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Abstract

This article presents a randomized linear-dispersion space-time block code for decode-and-

forward synchronous relays. The coding matrices are obtained as a set of columns (or rows) of

randomly-generated Haar-distributed unitary matrices. With respect to i.i.d.-generated codes, this

particular isometric structure reduces the intersymbol interference generated within each relay. The

gain over i.i.d. codes in terms of spectral efficiency is analyzed for both the LMMSE and the

ML receivers under the assumption of frequency-flat quasi-static fading. In this setting, the spectral

efficiency is a random quantity, since it depends on the random coding matrices. However, it is

proven that the spectral efficiency converges in probability to a deterministic quantity when the

dimensions of the matrices tend to infinity while keeping constant their ratio, i.e. the coding rateα.

Consequently, when the random coding matrices are large enough, the presented system behaves as

a deterministic one. This result is achieved by means of the rectangular R-transform, a powerful tool

of free probability theory which allows determining the distribution of the singular values of a sum

of rectangular matrices.
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I. INTRODUCTION

Relay communications have raised a lot of interest in the last years as a potential means of

introducing space-diversity techniques [2]–[5] in systems where the limited dimensions of portable

terminals prevent them from having multiple co-located antennas (see [6]–[9] among others). The

main idea is that idle terminals overhear other users’ communications and, thus, can act as relays,

forwarding the information they receive. In other words, a virtual array is built from multiple single-

antenna terminals.

To reduce power consumption and signaling among terminals,relays should be low-complexity

devices. It is therefore reasonable to assume they do not have any channel state information, especially

in their transmitting phase. In these circumstances, previous experience in Multiple-Input-Multiple-

Output (MIMO) systems (e.g. [2]) leads us to believe that Space-Time Coding (STC) is one of the

best options to achieve full spatial diversity. References[10]–[14] are just few examples on that

direction.

Classical STC’s, however, are not very suitable for most relay networks. On the one hand, the

design of a code is strongly related to the number of transmitters, and its complexity increases with

the latter. On the other hand, modern mobile communicationsnetworks are very dynamic, with users

continuously dropping in and out of the system and where the total number of terminals may possibly

be quite large. It would hence be advisable to implement a code which is flexible and easy to design,

even for a large and time-varying number of users.

A. Previous work

This need for flexibility in wireless relay networks has longbeen known. In [11], J. Laneman

and G. Wornell suggest employing space-time codes from orthogonal designs as a possible solution.

These space-time block codes, originally proposed by V. Tarokh et al. [4], are designed for a given

numberL of transmitters but maintain their orthogonality properties when some of the antennas are

shut down. This implies that the maximum number of relays in the system must be known a priori.

Moreover, for more than four transmitters, the coding rate is only 1/2, thus limiting the spectral

efficiency.

The solution proposed in [13] is based on Linear-DispersionSpace-Time Block Coding (LD-STBC):

each relay is assigned a specific unitary matrix which produces a linear transformation of the vector

of source symbols. The system is quite flexible, since no particular relation is assumed among the

different coding matrices: when a new terminal joins the network, a new matrix is generated without

modifying the existent ones. In this work, however, no direct link between the transmission source

and its destination is considered. Furthermore, the choiceof unitary matrices constrains the coding

rate (defined here as the number of columns divided by the number of rows of these matrices) to
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one. As shown in [14], this is not always the best choice for half-duplex relays: it may be enough

for the relays to send a compressed version of the message (i.e. coding rate larger than one), since

they only complement the information received directly from the source. This is especially true for

orthogonal relaying protocols, that is when the source remains silent during the relaying phase.

A completely different approach appears in [12]. From the source message, each relay generates a

new vector of symbols by doing a random linear combination ofthe columns of a matrix codeword,

which is obtained from a common (within the relay set) deterministic space-time mapping. It turns

out that the system performance is limited by the minimum between the number of relays and the

number of virtual transmitters of the underlying deterministic STC.

B. The proposed scheme

The coding scheme presented in [14] is an LD-STBC where the coding matrices are filled with

entries that are drawn from independent and identically distributed (i.i.d.) random variables. In this

paper, we try to improve the spectral efficiency by introducing codes with more structure, while still

randomly generated. More specifically, the columns (or the rows, respectively) of the matrices are

constrained to be orthogonal: the aim is to cancel (or to reduce, respectively) interference generated

within the relays. For coding rateα (ratio between the number of columnsK and the number of

rowsN of the linear-dispersion matrices) equal to one, the linear-dispersion matrices are unitary and

the system is similar to the one in [13]. However, simulationresults show that this trivial choice is

not always the best one.

Using a similar approach as in [14], we analyze the asymptotic performance of the system assuming

coding matrices with infinitely large dimensions, but constant coding rateα, 0 < α < +∞. Indeed,

in this asymptotic regime, the spectral efficiency converges to a deterministic value which is an

excellent approximation of the finite reality, even for not-so-large dispersion matrices. Contrary to the

i.i.d. case, however, classical random matrix theory results on the convergence of the eigenvalues of

infinite-dimensional matrices are not enough to characterize the asymptotic behavior of the system.

New tools are borrowed from free probability in order to dealwith the present problem.

The paper is structured as follows. In the next section, the signal model is introduced and all the

assumptions are presented. Then, general expressions of the spectral efficiency are derived for both

the Linear Minimum-Mean-Square-Error (LMMSE) and the Maximum-Likelihood (ML) receivers,

together with their asymptotic equivalents for large coding matrices. Next, Section IV analyzes two

special cases with closed-form solution and introduces a low-complexity approximation for the general

case. Section V presents the rectangular R-transform introduced by F. Benaych-Georges in [15] and

shows how to apply this free-probability tool to compute theasymptotic spectral efficiencies of the

two receivers considered here. A numerical assessment of the results is given in Section VI, while
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Section VII characterizes the low-power regime. Finally, Section VIII concludes the paper.

II. SYSTEM DESCRIPTION

This section provides a more thorough description of the system under consideration. As usual,

italic, bold lower-case and bold upper-case letters denote, respectively, scalars, vectors and matrices.

The superscipts∗, T and H stand for, respectively, complex conjugate, transpose andHermitian

transpose.E[·] is the statistical expected value operator. Given any integer numbern, In is then×n

identity matrix.

A. Signal model

We consider a classical multiple-relay system with half-duplex synchronous relays over frequency-

flat quasi-static fading channels [10], [11]. Communications are split into two phases: the source

broadcasts its message in the first phase and remains silent in the second one, which is used by the

relays to forward the information they have just received. In this relaying phase, space diversity is

achieved by means of a spatially distributed LD-STBC, as in [13], [14]. Here, however, relays adopt

a Decode-and-Forward (DF) strategy, whereby only the terminals that can correctly decode the source

message in the first phase participate in the second one. Notethat the proposed coding scheme may

also be applied to Amplify-and-Forward (AF) relays (all terminals forward the whole signal received

in the first phase, including noise). However, the analysis will be much more complex, due to the

forwarded noise.

Let s = [s1 · · · sK ]T denote the vector containing the message from the source. The symbols

sk, k = 1, . . . ,K, are assumed i.i.d., with zero mean (E[sk] = 0) and variancePs (E[|sk|2] = Ps).

Let L denote the set of all relays andL′ the decoding subset, i.e. the set of relays that are able to

decode the source message, have a perfect copy ofs at the end of the first transmission phase and,

thus, participate in the relaying phase. LetL = |L′| be the cardinality ofL′ and, without loss of

generality,L′ = {1, . . . , L}. Now, denoting byhs the direct source-destination link, the destination

receives the vectorhss during the first phase. Next, in the second phase, thel-th relay inL′ transmits

glCls, whereCl is theN × K encoding matrix described below. The complex gaingl can be set

to fulfill some power constraint. Denoting byhdl the downlink channel coefficient between thel-th

relay and the destination, the received signal can be written as

d =


hsIK
Ψ̃C̃


 s+ n, (1)

where both transmission phases have been included in the formulation. In the previous equation,

n ∼ CN (0, σ2
dIN ) represents additive white Gaussian noise and the block matrices

Ψ̃ =
[
g1hd1IN · · · gLhdLIN

]
C̃ =

[
C

T
1 · · · C

T
L

]T
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have been introduced to simplify the notation (Ψ̃C̃ =
∑L

l=1 glhdlCl).

In the following sections, the spectral efficiencyI(L
′) (conditioned on the decoding subsetL′) is

computed both for the LMMSE receiver and the optimum ML receiver assuming that the channels

and the codes are known at the destination (observe that the quasi-static fading assumption implies

that the channel coefficients are constant over the transmission of the whole source messages). A

direct application of this result is the outage-probability analysis for a target transmission rateR.

Indeed, according to the total probability theorem

Pout(R) =
∑

L′⊆L
Pr
[
I(L

′) < R
]
Pr[L′is the decoding set], (2)

where the sum is over all possible subsets ofL and probabilities follow from channel distribution.

