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Context

Frequency and time selective MIMO transmission with T transmitting
and N receiving antennae. Received signal sequence:

L
Y(k)= > H(k,0)S(¢) + V(k)

l=—L

» (S5(k))kez: independent CN (0, I7) input process,
» (V(k))kez: independent CN(0, Iy) noise process,
)

> (H(k) =[H(k,k—L),...,H(k, k4 L)])kez: Gaussian
CN*x(L1T yalued ergodic, generally non-centered process
representing the MIMO channel.

The three processes are independent.
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Shannon’s mutual information

Assuming the channel known at receiver,

I1(S; (Y, H)) = limsup Elog det(H"H"™ + lont1yn)

2n+1
where

H(—n,—n—L) --- H(—n,—n+1L) 0
Hn =
0 H(n,n—1L) --- H(n,n+1L)

Purpose: Behavior of /(S; (Y, H)) w.r.t. parameters of the
channel statistical model.

3/26



Ergodic operators: a quick overview
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Channel representation as an ergodic operator

Assume N = T =1 for simplicity. On the Hilbert space /*(Z), let H(w)

be the random unbounded operator represented by the doubly infinite
matrix

H(w) =
i 0
H(-1,-2) H(-1,-1) H(-1,1)
H(0,—1)  H(0,0) H(0,1)
' H(1,0) H(1,1) H(L,2)
0 .

= [H(k,0),k,t € Z,|k — (] < L].
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Channel representation as an ergodic operator

Write

H(w) = (Hw, k) = [H(k k= L), H(k k + L)])kez.

» By assumption, the shift B : Q — €2 characterized by the equation
H(Bw, k) = H(w, k + 1) is ergodic.
» Operator H(w) clearly satisfies the equation

H(Bw) = UH(w)U™!

where U is the (unitary) shift operator Ua = )", a6k for
a=Y, axe and e is the k™ canonical basis vector.

» Such an operator is ergodic, see Pastur and Figotin's book.
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Ergodicity of HH*

» The self-adjoint operator HH* exists and is also ergodic, since
[HH*|(Bw) = U[HH*|(w)U™!
> Forany ze CL ={z € C:S3z > 0}, let
Q(2) = (HH" — 2)7' = [Q(2)(k, O)]k.cez

be the resolvent of HH*. The resolution of identity of HH*, hence
Q(z), are also ergodic. It results that

2n+1 Z Q(2)(i,i —>IEQ( )(0,0)

i=—n

» More generally, EQ(z)(k, ¢) depends on k — ¢ only.
= EQ(z) is a bounded Laurent operator.
We redenote EQ(z)(k, ) as EQ(z)(k — ).

7/26



The Integrated Density of States

> The operator HH* has an Integrated Density of States (IDS):
there exists a deterministic probability measure p such that

1 nnk a.s.
s e () 2 [ g()u(d)

for all continuous and bounded functions g.
» Taking g(\) = (A — z)~1, we also have

/ T ) = EQ()(0)

This is the Stieltjes Transform (ST) of u.
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IDS and mutual information

Theorem 1: The sequence (2n+1)~logdet(H"H"* + hp11)
converges a.s. and in expectation as n — oo, and the limit is
the mutual information

I(S: (Y, H)) = /OOO log(1 + \) j(d)) < oc.
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Mutual information approximation

» Theorem 1 characterizes the mutual information. However, the
integral is not very informative in general. Some sort of
asymptotic regime is needed.

» All shown properties of HH* still hold true when N or T is > 1. In
particular, IDS exists, and writing

Q(2) = (HH* — 2)7! = [Q(2)(k, )]k.cez

where the blocks Q(z)(k,¢) are N x N matrices,

EQ(z) = [EQ(z)(k — £)]«.ecz is block-Laurent, and the ST of u is
~ trEQ(z)(0)

= N ,

» Theorem 1 becomes

1
—1
N

now m,,(z)
(S: (Y, H)) = /000 log(1 + \) j(d)) < oc.
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Mutual information approximation

» In order to make the integral w.r.t. u more informative given the
parameters of the channel statistical model, we make

T —o00, 0<IliminfN/T <supN/T < 0.

and we study the asymptotic behavior of m,,(z) in this regime, along
the lines of Khorunzhyi-Pastur'93.

> Specifically, we find a sequence my,(z) of ST of probability
measures 71 such that

trEQ(z)(0)

My (z) — N 0

T—o0

for Sz > 0. We then deduce an expression for [ log(1+ A)mwr(d)).
» Other asymptotic regimes are possible.
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Model, assumptions and the results
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The channel model

Recall that Y(k) = >, H(k,¢)S(¢) + V(k).

We assume H(k,l) = A(k — £) + X(k,£) € CN*T where
> (A(—L),...,A(L)) is deterministic (frequency selective specular
part),
> X(k,0) = %(b(k —OW(k, ), where ¢ : {—L,...,L} - Risa
function WhosTe square is the multipath variance profile,

> (W(k,0) = [Whe(k,£),n=0:(N—-1),t=0:(T —1)])keez is a
complex Gaussian proper centered random field such that

E[thh(kl’El)an,tz(k2’€2)] = ]lnl:nz]1t1:t2]1k1_51:k2—€27(k1 - k2)

where (k) is a summable covariance function modeling the
Doppler effect.
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The channel model

H=A+X
A1) A(0) A(-1) - 0
= LOA() A0)  A(-1)
0 LAQ) A0)  A(-1)

Constant block-Laurent banded operator

X(~-1,-2) X(-1,-1) X(-1,1) . 0
+ X(0,-1)  X(0,0) X(0,1)
0 E X(1,0)  X(1,1) X(1,2)

e Elements of each X(k,?) are iid,

e Mutually independent block diagonals,

e Variance of an element depends on the b.-diagonal,
e Time correlations on every b.-diagonal.

