

The mutual information of a MIMO non-centered time and frequency selective channel: an ergodic operator approach

Walid Hachem

CNRS LTCI: Telecom ParisTech

with Aris Moustakas and Leonid Pastur

^aRandom matrix theory and statistical physics workshop 2014, IHP

Preliminaries

Ergodic operators: a quick overview

Model, assumptions and the results

Main steps of the proof

Context

Frequency and time selective MIMO transmission with T transmitting and N receiving antennae. Received signal sequence:

$$Y(k) = \sum_{\ell=-L}^{L} H(k,\ell)S(\ell) + V(k)$$

- ▶ $(S(k))_{k \in \mathbb{Z}}$: independent $\mathcal{CN}(0, I_T)$ input process,
- ▶ $(V(k))_{k \in \mathbb{Z}}$: independent $CN(0, I_N)$ noise process,
- ▶ $(\mathbf{H}(k) = [H(k, k-L), \dots, H(k, k+L)])_{k \in \mathbb{Z}}$: Gaussian $\mathbb{C}^{N \times (2L+1)T}$ -valued **ergodic**, **generally non-centered** process representing the MIMO channel.

The three processes are independent.

Shannon's mutual information

Assuming the channel known at receiver,

$$I(S; (Y, H)) = \limsup_{n} \frac{1}{2n+1} \mathbb{E} \log \det(H^{n}H^{n*} + I_{(2n+1)N})$$

where

$$H^{n} = \begin{bmatrix} H(-n, -n-L) & \cdots & H(-n, -n+L) & 0 \\ & \ddots & & \ddots \\ 0 & & H(n, n-L) & \cdots & H(n, n+L) \end{bmatrix}.$$

Purpose: Behavior of I(S; (Y, H)) w.r.t. parameters of the channel statistical model.

Preliminaries

Ergodic operators: a quick overview

Model, assumptions and the results

Main steps of the proof

Channel representation as an ergodic operator

Assume N=T=1 for simplicity. On the Hilbert space $l^2(\mathbb{Z})$, let $H(\omega)$ be the random unbounded operator represented by the doubly infinite matrix

Channel representation as an ergodic operator

Write

$$\mathbf{H}(\omega) = (\mathbf{H}(\omega, k) = [H(k, k - L), \dots, H(k, k + L)])_{k \in \mathbb{Z}}.$$

- ▶ By assumption, the shift $B: \Omega \to \Omega$ characterized by the equation $\mathbf{H}(B\omega, k) = \mathbf{H}(\omega, k+1)$ is **ergodic**.
- Operator $H(\omega)$ clearly satisfies the equation

$$H(B\omega) = UH(\omega)U^{-1}$$

where U is the (unitary) shift operator $Ua = \sum_k \alpha_{k+1} e_k$ for $a = \sum_k \alpha_k e_k$, and e_k is the k^{th} canonical basis vector.

Such an operator is ergodic, see Pastur and Figotin's book.

Ergodicity of HH*

► The self-adjoint operator *HH** exists and is also **ergodic**, since

$$[HH^*](B\omega) = U[HH^*](\omega)U^{-1}.$$

▶ For any $z \in \mathbb{C}_+ = \{z \in \mathbb{C} : \Im z > 0\}$, let

$$Q(z) = (HH^* - z)^{-1} = [Q(z)(k,\ell)]_{k,\ell \in \mathbb{Z}}$$

be the **resolvent** of HH^* . The resolution of identity of HH^* , hence Q(z), are also ergodic. It results that

$$\frac{1}{2n+1}\sum_{i=-n}^{n}Q(z)(i,i)\xrightarrow[n\to\infty]{\text{a.s.}}\mathbb{E}Q(z)(0,0)$$

▶ More generally, $\mathbb{E}Q(z)(k,\ell)$ depends on $k-\ell$ only. $\Rightarrow \mathbb{E}Q(z)$ is a bounded **Laurent operator**. We redenote $\mathbb{E}Q(z)(k,\ell)$ as $\mathbb{E}Q(z)(k-\ell)$.

The Integrated Density of States

► The operator HH^* has an Integrated Density of States (IDS): there exists a deterministic probability measure μ such that

$$\frac{1}{2n+1}\operatorname{tr} g(H^nH^{n*})\xrightarrow[n\to\infty]{\text{a.s.}}\int g(\lambda)\mu(d\lambda)$$

for all continuous and bounded functions g.

▶ Taking $g(\lambda) = (\lambda - z)^{-1}$, we also have

$$\int_0^\infty \frac{1}{\lambda - z} \mu(d\lambda) = \mathbb{E} Q(z)(0).$$

This is the **Stieltjes Transform (ST)** of μ .