However, this paper focuses on the spectral efficiency and its properties, leaving the non-trivial outage

analysis for further contributions (see also Section VI).

B. The coding matrices

The introduced coding scheme is similar to the one presentedin [16] or in [14] for AF relays. As

mentioned in the introduction, however, we propose here a different model for the coding matricesCl.

Observe that the vector corresponding to the signal generated by thel-th relay is given byCls =
∑L

k=1 cl,ksk, wherecl,k is thek-th column ofCl. Thus, a straightforward analogy with DS/CDMA

systems [17] suggests that the intersymbol interference atthe receiver will be reduced when the

columns ofCl are orthogonal. Note that interference will not completelyvanish since orthogonality

is required only within each individual relay. Extending the constraint across all the relays would

imply a very significant loss of flexibility, since all matrices would have to be jointly designed to be

mutually orthogonal. Here, we are more interested in a dynamic system where the number of active

terminals can vary without significantly jeopardizing the global coding scheme. Furthermore, global

orthogonality is equivalent to TDMA, which is shown to be outperformed by STC in [11].

As a result, we model theN ×K matrices{Cl : l = 1, . . . , L} as mutually independent random

matrices with orthogonal columns. More specifically, each coding matrix is constructed by selecting

K different columns of aN ×N Haar-distributed unitary matrix, i.e. a random unitary matrix whose

distribution is invariant by left- or right-multiplication by a constant unitary matrix (we say that it is

bi-unitarily invariant). We will refer to this model as Haarcodes or, equivalently, as random isometric

codes.

A matrix with orthogonal columns must be such thatK ≤ N , i.e.α = K/N ≤ 1. For completeness,

the analysis is extended to the caseα > 1 by considering coding matrices with orthogonal rows (N

rows of aK×K Haar-distributed unitary matrix). A scaling factor
√
α, such thatClC

H
l = αIN , must

be included to guarantee that the same power constraint as inthe i.i.d. case is satisfied, which leads
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to a fair comparison of the results for the two different choices of the dispersion matrices. Although

not as intuitive as the caseα ≤ 1, fat linear dispersion matrices still improve spectral efficiency with

respect to i.i.d. codes of, e.g., [14], [16]. The reason is that, whatever the value ofα, isometric codes

result in an equivalent channel matrix that is closer to an identity matrix (the difference between

maximum and minimum singular values is lower).

To conclude this introduction, let us mention that Haar codes have been extensively studied in the

literature (see, for instance, [18]–[20]). In particular,[18] explains how to generate Haar-distributed

matrices from a random matrix with i.i.d. Gaussian entries having zero mean and unitary variance.

III. M AIN RESULTS

In this section, the spectral efficiency of the presented system is computed assuming that the

destination has access to the code matrix and the channel coefficient of each active relay. Two

classical receivers are considered, namely the LMMSE receiver and the ML receiver.

A. Spectral efficiency

1) The LMMSE receiver:It is well known that the LMMSE filter is the best linear receiver in

terms of Signal-to-Interference-plus-Noise Ratio (SINR)(see, e.g. [21]). Since each symbolsk is

estimated independently of the others, let us focus on the first one,s1, without loss of generality, and

rewrite (1) asd = as1 + nE , where

a =




hs

0

Ψ̃c1


 and nE =




0

hsIK−1

Ψ̃D







s2
...

sK


+ n

are the effective channel seen by the symbols1 and the equivalent interference-plus-noise vector,

respectively. In these definitions, we have introduced the vector c1 and the matrixD such that

C̃ = [c1 D]. Now, the LMMSE filter coefficients and the corresponding output SINR can be written,

respectively, as

w =
Ps

1 + Psa
HR

−1
E a

R
−1
E a SINR1 = Psa

H
R

−1
E a,

whereRE = E[nEn
H
E ]. After some algebra, it is straightforward to show that the SINR of the

considered system can be expressed as

SINR1 =
Ps

σ2
d

|hs|2 +
Ps

σ2
d

c
H
1 Ψ̃

H

(
Ps/σ

2
d

1 + Ps|hs|2/σ2
d

Ψ̃DD
H
Ψ̃

H + IN

)−1

Ψ̃c1, (3)

for symbols1 and analogously for the other symbols.
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Considering the contribution of all the symbols, the spectral efficiency can be computed by means

of the Shannon’s formula as

ILMMSE =
1

K +N

K∑

k=1

ln
(
1 + SINRk

)
, (4)

in nats per degree of freedom. The factor1
K+N

takes into account the fact that a total of (K +N )

channel accesses are employed to transmit onlyK information symbols.

2) The ML receiver:For a system with colored interference like the one presented in this paper,

linear filters are sub-optimal receivers. To extract all theinformation contained in the received signal

d, the ML receiver is needed. Assuming independent Gaussian coding at the source, the spectral

efficiency of the ML receiver in our scenario is known to be [5]

IML =
1

K +N
ln det

(
IK+N +

Ps

σ2
d



hsIK
Ψ̃C̃




[
h∗sIK C̃

H
Ψ̃

H

])

=
α

1 + α
ln
(
1 +

Ps

σ2
d

|hs|2
)
+

1

K +N
ln det

(
IK +

Ps/σ
2
d

1 + Ps|hs|2/σ2
d

C̃
H
Ψ̃

H
Ψ̃C̃

)
, (5)

in nats per degree of freedom.

B. Asymptotic results

Observe that both the spectral efficiencies in (4) and (5) arerandom quantities, since they intrinsi-

cally depend on the randomly generated coding matrices{Cl}. In other words, for each realization

of the code, the system performs differently. However, as proven in Section V, bothILMMSE andIML

quickly converge to deterministic quantities when the dimensionsK andN of the linear-dispersion

matrices grow indefinitely while keeping constant their ratio, that is the coding rateα. Before giving

more details, we need to introduce some useful quantities.

The asymptotic behavior ofILMMSE and IML is dictated by the asymptotic distribution of the

eigenvalues of̃CH
Ψ̃

H
Ψ̃C̃, which is studied next. More specifically, we will now characterize the

asymptotic eigenvalue distribution in terms of its moments. Then, we will show that these moments

are sufficient to compute the asymptotic spectral efficiencies for largeK andN .

Let λ1 ≤ λ2 ≤ · · · ≤ λK be theK real non-negative eigenvalues of theK×K interference matrix

C̃
H
Ψ̃

H
Ψ̃C̃. We define the empirical distribution of the eigenvalues as follows1:

ν2N =
1

K

K∑

k=1

δλk
(6)

1We use the square inν2

N in order to emphasize that it is a law on the eigenvalues, and not on the singular values.
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whereδλ is the Dirac distribution (mass point) atλ. Since the eigenvalues are generally random, their

empirical distribution is also random. However, the following theorem states that the distributionν2N

converges whenK = αN → +∞, i.e. K andN grow indefinitely while their ratio tends2 to α.

Theorem 3.1:Let K,N → +∞ andK/N → α ∈ (0, 1]. Then, the empirical eigenvalue distri-

bution ν2N of the interference matrix̃CH
Ψ̃

H
Ψ̃C̃ converges weakly in probability to a probability

measureν2 (and we writeν2N
P→ ν2), meaning that

lim
K=αN→+∞

∫
f(t)ν2N ( dt) =

∫
f(t)ν2( dt) (7)

in probability for any continuous and bounded functionf(·).
Moreover:

• the support ofν2 is compact and included in
[
0,maxl

{
|glhdl|2

}]
;

• naming {mi =
∫
tiν2( dt); i = 1, 2, . . . } the moments ofν2, the moment generating series

Mν2(z) =
∑+∞

i=1 miz
i of ν2 is the unique formal power series that satisfies the fixed point

equation

Mν2(z) = Cν [zT (Mν2(z))],

whereCν(z) =
∑+∞

i=1 ciz
i is the formal power series withi-th coefficient

ci =
(2α)i−1

i!

( i−1∏

k=0

(1− 2k)

) L∑

l=1

|glhdl|2i

and whereT (z) = (αz + 1)(z + 1).

Proof: See Section V.

Note that the sequence of moments{mi : i = 1, 2, . . . } is sufficient to characterize and univocally

identify the distributionν2 since the latter has a compact support. Furthermore, the power series

Mν2(z) =
∑+∞

i=1 miz
i can be seen as a series expansion nearz = 0 of the Moment Generating

Function3 (MGF) of ν2, defined as

Mν2(z) =

∫
zt

1− zt
ν2( dt) (8)

and analytic onC \ R+.

Note. The interference matrix̃CHΨ̃HΨ̃C̃ is full rank only if K ≤ N (α ≤ 1). Conversely, when

K > N the matrix hasK − N null eigenvalues andN positive eigenvalues that are equal to those

of Ψ̃C̃C̃
H
Ψ̃

H . Then, whenα > 1, let µ2 be the eigenvalue distribution of the full rank matrix

2With some abuse of notation, we denote byα both the finite coding rateα = K/N for finite K and N and the

asymptotic coding rateK
N

→ α, when bothK andN tend to infinity. For each particular instance, the context clarifies the

meaning.