Since A is block-Laurent and v is summable, H is ergodic.
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Assumptions

We add the index T when necessary to stress dependency on T.
We assume

1. 0% = Z¢T(€)2 satisfies supy 0% < cc.
¢
2. sup »_ [y ()] < 0.
.
¢

3. supz IAT(€)|| < oo where || - || is the spectral norm.
L
Comments:
» Received power due to random part of the channel is o'%.
» Assumption 2 means that the coherence time of the channel does
not grow with T. The channel will become harder and harder to
estimate !

» Assumption 3 can be lightened.
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Results : characterization of 71
Fourier transforms :

r(F) = exp(mkf)yr(k), Ar(f) = exp(2urkf)Ar(k)
k k

Write (ATAT)(f) = Ar(F)AS(f) and (ATAT)(F) = AT(F)A(F).
Consider the system of equations

trS7(f,2)

QOT(fvz) T

= USTD) ang pr(r2) =

where S7(f,z) and S7(f,z) are the N x N and T x T matrices
St(f.z) = [z(1+ o7y (f) x p1(f,2))
+(1+ ohyr(-A = er(f,2) T (ATAT)(A)]
Sr(f,2) = [—z(1+ o3y r(—F) *¢7(f. 2))

1+ o3yr() x Brlf.2) ATAD(A)]
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Results : characterization of 71

70 % @r(7.2) = [ o7 = )y (u.2) du, ane

1
(=N ror(f.2) = [ rrla— For(uz) do

Theorem 2: For any z € C,, this system admits a unique
solution (@1 (+,2), $7(+, 2)) such that

SOT('az)vCDT('»Z) : [Oa 1] -C

are both measurable and Lebesgue-integrable on [0,1] and
such that Sp(f, z), S(f, z), S(ze(f,z)) and S(z@(f, 2))
are nonnegative for any f € [0, 1].

1

The complex function N_l/ trS(f,z) df is the ST of a

0
probability measure 71 carried by [0, 00).
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Large-T approximation of the IDS

Theorem 3: For any z € C,

/5

Moreover, the sequences w1 and 7rr are tight, and

—>OO

/A'r d/\) - /77TT d/\ — 0.

[e0ur@n = [e0ymr(an) ——0

for any continuous and bounded real function g.
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Mutual information approximation

Theorem 4: It holds that

N=Y7(S; (Y, H) —Ir —— 0
T—o0

where Z1 = /Iog(l + M) (dA). This integral is given by

1
Ir= l/ Iogdet(l+02T7T(f)*<,~07(f,—1)
N Jo

(AAT)(7)
1+ o3y r(=f) xpr(f, —1)) i

T
e / l0g(1 + 03~ 7 (~F) % pr(f, 1)) df

T 1 1 .
5 [ ] vzttt
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Some particular cases

It turns out that
» The form of the variance profile ¢7(k)? has no influence on Zr.

» If the channel is centered (At = 0), then 71 is a Marchenko-Pastur
distribution.

» In the limit of small coherence times ((f) — 1), the law 7 is the
one obtained with a so-called “Information plus Noise” model.

20/26



Main steps of the proof
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Expectations of resolvents

Let
Q(z) = (HH* — 2)7* = [Q(2)(k, O)lkeez (N x N blocks)
Q(z) = (H*H — 2)"' = [Q(2)(k, O)lkeez (T x T blocks)

Recall that the bounded operators EQ(z) and EQ(z) are block-Laurent.

EQ(2) = [EQ(2)(k — )(2)lkeez, EQ(2) = [EQ(2)(k — )]k ez

We want to approximate trEQ7(z)(0)/N, the ST of ur.
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Tools

The basic tools are :

» Stein’s lemma, i.e, the integration by parts formula for E[X;T'(X)]

where X = (Xq,...,Xum) is a Gaussian vector and I : CM — Cis a
C? function.

» Poincaré-Nash inequality for bounding VarI'(X).
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A perturbed infinite system of equations

By adapting these tools to the infinite dimensional context, we get
(omitting z)

EQ(K) = —ztI(k 22 r)[“EQ ] Q(k —r)
+ 2 'E[AH* Q](k ) E(k),
E[AH*Q] 7_022 [trEQ )}E[AH*Q](/(—I’)

+ IE[AA* Q](k) + E'(k)

E[AH*Q](k) is the kth diagonal block of the block-Laurent operator
E[AH* Q).

Elements of “perturbation” matrices E(k) and E’(K) are bounded by
Constant(z)/T.

Similar equations for IEE)

24/26



Operators S and S

Identifying the function S(-, z) with a multiplication operator on the
Hilbert space £2([0,1] — CN), and letting F be the operator who sends
g € L£2([0,1] — CN), to the sequence of its Fourier coefficients in 1>(Z),
the operator

Sr(z) = FS(-, 2)F*

is bounded and block-Laurent.

Blocks of St(z) = [St(z)(k — €)]«.¢cz and those of
S57(z) = [ST(2)(k — 0)]k ccz defined similarly satisfy a system of
equations similar to EQ, EQ, but without perturbation.
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ST of 7w+ and mutual information approximation

trEQ(2)(0)  trS(2)(0)
N N

e (2) = trS(;)(O) :/0 S(;}z)df

we get the large-T approximation of the ST m,,, of the IDS pt
(Theorem 3).

We show that

— 0 for large T. Since

To pass from the ST to the mutual information, we use

/Iog(l + Nut = /100 (1 - mMT(—t)> dt

We therefore need to find an antiderivative for (t=! — mg, (—t)).
Derivation done in HLN'07 = Theorem 4.
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