fact thdt, (z) is invertible by composition, we see thaf,:(z) is also unique.
[
By definition, we know that the rectangular R-transformuofs the sum of the rectangular R-
transforms of the original distributiongy; }, namelyC, (z) = SO, C,,(z). We assume now that
there existL functions M;(z) such thatM,:(z) = 1, My(z) = Y1, C, |:ZT<ZIL:1 Ml(z))},
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where the second equality yields from (19). Furthermorey thre solutions to the following system

of equations:

M (2) Chu, {Z<1 +ayl, Ml(z)) (1 +30 Ml(z))]

M(=)| [ [2(14 @ S M=) (14 S0, Mi2) )|
It is simple to prove that this system has a unique solutibns kenough to notice thad/;(z) =

C,,(H,(z)) and then each of the previous equations can be written as
L L
Hy(2) = 2(1+a > Cu(H,(2)) (14 Cu(H,(2))).
=1 =1

Similarly to the proof of Lemma A.1¢p(z) = (1 +aX Cm(z)) (1 + 38, Cm(z)) satisfies
the hypotheses of the Lagrange inversion formula, whichliéeponce again that/, (z) and, thus,
M,(z) = C,,(H,(z)) exist and are unique.

We can now apply the transformatian— z(1 + ax) to both sides of the system and obtain the

equivalent identity

My (2)(1 + aM(2)) |91ha |

L
:z<1+aZMz(z)) <1+ZM1(2)) : , (31)
My (2)(1 + aMy(2)) - i jgzhal?

where the right-hand side has been simplified knowing Mé,il(z)+cm(z) = |giha|*~ (see (35) in
Appendix B). Note that this transformation can introduckisons. However, only one s€t\/;(z)}
will generate a valid MGF as stated by Lemma A.1.

Now, consider)M,:(z) as a function ofz on the negative real axi®_. From its analytic form
(8), it is straightforward to prove that/,-(z) is monotonically increasing and bounded between the
values—1 and zero. This fact implies that each functidfy(z) is negative and lower-bounded by

—1. Indeed, for each individual equation of the system (3&), i.
Mi(2)(1 + aMy(2)) = 2(1 + aMyz(2))(L + Moz (2)) lgthal?,

one realizes that the right-hand side is always negativealr¢hat we considerr < 1). Then, it
must beM;(z) € (—1/«,0]. Now, sinceM;(z) < 0, the equalityM,2(z) = Zle M;(z) implies that
—1 < M;(z) < 0. Thus, within the solutions of (31), there must exist a sefuattions{M;(z) : | =
1,...,L} such that-1 < M;(z) < 0 and—1 < 312, My(z) < 0. Then, M,2(z) = 31, My(2) is

the desired moment generating function.

B. Proof of Proposition 4.1

For L = 2 relays, the system in (13) can be solved as follows. To sfinhie notation, we make

the dependence onimplicit and write M; = M;(z), | € {1,2}, and M = M,(z). Furthermore, we
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denotey(") = [g1ha1|* + |g2hao|* andy (") = |g1ha1|* — |g2hae|*. Then, the system of equations can

be written as
Mi(1+aM;) = z(1+aM)(1+ M)|gihgl?

(32)
My(1 4+ aMy) = z(14 aM)(1 4+ M)|gaha|?.
By subtracting the two equations and recalling that we maseh + oM # 0, we get
My — My = z(1+ M)y, (33)

On the other hand, adding the two equations of (32) leadsem#w identity
M — %(MQ + (M — M2)2> = z(14 aM)(1 + M),
By inserting (33), we get the following second order equaiio M
a[l + (zv(_))2 — 227(‘”} M? 42 [1 + Oz(zv(_))2 —z(1+ oz)y(‘”} M + a(zv(_))Q — 2z7(+) =0,
which has the two solutions

[1 + oz(zy(_))Z —2z(1+ oz)y(”} .

a [1 + (27(—))2 — 2z7(+)}

M e {M(+),M(_)} -

{a(zy(_))Q — 227(‘”} {1 + (zv(_))Z - 227(4‘)]

1+ a(90)% = 2(1 + a)y9)] 2

1+ |1-« (34)

Basic algebra shows that the discriminant is positive, nimgathat the two solutions exist and are
different to one another. However, since
[1 + Oc(Z’y(*))2 —z(1+ a)’y(ﬂ]

5 >1
a[l + (z27())" - 227(4‘)]

for z < 0, one hasMt) < —1 (the second factor of the right-hand side of (34) is alsodatfan
one when the plus sign is chosen) and has to be discarded.eQrottrary, it is trivial to show that

M) e (—1,0], meaning that the moment generating function is (14).