3Note that this is different from the classical moment generating function, usually defined asEX [ezX ].
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Ψ̃WW
H
Ψ̃

H , where we have definedW = 1√
α
C̃ (recall thatClC

H
l = αIN whenα > 1). Denoting

by δ0 the Dirac delta distribution, the distributionν2 is related toµ2 by the following identity:

ν2( dt) =
α− 1

α
δ0( dt) +

1

α
µ2

(
dt

α

)

or, equivalently,

Mν2(z) =
1

α
Mµ2(αz).

Since it is totally equivalent to characterize the distribution ν2 whenα ≤ 1 or the distributionµ2

whenα > 1, we concentrate on the caseα ≤ 1 in what follows.

Knowing that the asymptotic eigenvalue distribution exists and is unique, we have all the necessary

tools to study the asymptotic deterministic spectral efficiencies (see also [1]):

Theorem 3.2:Consider the relay channel described in Section II-A, with the isometric linear-

dispersion matrices defined in Section II-B. When the matrixdimensionsK andN grow without

bound but with constant coding rateα = K/N , the LMMSE spectral efficiency (4) converges in

probability to the deterministic quantity

IHaar
LMMSE =

α

1 + α
ln
(
1 + SINR

Haar
)
, (9)

where

SINR
Haar =

Ps

σ2
d

|hs|2 +
Ps

σ2
d

ηHaar

1− χηHaar
, (10)

χ =
Ps/σ

2
d

1 + Ps|hs|2/σ2
d

and ηHaar = − 1

χ
Mν2(−χ).

Similarly, the deterministic limit of the ML spectral efficiency (5) is

IHaar
ML =

α

1 + α
ln
(
1 +

Ps

σ2
d

|hs|2
)
+

α

1 + α

∫ 0

−χ

Mν2(u)

u
du. (11)

Proof: See Section V.

As explained above, the main motivation behind Haar-distributed random coding is the interference

reduction with respect to i.i.d. coding introduced in, e.g., [14]. Thus, for the sake of comparison, we

report here the asymptotic spectral efficiencies of the i.i.d. case.

Theorem 3.3:Consider the relay channel described in Section II-A, and assume that the linear-

dispersion matrices{Cl} are filled with i.i.d. random variables with zero mean and variance1/N . The

spectral efficiency for the LMMSE receiver and the ML receiver are given by (4) and (5), respectively.

Then, whenK,N → +∞ while K/N → α, one has

ILMMSE
a.s.→ I iidLMMSE =

α

1 + α
ln

(
1 +

Ps

σ2
d

|hs|2 +
Ps

∑L
l=1 |glhdl|2
βσ2

d

)
, (12a)

IML
a.s.→ I iidML =

α

1 + α
ln

(
1 +

Ps

σ2
d

|hs|2 +
Ps

∑L
l=1 |glhdl|2
βσ2

d

)
+

1

1 + α

(
ln β +

1

β
− 1

)
, (12b)
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whereβ is the positive solution toβ = 1 + αβ
χ
∑

L

l=1
|glhdl|2

β+χ
∑

L

l=1
|glhdl|2 , namely

β =
1− (1− α)χ

∑L
l=1 |glhdl|2 +

√
(1− (1− α)χ

∑L
l=1 |glhdl|2)

2
+ 4χ

∑L
l=1 |glhdl|2

2
.

Proof: These results can be proven following the same guidelines given in [14] for AF relays

(see also [16], [22]).

In summary, large Haar-distributed (and i.i.d.) random linear-dispersion matrices asymptotically

behave as deterministic systems. Since convergence is fast, the limiting spectral efficiencies are

excellent approximations of the finite reality for practical values ofK andN , as evidenced from

the numerical simulations in Section VI.

Observe that the limits in (12) hold almost surely and not only in probability as those derived above

for the isometric coding scheme. It seems only natural to conjecture that these convergence results

also hold in the almost-sure sense. However, the mathematical background used here has only been

able to establish convergence in probability; besides, thedifference between the two convergence

modes has no real importance in practical aspects.

Before delving into the mathematical details of the proofs of Theorems 3.1 and 3.2 (which are not

very insightful from the engineering point of view), let us get some more understanding about the

asymptotic eigenvalue distribution and the consequent largeK,N spectral efficiencies.

IV. MGF DERIVATION AND SPECIAL CASES

Theorem 3.2 expresses the asymptotic spectral efficienciesin terms ofMν2(z), the MGF of the

asymptotic eigenvalue distributionν2 of the interference matrix̃CH
Ψ̃

H
Ψ̃C̃. Even though Theo-

rem 3.1 univocally definesMν2(z), it does not describe an operative algorithm to evaluate it as a

function ofz at anyz ∈ [−χ, 0). Indeed,Mν2(z) is defined in Theorem 3.1 as a formal power series,

which may not accept a closed-form analytical representation for all z ∈ [−χ, 0). The following

lemma provides us with a more practical solution.

Lemma 4.1:For anyz ∈ R−, the MGFMν2(z) satisfies the system of equations

Mν2(z) =

L∑

l=1

Ml(z),




M1(z)(1 + αM1(z))
...

ML(z)(1 + αML(z))


 = z

(
1 + αMν2(z)

)(
1 +Mν2(z)

)



|g1hd1|2
...

|gLhdL|2


 ,

(13)

together with the constraints

−1 < Mν2(z) ≤ 0 −1 < Ml(z) ≤ 0, l = 1, . . . , L.

Proof: See Appendix A-A.
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The system in (13) is not linear and, hence, its solution may not be trivial. In what follows, two

special cases that accept closed-form solutions are presented, namely (i) when there are onlyL = 2

relays in the system and (ii) when all the relay–destinationchannels are equal.

A. Some special cases

We first consider the two-relay case. As shown in Section VI, it is in this case that isometric codes

present the highest gain over i.i.d. codes.

Proposition 4.1:Consider the relay channel presented in Section II-A. Assume that Haar-distributed

random LD-STBC is employed and that the number of relays isL = 2. Then, the MGF of the

asymptotic eigenvalue distribution of the interference matrix C̃
H
Ψ̃

H
Ψ̃C̃ is given by

Mν2(z) = −

[
1 + α

(
zγ(−)

)2 − z(1 + α)γ(+)
]

α
[
1 +

(
zγ(−)

)2 − 2zγ(+)
] ·

·


1−

√√√√√√1− α

[
α
(
zγ(−)

)2 − 2zγ(+)
][
1 +

(
zγ(−)

)2 − 2zγ(+)
]

[
1 + α

(
zγ(−)

)2 − z(1 + α)γ(+)
]2


 , (14)

where we have writtenγ(+) = |g1hd1|2 + |g2hd2|2 andγ(−) = |g1hd1|2 − |g2hd2|2.
Proof: See Appendix A-B.

As mentioned in the introduction, it is clear from (14) that the asymptotic spectral efficiency of

the considered system (which is expressed in terms ofMν2(z), see (9) and (11)) depends neither on

the specific instance of the code nor directly on its size, butonly depends on the coding rateα and

on the relay–destination channel gains.

A simpler expression can be found when assuming that all the effective downlink channels are

equal. This is clearly a purely didactic case study, since there exists a null probability that all relay–

receiver channels are equal (see also [1]). However, it allows us to to get some insight into the

isometric coding scheme when comparing with the i.i.d. case. Indeed, the comparison readily extends

to the general case, as it will be clear in the following sections.

Proposition 4.2:Consider the relay channel presented in Section II-A. Assume that Haar-distributed

random LD-STBC is employed and that|glhdl|2 = 1, l = 1, . . . , L. Then, the MGF of the asymptotic

eigenvalue distribution of the interference matrixC̃H
Ψ̃

H
C̃Ψ̃ is given by

Mν2(z) =
L

2α

L(α+ 1)z − 1 +
√

(L(1− α)z + 1)2 − 4(L− α)z

1− L2z
. (15)

Proof: See Appendix A-C.

As a remark, it is straightforward to verify that (15) and (14) represent the same function when

settingL = 2 and |g1hd1|2 = |g2hd2|2 = 1 (i.e. γ(−) = 0 andγ(+) = 2).
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In the general case, the solution of the non-linear system in(13) can give rise to equations whose

order increases fast with the number of relays. To avoid having to deal with such complicated

equations, we propose next a low-complexity procedure to approximateMν2(z).