IDS and mutual information

Theorem 1: The sequence $(2n+1)^{-1} \log \det(H^n H^{n*} + I_{2n+1})$ converges a.s. and in expectation as $n \to \infty$, and the limit is the mutual information

$$I(S; (Y, H)) = \int_0^\infty \log(1 + \lambda) \, \mu(d\lambda) < \infty.$$

Mutual information approximation

- Theorem 1 characterizes the mutual information. However, the integral is not very informative in general. Some sort of asymptotic regime is needed.
- ▶ All shown properties of HH^* still hold true when N or T is > 1. In particular, IDS exists, and writing

$$Q(z) = (HH^* - z)^{-1} = [Q(z)(k, \ell)]_{k,\ell \in \mathbb{Z}}$$

where the blocks $Q(z)(k,\ell)$ are $N\times N$ matrices, $\mathbb{E}Q(z)=[\mathbb{E}Q(z)(k-\ell)]_{k,\ell\in\mathbb{Z}}$ is **block-Laurent**, and the ST of μ is now $m_{\mu}(z)=\frac{\operatorname{tr}\mathbb{E}Q(z)(0)}{N}$.

▶ Theorem 1 becomes

$$\frac{1}{N}I(S;(Y,H))=\int_0^\infty\log(1+\lambda)\,\mu(d\lambda)<\infty.$$

Mutual information approximation

In order to make the integral w.r.t. μ more informative given the parameters of the channel statistical model, we make

$$T \to \infty$$
, $0 < \liminf N/T \le \sup N/T < \infty$.

and we study the asymptotic behavior of $m_{\mu}(z)$ in this regime, along the lines of Khorunzhyi-Pastur'93.

▶ Specifically, we find a sequence $m_{\pi_T}(z)$ of ST of probability measures π_T such that

$$m_{\boldsymbol{\pi}_{T}}(z) - \frac{\operatorname{tr} \mathbb{E} Q(z)(0)}{N} \xrightarrow[T \to \infty]{} 0$$

for $\Im z > 0$. We then deduce an expression for $\int \log(1+\lambda)\pi_T(d\lambda)$.

► Other asymptotic regimes are possible.

Preliminaries

Ergodic operators: a quick overview

Model, assumptions and the results

Main steps of the proof

The channel model

Recall that $Y(k) = \sum_{\ell} H(k,\ell)S(\ell) + V(k)$.

We assume $H(k,\ell) = A(k-\ell) + X(k,\ell) \in \mathbb{C}^{N \times T}$ where

- ► (A(-L),...,A(L)) is deterministic (frequency selective specular part),
- ► $X(k,\ell) = \frac{1}{\sqrt{T}}\phi(k-\ell)W(k,\ell)$, where $\phi: \{-L,\ldots,L\} \to \mathbb{R}$ is a function whose square is the multipath variance profile,
- ▶ $(W(k,\ell) = [W_{n,t}(k,\ell), n = 0 : (N-1), t = 0 : (T-1)])_{k,\ell \in \mathbb{Z}}$ is a complex Gaussian proper centered random field such that

$$\mathbb{E}[W_{n_1,t_1}(k_1,\ell_1)\bar{W}_{n_2,t_2}(k_2,\ell_2)] = \mathbb{1}_{n_1=n_2}\mathbb{1}_{t_1=t_2}\mathbb{1}_{k_1-\ell_1=k_2-\ell_2}\gamma(k_1-k_2)$$

where $\gamma(k)$ is a summable covariance function modeling the **Doppler effect**.

The channel model

$$H = A + X$$

$$= \underbrace{\begin{bmatrix} \ddots & A(1) & A(0) & A(-1) & \ddots & & 0 \\ & \ddots & A(1) & A(0) & A(-1) & \ddots & \\ 0 & & \ddots & A(1) & A(0) & A(-1) & \ddots \end{bmatrix}}_{0 \text{ degree}}$$

Constant block-Laurent banded operator

$$+ \underbrace{ \begin{bmatrix} \ddots & X(-1,-2) & X(-1,-1) & X(-1,1) & \ddots & & & 0 \\ & \ddots & X(0,-1) & X(0,0) & X(0,1) & \ddots & & \\ 0 & & \ddots & X(1,0) & X(1,1) & X(1,2) & \ddots \end{bmatrix}}_{}$$

- Elements of each $X(k, \ell)$ are iid,
- Mutually independent block diagonals,
- Variance of an element depends on the b.-diagonal,
- Time correlations on every b.-diagonal.

Since A is block-Laurent and γ is summable, H is ergodic.

Assumptions

We add the index T when necessary to stress dependency on T. We assume

- $1. \ \ \sigma_T^2 = \sum_\ell \phi_T(\ell)^2 \ \text{satisfies sup}_T \ \sigma_T^2 < \infty.$
- $2. \sup_{\mathcal{T}} \sum_{\ell} |\gamma_{\mathcal{T}}(\ell)| < \infty.$
- 3. $\sup_{T} \sum_{\ell} \|A_{T}(\ell)\| < \infty$ where $\|\cdot\|$ is the spectral norm.