C. Proof of Proposition 4.2

When all the equivalent channel gains are equal, |yg.y|> = 1,1 = 1,..., L, all the linear-
dispersion matrices have the same (symmetrized) singalaedistributionu = %(5_1 +41). Then,
the system in (13) reduces to

1 «o
ZM,,2(1 + ZMVQ) = Z(l + OZMI,2)(1 + Ml,2),

since, for anyl = 1,..., L, M(z) = +M,2(2) = C,(H,(z)) (see also the previous appendix).
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After some algebra, we can write the second order equation
o 2 2
f(l —L*2)M3 + (1 —aLz — Lz)M,» — Lz = 0.

Then, M,-(z) as in (15) is the unique solution that satisfies all the cairss.
Note that in this case one can also solve directly equati®h iflthe real analytic domain, with

Culz) = LOW(z) = o [VITdaz 1],

defined forz > —ﬁ (Appendix B shows how to compute the rectangular R-transfof,(z) of
= %(6,1 + d1)). However, it is important to remark that this approach i$ alevays feasible in
the general case. Indeed, due the constraint— (4o max{|gha|>}) " on the general’, (z) as in

(21), identity (19) may not be satisfied at alk 0.

APPENDIX B

THE RECTANGULAR R-TRANSFORM OF{,

According to the algorithm depicted in Fig. 1, we computeehiire rectangular R-transform with
ratio o corresponding to the symmetrized distributior= %5,\/5 + 9 /5 that isp? is the distribution

of the deterministic constant > 0.

First, the moment generating serig;: (z) = > a’z* may be written ad/,2(2) = 7%, which

l—az’

implies H,(z) = z[1—(1—a)az]/(1 — az)?, according to (16). Recalling that(z) = (az+1)(z41)
and that: = T'(U(z)) — 1, from (17) we know that),(z) is a solution to

-1 z

I ) = g+ ag

or, equivalently, to

H( z ) B z 1+CHA+aCy) — (1 —a)az
1+C)1+aC,)/ (QA+C,)(1+aC,)—az 1+C)A+aCy)—az

The last identity can be rewritten as

z =

(14 C)(A +aC,) —az* = (1+C,)(1 +aC,) — (1 —a)az
and, after some algebra, as
[(2aCy, +1+ 20)% — (1 + 4aaz)][(2aC, + )% —(1+ 4aaz)| = 0.

Since it must be”),(0) = 0, the first term can be discarded afigl(z) is a solution to(2aC), + 1)* =
1+ 4aaz, and, thus, to
aCﬁ +Cy—az=0. (35)

Whenz € R andz > —(4aa) ", C,(z) is given by

V1+4doaz — 1

Cu(z) = %
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APPENDIXC

PROOF OFPROPOSITION7.1

The results of Proposition 7.1 can be proven as follows. Réta the moment generating series

of 12 is M2 (z) = 3,0 m;z". Now, sincep — 0 implies x = p — |hs|*p? + o(p?), one has

Haar

= = M (=) = mu = map +ofp)

and, after some algebra,

s = o (el ma)p+ (md = ma)? = Sl + )52 + o(6?),
oI} faar a P o Mpe(=x)0x

ap 1+a1+p|h |2 14+« X ap

_ {|h| +my — (|h|* +2|h|m1—m2)}+0(l)),

1+«
all for p small enough. The results in (25) and (26) follow from ingmetonce recalling the general
Maclaurin expansiod (p) = I(0) + >/ & <—‘ _0> o

Similar reasoning holds for the i.i.d. case.
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