B. A moment-based approximation

We have already mentioned (see Theorem 3.1) that the distribution ν2 of the eigenvalues of

C̃
H
Ψ̃

H
Ψ̃C̃ has a compact real support, contained in[0,maxl{|glhdl|2}], and, hence, is univocally

determined by the sequence of its moments{mi, i = 1, 2, . . . }.
The basic idea behind the approximation proposed hereafteris to replace the measureν2 by a

new discrete measure of the form̄ν2n =
∑n

k=1 γk,nδλk,n
, such that their first2n − 1 moments are

respectively equal, wheren ∈ N+ will depend on the allowed complexity (see also [1]). For every n,

the points{λk,n}nk=1 should fall in the support ofν2 and, obviously,γk,n > 0,∀k ∈ {1, . . . , n}, with
∑n

k=1 γk,n = 1. The motivation behind this choice is that well-known results on the moment problem

[23]–[25] tell us that the point-wise convergencēMn(z) → Mν2(z) is exponential inn, where we

denote by

M̄n(z) = z

n∑

k=1

γk,nλk,n

1− zλk,n

the MGF of ν̄2n. Thus, we propose the following approximations:

ηHaar ≈
n∑

k=1

γk,nλk,n

1 + χλk,n

,

IHaar
ML ≈ α

1 + α
ln
(
1 +

Ps

σ2
d

|hs|2
)
+

α

1 + α

n∑

k=1

γk,n ln(1 + χλk,n).

Observe that, according to the last equation, the proposed approximation is equivalent to splitting the

transmission overn parallel channels, thek-th one having channel gainλk,n and carrying a fraction

γk,n of the total information.

1) The Gauss-Jacobi mechanical quadrature:It remains to explain how to compute the coefficients

γk,n and λk,n. The problem of approximatingMν2(z) by M̄n(z) is known in the literature as the

Gauss-Jacobi mechanical quadrature and makes use of the theory of orthogonal polynomials [23],

[24]. We summarize hereafter its main points.

For the probability measureν2 with momentsmi =
∫
tiν2( dt), we define the scalar product

〈f, g〉 =
∫

f(λ)g(λ)ν2( dλ)

on the space4 L2(ν2). Then, the Gram-Schmidt orthogonalization procedure can be applied to the

4Recall that, given a measure space(S,Σ, µ), the spaceL2(µ) is, roughly speaking, the vector space of all functions

f(·) such that
∫
S
|f(t)|2µ( dt) < +∞.
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sequence of polynomials{λn : n = 1, 2, . . . }, defined as non-negative powers ofλ. As a result, we

get a sequence{pn(λ)}n≥0 such as

• the polynomialpn(λ) has degreen and positive leading coefficient;

• the polynomials are orthonormal, i.e.〈pn, pq〉 = 1 if and only if n = q and zero otherwise.

Equivalently, the polynomialspn(λ) can be computed recursively, thanks to the following result.

Proposition 4.3 (The three terms recursion relation [24]):The family of polynomials{pk} satis-

fies the relation

λpk(λ) = bk−1pk−1(λ) + akpk(λ) + bkpk+1(λ),

where the coefficientsak and bk, defined byak = 〈λpk(λ), pk(λ)〉 and bk = 〈λpk(λ), pk+1(λ)〉, are

positive. The recurrence formula is initiated byb−1 = 0 andp0(λ) = 1.

The coefficient{ak} and{bk} will be functions of the moments ofν2 as, for example:

a0 = m1 b0 =
√

m2 −m2
1 a1 =

m3 − 2m1m2 +m3
1

m2 −m2
1

b1 = . . .

Finally, for a givenn, the points{λk,n}nk=1 simply are then zeros ofpn(λ). The Christoffel-

Darboux formula permits to compute the coefficients{γk,n}nk=1:

γk,n =
1

∑n−1
i=0 |pi(λk,n)|2

.

V. PROOFS OF THEMAIN RESULTS

In Section III, the spectral efficiency of the considered system was said to converge in probability

to a deterministic constant when the dimensionsK andN of the coding matrices grow indefinitely

but with constant ratioα = K/N . Furthermore, the limit was expressed in terms of the asymptotic

distributionν2 of the eigenvalues of the interference matrixC̃
H
Ψ̃

H
Ψ̃C̃. In what follows, we will first

discuss the convergence of the empirical eigenvalue distribution ν2N to ν2 and show how to compute

the asymptotic distributionν2. Then, we will prove the results stated in Theorems 3.1 and 3.2. Readers

that are not interested in mathematical technicalities mayskip this section since it is not prerequisite

for the following sections.

The results below are based onfree-probability theory[26], [27], which describes the behavior of

random variables defined on non-commutative algebras. In this context, free random variables are

the equivalent of independent random variables in classical commutative probability, meaning that

the distribution of sums and products of free non-commutative random variables can be expressed in

terms of the singular distributions of the original variables.

It is a well-known result of random-matrix theory and free probability that largeN×N independent

Hermitian unitarily invariant random matrices can be seen as asymptotic almost sure models for free

non-commutative random variables [28]. Now, assume thatM1 andM2 are two such matrices and
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that the distributions of their eigenvalues (which are real, due to Hermiticity) tend to the measuresµ1

andµ2, respectively, asN → +∞. Then, the eigenvalue distribution ofM1 +M2 tends toµ1 ⊞ µ2,

the free additive convolution ofµ1 andµ2 [27], [28]. As a consequence of [29, Proposition 3.5], a

similar result can be stated for bi-unitarily invariant matrices and the distributions of their singular

values (singular law or singular distribution). Letµ̃1 and µ̃2 be the asymptotic singular laws5 of two

N ×N independent bi-unitarily invariant random matricesM1 andM2. Denote byµ1 andµ2 their

symmetrization, i.e.µi(B) = 1
2(µ̃i(−B) + µ̃i(B)) for any Borel setB. Then, the symmetrization of

the singular law ofM1 +M2 tends toµ1 ⊞ µ2.

Now, consider the interference matrix̃CH
Ψ̃

H
Ψ̃C̃. Denote byν the asymptotic distribution of the

singular values of̃ΨC̃, which is related to the asymptotic eigenvalue distribution of C̃H
Ψ̃

H
Ψ̃C̃ by

the identity ∫
f(t)ν2( dt) =

∫
f(t2)ν( dt),

for any measurable functionf(·). SinceΨ̃C̃ =
∑L

l=1 glhdlCl, intuition suggests that the distribution

ν may be computed from the singular value distributions of thematrices{glhdlCl}.
Unfortunately, the traditional free additive convolutionis not helpful in the general case where

K 6= N , since the matricesCl are not square and, thus, not covered by classical free probability

results. An analogous theory for rectangular matrices has been developed by F. Benaych-Georges

in [15] (see also [30]). Since these concepts are very recentand probably not widespread through

the technical community, we summarize here the main points and refer the interested readers to the

cited papers for a more detailed analysis of the topic. Sincethe matricesCl andCH
l have the same

non-zero singular values, we will only consider the caseα ≤ 1, the extension to the caseα > 1

being straightforward.

A. Preliminaries

Let us focus on a symmetric distributionµ (recall that a generic distributioñµ can be symmetrized

by taking µ(B) = 1
2(µ̃(−B) + µ̃(B)) for any Borel setB) and define the probability measure

µ2 on R+ to satisfy
∫
f(t2)µ( dt) =

∫
f(t)µ2( dt) for any positive measurable functionf(·). The

moment generating series ofµ2 is defined as the formal power seriesMµ2(z) =
∑+∞

n=1mnz
n, where

mn =
∫
tnµ2( dt) is then-th moment ofµ2.

For a givenα ∈ (0, 1], we denote byHµ(z) the rectangular Cauchy transform with ratioα of the

distributionµ, defined as

Hµ(z) = zT ◦Mµ2(z) = z(αMµ2(z) + 1)(Mµ2(z) + 1), (16)

5The empirical distribution of the singular values of aN × N matrix is defined as in (6), replacing eigenvalues with

singular values. Analogously, its limit forN → +∞ is intended as in (7).
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where◦ denotes composition in the ring of the formal power series, and where we introduced the

function T (z) = (αz + 1)(z + 1). Let us denote byH−1
µ (z) the formal inverse of the power series

Hµ(z), that isHµ(H
−1
µ (z)) = H−1

µ (Hµ(z)) = z, which exists sinceHµ(0) = 0 andH ′
µ(0) = 1 (the

first derivative ofHµ(z) computed atz = 0).

Similarly we defineU(z) as the formal inverse ofT (z) − 1 (observe thatT (0) = 1 andT ′(0) =

α+ 1, so thatU(z) always exists) and write therectangular R-transform with ratioα of µ as

Cµ(z) = U

(
z

H−1
µ (z)

− 1

)
, (17)

which is well-defined sincez−1H−1
µ (z) is invertible with respect to multiplication (1

z
H−1

µ (z) =

1
H′

µ(0)
+ . . . ). The formal power seriesCµ(z) identifies unambiguously the underlying probability

measureµ.

To recoverµ from Cµ(z), we may proceed as follows. Noting thatU(z) is the formal inverse of

T (z) − 1, from (17) one can write: z
H−1

µ (z)
= T (Cµ(z)). SinceHµ(H

−1
µ (z)) = H−1

µ (Hµ(z)) = z,

the last equation implies

Hµ(z) = zT [Cµ(Hµ(z))]. (18)

By comparing this with (16), we readily see that we can computeMµ2(z) as the formal power series

satisfying the equation

Mµ2(z) = Cµ[zT (Mµ2(z))]. (19)

It is shown in Appendix A-A that there exists a unique formal power seriesMν2(z) that is a solution to

this equation. Hence (19) completely characterizesMµ2(z) from Cµ(z). Recall thatMµ2(z) univocally

identifies the underlying distributionµ2 by means of its moments, which can always be computed

from (19). Further details are given in Section V-B.

We are now ready to restate [15, Theorems 3.12 and 3.13], which are at the basis of the technical

results below. First, let us recall that the singular law of aK×N (K ≤ N ) matrix X is 1
K

∑K
k=1 δςk ,

where{ςk}Kk=1 are the singular values ofX. Also, a random matrix is called bi-unitarily invariant if

its probability measure is invariant by left- and right-multiplication by constant unitary matrices.

Theorem 5.1 ([15, Theorem 3.13]):Let K(N) be a sequence of integers such thatK(N)/N →
α ∈ (0, 1]. Let XN and YN be two sequences ofK × N independent random matrices, one of

them being bi-unitarily invariant. Assume that the symmetrizations of their singular laws converge

in probability towards the probability measuresµX andµY , respectively. Then, the symmetrization

of the singular law ofXN + YN converges in probability to a new distribution that we denote by

µX ⊞α µY , the rectangular-free additive convolution with ratioα of the measuresµX andµY .

Using the rectangular R-transform introduced in Section V-A, the resulting distribution can be

computed by means of the following theorem.
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{µ1, . . . , µL} −−−−→ {Mµ2

1
(z), . . . ,Mµ2

2
(z)} −−−−→ {Hµ1

(z), . . . ,Hµ2
(z)}

y

{Cµ1
(z), . . . , Cµ2

(z)}
y

Cν = Cµ1
(z) + · · · + Cµ2

(z)
y

ν = µ1 ⊞α · · ·⊞α µL ←−−−− ν2 ←−−−− Mν2(z)

Fig. 1. Algorithm for computingν = µ1 ⊞α · · · ⊞α µL.

Theorem 5.2 ([15, Theorem 3.12]):Givenα ∈ (0, 1] and the two symmetric probability measures

µX andµY on the real line, the functionCµX
(z) +CµY

(z) is the rectangular R-transform with ratio

α of the symmetric probability measureµX ⊞α µY . Equivalently

CµX⊞αµY
= CµX

(z) + CµY
(z).

This implies that the binary operator⊞α is commutative and associative.

By associativity, Theorem 5.1 can be readily extended toL (sequences of) bi-unitarily invariant

matricesX(1)
N , . . . ,X

(L)
N with asymptotic singular lawsµ1, . . . , µL: the symmetrization of the singular

law of X(1)
N + · · · + X

(L)
N is ν = µ1 ⊞α · · · ⊞α µL and can be evaluated following the algorithm

summarized in Fig. 1. Now we are ready to prove Theorems 3.1 and 3.2.

B. Proof of Theorem 3.1

Let us denote byν2N the empirical eigenvalue distribution of̃CH
Ψ̃

H
Ψ̃C̃, namelyν2N = 1

K

∑K
k=1 δλk

,

where{λk : k = 1, . . . ,K} are theK positive eigenvalues of the matrix.

Note that{√λk : k = 1, . . . ,K} are the singular values of̃ΨC̃ =
∑L

l=1 glhdlCl. According

to the isometric coding scheme described in Section II-B, each matrixCl is built by extractingK

columns of aN ×N (K < N ) Haar-distributed unitary random matrix. Then, each matrix glhdlCl

is bi-unitarily invariant and the symmetrization of its singular law is µl = 1
2(δ−|glhdl| + δ|glhdl|),

independently ofN . Theorem 5.1 implies that the singular law ofΨ̃C̃ converges weakly in probability

to ν = µ1 ⊞α · · ·⊞α µL and, equivalently, thatν2N
P→ ν2 whenK = αN → +∞.

Besides, according to the theory presented in Section V-A, the MGF ofν2 satisfies the identity

Mν2(z) = Cν [zT (Mν2(z))], (20)

whereCν(z) =
∑L

l=1Cµl
(z) as stated by Theorem 5.2.
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Appendix B shows that the rectangular R-transform ofµl can be expressed as the series expansion

of the function

Cµl
(z) =

√
1 + 4α|glhdl|2z − 1

2α
,

analytic on[−(4α|glhdl|2)
−1

,+∞). This implies that the rectangular R-transform of the distribution

ν accepts the analytic representation

Cν(z) =

L∑

l=1

Cµl
(z) =

1

2α

L∑

l=1

[√
1 + 4α|glhdl|2z − 1

]
, (21)

when z ≥ −
(
4αmax

{
|glhdl|2

})−1
. The coefficients{ci} in Theorem 3.1 are those resulting from

the Maclaurin expansion of (21).

By rewriting (20) asMν2(z) =
∑+∞

i=1 ciz
i(αM2

ν2(z) + (α + 1)Mν2(z) + 1)
i
, and insertingMν2(z) =

∑+∞
i=1 miz

i, the moments{mi} of ν2 can be computed by comparing corresponding coefficients of

equal powers ofz. The first two moments are

m1 = c1 =

L∑

l=1

|glhdl|2 and (22a)

m2 = (α+ 1)c21 + c2 = (α + 1)

( L∑

l=1

|glhdl|2
)2

− α

L∑

l=1

|glhdl|4. (22b)

Any symbolic computation software can help in writing the expressions of higher order moments.

C. Proof of Theorem 3.2

The asymptotic spectral efficiencies follow directly from the results above. LetγN denote the relay

contribution to the SINR (3), namely

γN = c
H
1 Ψ̃

H
(
χΨ̃DD

H
Ψ̃

H + IN

)−1
Ψ̃c1.

Recalling thatC̃ = [c1 D], the matrix inversion lemma implies that

γN =
ηN

1− χηN
,

where

ηN = c
H
1 Ψ̃

H
(
χΨ̃C̃C̃

H
Ψ̃

H + IN

)−1
Ψ̃c1.

Let AN =
(
χC̃H

Ψ̃
H
Ψ̃C̃+ IK

)−1
C̃

H
Ψ̃

H
Ψ̃C̃. Then, the following result holds true:

Proposition 5.1:ConsiderηN andAN as defined above. Assume thatK/N converges toα asN

tends to infinity. Then

lim
N→+∞

(
ηN −

1

K
tr{AN}

)
= 0

almost surely.
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Proof: Sincetr{AN} = tr

{
C̃

H
Ψ̃

H
(
χΨ̃C̃C̃

H
Ψ̃

H + IN

)−1
Ψ̃C̃

}
, the previous result is a direct

consequence of the symmetric distribution of the columns ofC̃. The formal proof follows the same

guidelines as that of [18, Proposition 3] and is thus omitted.

Now, the quantity 1
K
tr{AN} can be written in terms of the empirical eigenvalue distribution (6)

of C̃H
Ψ̃

H
Ψ̃C̃ as

1

K
tr{AN} =

∫
t

1 + χt
ν2N ( dt).

Theorem 3.1 tells us thatν2N
P→ ν2 whenK = αN → +∞. Since t

1+χt
is a bounded function of

t > 0, we can state that

1

K
tr{AN} →

∫
t

1 + χt
ν2( dt) = − 1

χ
Mν2(−χ) in probability.

The last identity follows from direct comparison with (8). Finally, Proposition 5.1 implies

lim
K=αN→+∞

ηN = ηHaar = − 1

χ
M2

ν (−χ).

Note thatηHaar is independent of the actual symbolsk. Then, for k = 1, . . . ,K, SINRk
P→

SINR
Haar as in (10) andILMMSE

P→ IHaar
LMMSE as in (9) due to continuity ofγN = γN (ηN ) and of

the logarithmic function.

The asymptotic ML spectral efficiency can be easily derived by recalling that

d

dx
ln det(I+ xB) =

1

x
tr
{
xB(I+ xB)−1

}

for any square matrixB. Then, the spectral efficiency can be written as

IML =
α

1 + α
ln
(
1 +

Ps

σ2
d

|hs|2
)
+

α

1 + α

∫ 0

−χ

1

z

[ 1
K

tr
{
zC̃H

Ψ̃
H
Ψ̃C̃

(
IK − zC̃H

Ψ̃
H
Ψ̃C̃

)−1}]
dz,

sinceln det I = 0. The asymptotic spectral efficiency (11) can be obtained6 by noting that

1

K
tr
{
zC̃H

Ψ̃
H
Ψ̃C̃

(
IK − zC̃H

Ψ̃
H
Ψ̃C̃

)−1}
=

1

K

K∑

k=1

zλk

1− zλk

=

∫
zt

1− zt
ν2N ( dt),

and that the last expression tends in probability to the moment generating function (8) whenK =

αN → +∞, as seen before.

VI. N UMERICAL ILLUSTRATIONS AND SIMULATIONS

This section gives a numerical assessment of the results above. Summarizing, the presented system

behaves (converges in probability to) a deterministic system when the size of the randomly-generated

coding matrices grows large keeping constant the coding rate α. The asymptotic spectral efficiency

is given by (9) or (11), according to the chosen receiver. Observe that both expressions depend onα

6Formally, one should show that the argument of the integral is upper-bounded by a positive integrable function before

taking the limit. However, this step is a straightforward consequence of, e.g., Montel’s theorem [31] and is therefore omitted.
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Fig. 2. Simulation results: average spectral efficiency andrelative standard deviations. System assumptions:Ps/σ
2

d = 1,

hs = 0, L = 2, {|glhdl|
2} = {1, 1}, α = 3/4 andK = 3M , N = 4M . The ordinates are normalized with respect to the

asymptotic spectral efficiency atα = 3/4, see Fig. 3(a) and Fig. 3(b).

only and not onK or N directly. It turns out that these limiting values are excellent approximations

of the finite-dimensional codes, even for not-so-large linear-dispersion matrices. To illustrate this, in

Fig. 2, we represent the average spectral efficiency over onethousand different realizations of the

codes, together with the corresponding standard deviation. All the values are normalized with respect

to the asymptotic spectral efficiency. The coding rateα is fixed to 3/4, but the dimensions of the

code increase withM , namelyK = 3M andN = 4M . Note that forM = 10, which corresponds

to K = 30 andN = 40, the error is lower than 2%.

Fig. 2 also depicts the performance of a coding scheme based on Walsh-Hadamard matrices, i.e.

each linear-dispersion matrix is built asCl = SlWl where theN entries of the diagonal matrixSl are

i.i.d. 4-PSK symbols andWl is made ofK randomly-selected columns of anN×N Walsh-Hadamard

matrix. It is evident that the two coding schemes have similar performances, thus suggesting that the

analysis presented in this paper can also be used to model theWalsh-Hadamard-based solution.

This aspect can be particularly interesting in practical applications, since randomly scrambled Walsh-

Hadamard codes are already used in, e.g., UMTS cellular networks. Note however that the proposed

solution based on Haar-distributed unitary matrices is more flexible since we can drop the constraint

N = 2n, n = 1, 2, . . .

Fig. 3(a) depicts the asymptotic LMMSE spectral efficiency (9) as a function ofα for different

values of the numberL of relays. The antiderivative ofMν2(z)/z, which is needed to depict the

asymptotic spectral efficiencyIHaar
ML of the ML receiver (11) in Fig. 3(b), can be straightforwardly

computed by means of, e.g., [32, Formulas 2.261, 2.264-2 and2.266]. To focus on the effect of the

codes, all the curves refer to the casehs = 0.

For both the receivers, the figures also show the asymptotic spectral efficiencies corresponding to
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Fig. 3. Spectral efficiency as a function ofα for isometric (solid line) and i.i.d. (dashed line) codes.|hs|
2 = 0, Ps/σ

2

d = 1

and different numbers of relays, all with unitary channel gains.

the use of i.i.d. codes as obtained from (12). By direct comparison of the two coding schemes, one

notices that isometric codes introduce some benefits, as we had anticipated. However, the gain over the

i.i.d. scheme — which is around 17% in spectral efficiency (comparing maxima) when considering

two relays and the LMMSE filter — decays fast as the number of relays increases. Indeed, Haar

codes only cancel the interference generated within each relay; interference among different relays,

which becomes predominant when the number of relays increases, is not attenuated by the use of

Haar coding matrices. Besides, note that the benefits are less important with the ML receiver (only

around 6% with two relays), which is less sensible to coloredinterference.

The curves in the two graphs also highlight the fact that the coding rateα should be tuned to

maximize the spectral efficiency. Unfortunately, analytically locating the maximum is unfeasible, due

to the complexity of the expressions involved. The considered situations offer, nevertheless, a clear

counterexample that the trivial choiceα = 1 is not always the best one: maxima can be located

both atα lower than 1 (LMMSE example) and atα larger than 1 (ML example). Fig. 4(a) and 4(b)

compare the spectral efficiency achieved by the two coding schemes at their respective optimum

coding rate (numerically computed). Once again, one may notice that the maximum gain (around 2

dB) of isometric codes over i.i.d. codes is obtained with tworelays and LMMSE receiver.

The moment-based approximation introduced in Section IV-Bis validated by comparison with

simulation results in Fig. 5, forL = 2, 3 and for different values ofn. Observe that matching

three moments (i.e.n = 2) of the asymptotic eigenvalue distribution of the interference matrix

C̃
H
Ψ̃

H
Ψ̃C̃ suffices to obtain a good deterministic approximation of a randomly generated code of

lengthN = 100, which is realistic in practical applications.

As a final remark, we resume the considerations about the relationship between instantaneous

spectral efficiency and outage probability that we started in Section II-A. As mentioned there, further
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Fig. 4. Spectral efficiency as a function of the SNRPs/σ
2

d for isometric (solid line) and i.i.d. (dashed line) codes.

|hs|
2 = 0, bestα and different numbers of relays, all with unitary channel gains.
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Fig. 5. Comparison between simulation curve and approximations for n = 1, . . . , 4. Systems assumptions:Ps/σ
2

d = 1,

|hs|
2 = 0 andN = 100. Blue curves represent the LMMSE-receiver case, while red curves represent the ML-receiver case.

investigation outside the scope of this work is needed for a thorough understanding of the outage

behavior of isometric LD-STBC. Indeed, the instantaneous spectral efficiency either is expressed

by a very involved formula (caseL = 2, see (14)) or does not admit a closed form expression

(caseL > 2). However, a rough comparison with the i.i.d. LD-STBC scheme can already be made.

Let us consider the outage probability equation in (2) and note, first, the decoding setL′ does not

depend on the coding scheme implemented at the relays. Now, according to the results of this paper,

the spectral efficiency obtained by a given decoding set is higher for isometric LD-STBC than for

i.i.d. LD-STBC. This implies that isometric coding achieves lower outage probability under equal

conditions, as it can be observed in Fig. 6, where we reportedsome simulation results. Equivalently,

Fig. 7 depicts the simulatedε = 0.1 outage capacity (more significant in the low-power regime)

Cε = max{R|Pout(R) < ε}. Unfortunately, at least for these two examples, the gain isnot impressive

and takes values around 0.5 dB for the LMMSE receiver (and even lower for the ML receiver).
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with ε = 0.1. System parameters are set as in Fig. 6

VII. T HE LOW-POWER REGIME

As mentioned in the Section I, probably the main motivation behind the introduction of relays is

the desire of achieving high data rates by means of distributed space-diversity techniques. However,

relays may also be helpful in systems where the received Signal-to-Noise Ratio (SNR) is very low,

because of strict energy requirements (e.g. sensor networks) or large source–destination distances (e.g.

satellite communications). By improving the quality of thelink, relays may reduce power consumption

at the source or increase the communications range.

For this reason, in this section we describe the low-power (or wide-band) regime of the considered

relay channel. More specifically, we compute the minimum normalized energy per bit that allows

reliable transmission, namely [33] (
Eb

N0

)

min

=
ln 2

İ(0)
, (23)

where İ(0) is the first derivative of the spectral efficiency in the limitfor the SNR tending to zero,

expressed in nats per degree of freedom.N0 denotes the noise power spectral density. Besides, as

the energy increases from(Eb/N0)min, the spectral efficiency presents a slope given by [33]

S0 = −
2[İ(0)]

2

Ï(0)
(in bits per degree of freedom per 3 dB), (24)

being Ï(0) the limit for the SNR tending to zero of the second derivativeof the spectral efficiency.

In other words, for the reference SNRρ = Ps/σ
2
d tending to zero, we need to compute the limit

of the first- and second-order derivatives of the spectral efficiency. Letm1 andm2 be the first two

moments of the eigenvalue distributionν2 of the interference matrix̃CH
Ψ̃

H
Ψ̃C̃, which are given

by (22) in Section V-B. Then, the following results hold true(see also [1]):
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Proposition 7.1:Consider the asymptotic spectral efficiencies derived by Theorem 3.2 for isometric

LD-STBC. Than, the first two derivatives computed inρ = 0 are

∂IHaar
LMMSE

∂ρ

∣∣∣∣
ρ=0

=
α

1 + α

(
|hs|2 +m1

)
, (25a)

∂2IHaar
LMMSE

∂ρ2

∣∣∣∣
ρ=0

= − α

1 + α

(
|hs|4 + 2|hs|2m1 + 2m2 −m2

1

)
, (25b)

for the LMMSE filter and

∂IHaar
ML

∂ρ

∣∣∣∣
ρ=0

=
α

1 + α

(
|hs|2 +m1

)
(26a)

∂2IHaar
ML

∂ρ2

∣∣∣∣
ρ=0

= − α

1 + α

(
|hs|4 + 2|hs|2m1 +m2

)
. (26b)

for the ML receiver.

Similarly, the first and second derivatives atρ = 0 of the spectral efficiencies obtained with i.i.d.

LD-STBC (see Theorem 3.3) are given by:

∂I iid

∂ρ

∣∣∣∣
ρ=0

=
α

1 + α

(
|hs|2 +

L∑

l=1

|glhdl|2
)
, in both cases,

∂2I iidLMMSE

∂ρ2

∣∣∣∣
ρ=0

= − α

1 + α

[
|hs|4 + 2|hs|2

L∑

l=1

|glhdl|2 + (2α + 1)

(
L∑

l=1

|glhdl|2
)2]

,

∂2I iidML

∂ρ2

∣∣∣∣
ρ=0

= − α

1 + α

[
|hs|4 + 2|hs|2

L∑

l=1

|glhdl|2 + (α+ 1)

(
L∑

l=1

|glhdl|2
)2]

.

Inserting these results into (23) and (24), one readily obtains (Eb/N0)min and the slopesSLMMSE,Haar
0 ,

SML,Haar
0 , SLMMSE,iid

0 , SML,iid
0 .

Proof: See Appendix C.

A. Slope comparison

Since the four schemes (two possible receivers and two possible codes) present the same minimum

energy-per-bit, it is interesting to compare the slopes of the spectral efficiency asEb/N0 approaches

(Eb/N0)min from above. From the expressions of the second-order derivatives, it is straightforward

to verify that Haar codes outperform i.i.d. ones for both thereceivers. Indeed:

SLMMSE,Haar
0

SLMMSE,iid
0

= 1 +
2α
∑L

l=1 |glhdl|4

|hs|4 + 2|hs|2m1 + 2m2 −m2
1

, (27)

SML,Haar
0

SML,iid
0

= 1 +
α
∑L

l=1 |glhdl|4

|hs|4 + 2|hs|2m1 +m2

. (28)

More meaningful is the comparison between the two receiverswhen employing isometric codes.

By replacing the expressions of the second derivatives, oneobtains:

SML,Haar
0

SLMMSE,Haar
0

= 1 +
m2 −m2

1

|hs|4 + 2|hs|2m1 +m2

. (29)
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Fig. 8. Spectral efficiency vs.Eb/N0: comparison between real curves and low-power (LP) approximations for the LMMSE

(a) and the ML (b) receivers.

It is straightforward to show that

1 ≤ SML,Haar
0

SLMMSE,Haar
0

< 2.

Observe that the caseSML,Haar
0 /SLMMSE,Haar

0 = 1 arises only when the variance of the distribution

ν2 vanishes, i.e. whenm2 −m2
1 = 0. This condition implies that the matrix̃CH

Ψ̃
H
Ψ̃C̃ is, up to a

constant factor, an identity matrix. This is another evidence of the optimality of the LMMSE receiver

in the white-interference signal model. Nevertheless, since

m2 −m2
1 = α

[(
L∑

l=1

|glhdl|2
)2

−
L∑

l=1

|glhdl|4
]
,

the interference can never be whitened, except for the trivial caseα = 0.

Note that the three ratios (27), (28) and (29) tend to one as|hs|2 increases, meaning that all the

coding/receiver schemes are equivalent in that situation.The reason is that the relay contribution

becomes less important when the quality of the direct link ishigh.

Fig. 8 compares simulation curves with the approximations derived above, both for the LMMSE

receiver (see Fig. 8(a)) and for the ML receiver (see Fig. 8(b)). The gain of Haar coding over

i.i.d. coding is evident. Besides, as commented in Section VI, we can notice once again that Haar

signatures are especially useful with the LMMSE receiver, due to higher sensitivity of the linear

receiver to colored interference.

VIII. C ONCLUSIONS

This paper has presented a randomized distributed linear-dispersion space-time block code for the

relay channel which is based on isometric matrices. These codes show some gain with respect to

similar i.i.d.-based ones [16], [22]. This advantage is dueto the orthogonal structure of the coding

matrices, which removes intra-relay interference. Intuition and simulation results suggest that isometric
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codes are more suitable in systems with a low number of relays. Indeed, as we add more terminals,

the interference generated within each relay becomes negligible with respect to the one due to the

superposition of all relay transmissions. Furthermore, the difference between the two coding schemes

is more significant when employing a LMMSE receiver, which ismore sensible to colored interference

than the ML receiver.

The analysis has been carried out in the asymptotic domain, i.e. when both dimensions of the

coding matrices grow indefinitely but keeping constant the coding rateα. Indeed, as in the i.i.d.

case, large enough random isometric codes show a deterministic behavior, independent of the specific

realization of the matrices. Results have been derived by resorting to the rectangular R-transform, a

recent result of probability theory that allows to estimatethe distribution of the singular values of a

sum of rectangular matrices.

APPENDIX A

PROOFS OFSECTION IV

In this first appendix we report the proofs of the results in Section IV.

A. Proof of Lemma 4.1

First of all, let us prove formally the following result of Section V-A, namely the uniqueness of

the solution of (19).

Lemma A.1:Let Cν(z) be the rectangular R-transform with ratioα of ν. Then, there exists a

unique formal power seriesMν2(z) that satisfies

Mν2(z) = Cν [zT (Mν2(z))],

with T (z) = (αz + 1)(z + 1).

Proof: Recalling the definition (16) of the rectangular Cauchy transform with ratioα of ν2, the

fixed point equation can be rewritten as

Mν2(z) = Cν(Hν(z)) (30)

or, as in (18),Hν(z) = zT [Cν(Hν(z))]. SinceCν(0) = 0 andT (0) = 1, the last equation satisfies

the assumptions of the Lagrange inversion formula [34], which implies thatHν(z) is unique. From

(30), and using the fact thatCν(z) is invertible by composition, we see thatMν2(z) is also unique.

By definition, we know that the rectangular R-transform ofν is the sum of the rectangular R-

transforms of the original distributions{µl}, namelyCν(z) =
∑L

l=1Cµl
(z). We assume now that

there existL functionsMl(z) such thatMν2(z) =
∑L

l=1Ml(z) =
∑L

l=1Cµl

[
zT
(∑L

l=1Ml(z)
)]

,
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where the second equality yields from (19). Furthermore, they are solutions to the following system

of equations:



M1(z)
...

ML(z)


 =




Cµ1

[
z
(
1 + α

∑L
l=1Ml(z)

)(
1 +

∑L
l=1Ml(z)

)]

...

CµL

[
z
(
1 + α

∑L
l=1Ml(z)

)(
1 +

∑L
l=1 Ml(z)

)]


 .

It is simple to prove that this system has a unique solution. It is enough to notice thatMl(z) =

Cµl
(Hν(z)) and then each of the previous equations can be written as

Hν(z) = z
(
1 + α

L∑

l=1

Cµl
(Hν(z))

)(
1 +

L∑

l=1

Cµl
(Hν(z))

)
.

Similarly to the proof of Lemma A.1,φ(z) =
(
1 + α

∑L
l=1Cµl

(z)
)(

1 +
∑L

l=1 Cµl
(z)
)

satisfies

the hypotheses of the Lagrange inversion formula, which implies once again thatHν(z) and, thus,

Ml(z) = Cµl
(Hν(z)) exist and are unique.

We can now apply the transformationx→ x(1 + αx) to both sides of the system and obtain the

equivalent identity



M1(z)(1 + αM1(z))
...

ML(z)(1 + αML(z))


 = z

(
1 + α

L∑

l=1

Ml(z)
)(

1 +

L∑

l=1

Ml(z)
)




|g1hd1|2
...

|gLhdL|2


 , (31)

where the right-hand side has been simplified knowing thatαC2
µl
(z)+Cµl

(z) = |glhdl|2z (see (35) in

Appendix B). Note that this transformation can introduce solutions. However, only one set{Ml(z)}
will generate a valid MGF as stated by Lemma A.1.

Now, considerMν2(z) as a function ofz on the negative real axisR−. From its analytic form

(8), it is straightforward to prove thatMν2(z) is monotonically increasing and bounded between the

values−1 and zero. This fact implies that each functionMl(z) is negative and lower-bounded by

−1. Indeed, for each individual equation of the system (31), i.e.

Ml(z)(1 + αMl(z)) = z(1 + αMν2(z))(1 +Mν2(z))|glhdl|2,

one realizes that the right-hand side is always negative (recall that we considerα ≤ 1). Then, it

must beMl(z) ∈ (−1/α, 0]. Now, sinceMl(z) ≤ 0, the equalityMν2(z) =
∑L

l=1Ml(z) implies that

−1 < Ml(z) ≤ 0. Thus, within the solutions of (31), there must exist a set offunctions{Ml(z) : l =

1, . . . , L} such that−1 < Ml(z) ≤ 0 and−1 <
∑L

l=1Ml(z) ≤ 0. Then,Mν2(z) =
∑L

l=1Ml(z) is

the desired moment generating function.

B. Proof of Proposition 4.1

For L = 2 relays, the system in (13) can be solved as follows. To simplify the notation, we make

the dependence onz implicit and writeMl = Ml(z), l ∈ {1, 2}, andM = Mν2(z). Furthermore, we
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denoteγ(+) = |g1hd1|2+ |g2hd2|2 andγ(−) = |g1hd1|2−|g2hd2|2. Then, the system of equations can

be written as 



M1(1 + αM1) = z(1 + αM)(1 +M)|g1hd1|2

M2(1 + αM2) = z(1 + αM)(1 +M)|g2hd2|2.
(32)

By subtracting the two equations and recalling that we must have1 + αM 6= 0, we get

M1 −M2 = z(1 +M)γ(−). (33)

On the other hand, adding the two equations of (32) leads to the new identity

M − 1

2

(
M2 + (M1 −M2)

2
)
= z(1 + αM)(1 +M)γ(+).

By inserting (33), we get the following second order equation in M :

α
[
1 +

(
zγ(−)

)2 − 2zγ(+)
]
M2 + 2

[
1 + α

(
zγ(−)

)2 − z(1 + α)γ(+)
]
M + α

(
zγ(−)

)2 − 2zγ(+) = 0,

which has the two solutions

M ∈
{
M (+),M (−)

}
= −

[
1 + α

(
zγ(−)

)2 − z(1 + α)γ(+)
]

α
[
1 +

(
zγ(−)

)2 − 2zγ(+)
] ·

·


1±

√√√√√√1− α

[
α
(
zγ(−)

)2 − 2zγ(+)
][
1 +

(
zγ(−)

)2 − 2zγ(+)
]

[
1 + α

(
zγ(−)

)2 − z(1 + α)γ(+)
]2


 . (34)

Basic algebra shows that the discriminant is positive, meaning that the two solutions exist and are

different to one another. However, since
[
1 + α

(
zγ(−)

)2 − z(1 + α)γ(+)
]

α
[
1 +

(
zγ(−)

)2 − 2zγ(+)
] > 1

for z < 0, one hasM (+) < −1 (the second factor of the right-hand side of (34) is also larger than

one when the plus sign is chosen) and has to be discarded. On the contrary, it is trivial to show that

M (−) ∈ (−1, 0], meaning that the moment generating function is (14).

C. Proof of Proposition 4.2

When all the equivalent channel gains are equal, i.e.|glhdl|2 = 1, l = 1, . . . , L, all the linear-

dispersion matrices have the same (symmetrized) singular value distributionµ = 1
2(δ−1 + δ1). Then,

the system in (13) reduces to

1

L
Mν2(1 +

α

L
Mν2) = z(1 + αMν2)(1 +Mν2),

since, for anyl = 1, . . . , L, Ml(z) =
1
L
Mν2(z) = Cµ(Hν(z)) (see also the previous appendix).
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After some algebra, we can write the second order equation

α

L
(1− L2z)M2

ν2 + (1− αLz − Lz)Mν2 − Lz = 0.

Then,Mν2(z) as in (15) is the unique solution that satisfies all the constraints.

Note that in this case one can also solve directly equation (19) in the real analytic domain, with

Cν(z) = LCµ(z) =
L

2α

[√
1 + 4αz − 1

]
,

defined forz ≥ − 1
4α (Appendix B shows how to compute the rectangular R-transform Cµ(z) of

µ = 1
2(δ−1 + δ1)). However, it is important to remark that this approach is not always feasible in

the general case. Indeed, due the constraintz ≥ −
(
4αmax

{
|glhdl|2

})−1
on the generalCν(z) as in

(21), identity (19) may not be satisfied at allz < 0.

APPENDIX B

THE RECTANGULAR R-TRANSFORM OFδa

According to the algorithm depicted in Fig. 1, we compute here the rectangular R-transform with

ratio α corresponding to the symmetrized distributionµ = 1
2δ−

√
a + δ√a, that isµ2 is the distribution

of the deterministic constanta > 0.

First, the moment generating seriesMµ2(z) =
∑+∞

i=1 aizi may be written asMµ2(z) = az
1−az

, which

impliesHµ(z) = z[1−(1−α)az]/(1 − az)2, according to (16). Recalling thatT (z) = (αz+1)(z+1)

and thatz = T (U(z)) − 1, from (17) we know thatCµ(z) is a solution to

H−1
µ (z) =

z

(1 + Cµ)(1 + αCµ)
,

or, equivalently, to

z = H
( z

(1 + Cµ)(1 + αCµ)

)
=

z

(1 + Cµ)(1 + αCµ)− az

(1 + Cµ)(1 + αCµ)− (1− α)az

(1 + Cµ)(1 + αCµ)− az
.

The last identity can be rewritten as

[(1 + Cµ)(1 + αCµ)− az]2 = (1 + Cµ)(1 + αCµ)− (1− α)az

and, after some algebra, as

[
(2αCµ + 1 + 2α)2 − (1 + 4αaz)

][
(2αCµ + 1)2 − (1 + 4αaz)

]
= 0.

Since it must beCµ(0) = 0, the first term can be discarded andCµ(z) is a solution to(2αCµ + 1)2 =

1 + 4αaz, and, thus, to

αC2
µ +Cµ − az = 0. (35)

Whenz ∈ R andz ≥ −(4αa)−1, Cµ(z) is given by

Cµ(z) =

√
1 + 4αaz − 1

2α
.
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APPENDIX C

PROOF OFPROPOSITION7.1

The results of Proposition 7.1 can be proven as follows. Recall that the moment generating series

of ν2 is Mν2(z) =
∑+∞

i=1 miz
i. Now, sinceρ→ 0 implies χ = ρ− |hs|2ρ2 + o(ρ2), one has

ηHaar = − 1

χ
Mν2(−χ) = m1 −m2ρ+ o(ρ)

and, after some algebra,

IHaar
LMMSE =

α

1 + α

[
(|hs|2 +m1)ρ+ (m2

1 −m2)ρ
2 − 1

2
(|hs|2 +m1)

2
ρ2
]
+ o(ρ2),

∂IHaar
ML

∂ρ
=

α

1 + α

|hs|2

1 + ρ|hs|2
− α

1 + α

Mν2(−χ)
χ

∂χ

∂ρ

=
α

1 + α

[
|hs|2 +m1 − (|hs|4 + 2|hs|2m1 −m2)ρ

]
+ o(ρ),

all for ρ small enough. The results in (25) and (26) follow from inspection once recalling the general

Maclaurin expansionI(ρ) = I(0) +
∑+∞

i=1
1
i!

(
∂iI
∂ρi

∣∣∣
ρ=0

)
ρi.

Similar reasoning holds for the i.i.d. case.
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[5] İ. E. Telatar, “Capacity of multi-antenna Gaussian channels,” European Trans. on Telecommunications, vol. 10, no. 6,

pp. 585–595, Nov. 1999, invited paper.

[6] J. N. Laneman, “Cooperative diversity in wireless networks: Algorithms and architectures,” Ph.D. dissertation,

Massachusetts Institute of Technology, Sep. 2002.

[7] M. Dohler, “Virtual antenna arrays,” Ph.D. dissertation, King’s College London, University of London, Strand, London,

UK, Nov. 2003.

[8] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity–Part I: System description,”IEEE Trans.

Commun., vol. 51, no. 11, pp. 1927–1938, Nov. 2003.

[9] F. H. P. Fitzek and M. D. Katz, Eds.,Cooperation in Wireless Networks: Principles and Applications – Real Egoistic

Behavior is to Cooperate! Dordrecht, The Netherlands: Springer, 2006.

[10] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks: Efficient protocols and

outage behavior,”IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3062–3080, Dec. 2004.

[11] J. N. Laneman and G. W. Wornell, “Distributed space-time-coded protocols for exploiting cooperative diversity in

wireless networks,”IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2415–2425, Oct. 2003.

July 12, 2011 DRAFT



30

[12] B. Sirkeci-Mergen and A. Scaglione, “Randomized space-time coding for distributed cooperative communications,”

IEEE Trans. Signal Process., vol. 55, no. 10, pp. 5003–5017, Oct. 2007.

[13] Y. Jing and B. Hassibi, “Distributed space-time codingin wireless relay networks,”IEEE Trans. Wireless Commun.,

vol. 5, no. 12, pp. 3524–3536, Dec. 2006.

[14] D. Gregoratti and X. Mestre, “Random DS/CDMA for the amplify and forward relay channel,”IEEE Trans. Wireless

Commun., vol. 8, no. 2, pp. 1017–1027, Feb. 2009.

[15] F. Benaych-Georges, “Rectangular random matrices, related convolution,”Probability Theory and Related Fields, vol.

144, no. 3-4, pp. 471–515, Jul. 2009.

[16] D. Gregoratti and X. Mestre, “Decode and forward relays: Full diversity with randomized distributed space-time

coding,” in Proc. IEEE ISIT 2009, Seoul, Korea, Jun. 28–Jul. 3 2009.
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