Comments:

- ▶ Received power due to random part of the channel is σ_T^2 .
- Assumption 2 means that the coherence time of the channel does not grow with T. The channel will become harder and harder to estimate!
- Assumption 3 can be lightened.

Results : characterization of π_T

Fourier transforms:

$$\gamma_T(f) = \sum_k \exp(2\imath \pi k f) \gamma_T(k), \quad \mathbf{A}_T(f) = \sum_k \exp(2\imath \pi k f) A_T(k)$$

Write $(\mathbf{A}_T \mathbf{A}_T^*)(f) = \mathbf{A}_T(f) \mathbf{A}_T^*(f)$ and $(\mathbf{A}_T^* \mathbf{A}_T)(f) = \mathbf{A}_T^*(f) \mathbf{A}_T(f)$. Consider the system of equations

$$\varphi_T(f,z) = \frac{\operatorname{tr} \mathbf{S}_T(f,z)}{T}$$
 and $\tilde{\varphi}_T(f,z) = \frac{\operatorname{tr} \tilde{\mathbf{S}}_T(f,z)}{T}$

where $\mathbf{S}_T(f,z)$ and $\widetilde{\mathbf{S}}_T(f,z)$ are the $N\times N$ and $T\times T$ matrices

$$\begin{split} \mathbf{S}_{T}(f,z) &= \left[-z \left(1 + \sigma_{T}^{2} \boldsymbol{\gamma}_{T}(f) \star \tilde{\boldsymbol{\varphi}}_{T}(f,z) \right) \right. \\ &+ \left(1 + \sigma_{T}^{2} \boldsymbol{\gamma}_{T}(-f) \star \boldsymbol{\varphi}_{T}(f,z) \right)^{-1} (\mathbf{A}_{T} \mathbf{A}_{T}^{*})(f) \right]^{-1}, \\ \widetilde{\mathbf{S}}_{T}(f,z) &= \left[-z \left(1 + \sigma_{T}^{2} \boldsymbol{\gamma}_{T}(-f) \star \boldsymbol{\varphi}_{T}(f,z) \right) \right. \\ &+ \left. \left(1 + \sigma_{T}^{2} \boldsymbol{\gamma}_{T}(f) \star \tilde{\boldsymbol{\varphi}}_{T}(f,z) \right)^{-1} (\mathbf{A}_{T}^{*} \mathbf{A}_{T})(f) \right]^{-1}, \end{split}$$

Results : characterization of π_T

$$\gamma_T(f)\star ilde{arphi}_T(f,z) = \int_0^1 \gamma_T(f-u) ilde{arphi}_T(u,z) \, du, ext{ and}$$
 $\gamma_T(-f)\star arphi_T(f,z) = \int_0^1 \gamma_T(u-f) arphi_T(u,z) \, du,$

Theorem 2: For any $z \in \mathbb{C}_+$, this system admits a unique solution $(\varphi_T(\cdot, z), \tilde{\varphi}_T(\cdot, z))$ such that

$$\varphi_{\mathcal{T}}(\cdot,z), \tilde{\varphi}_{\mathcal{T}}(\cdot,z): [0,1] \to \mathbb{C}$$

are both measurable and Lebesgue-integrable on [0,1] and such that $\Im \varphi(f,z)$, $\Im \tilde{\varphi}(f,z)$, $\Im (z\varphi(f,z))$ and $\Im (z\tilde{\varphi}(f,z))$ are nonnegative for any $f \in [0,1]$.

The complex function $N^{-1} \int_0^1 \operatorname{tr} \mathbf{S}(f,z) \, df$ is the ST of a probability measure π_T carried by $[0,\infty)$.

Large-T approximation of the IDS

Theorem 3: For any $z \in \mathbb{C}_+$,

$$\int \frac{1}{\lambda - z} \mu_{T}(d\lambda) - \int \frac{1}{\lambda - z} \pi_{T}(d\lambda) \xrightarrow[T \to \infty]{} 0.$$

Moreover, the sequences $\mu_{\mathcal{T}}$ and $\pi_{\mathcal{T}}$ are tight, and

$$\int g(\lambda)\,\mu_T(d\lambda) \;-\; \int g(\lambda)\,\pi_T(d\lambda) \xrightarrow[T\to\infty]{} 0$$

for any continuous and bounded real function g.

Mutual information approximation

Theorem 4: It holds that

$$N^{-1}I_T(S;(Y,H)) - \mathcal{I}_T \xrightarrow{T \to \infty} 0$$

where
$$\mathcal{I}_{\mathcal{T}} = \int \log(1+\lambda)\, m{\pi}_{\mathcal{T}}(d\lambda)$$
. This integral is given by

$$\begin{split} \mathcal{I}_T &= \frac{1}{N} \int_0^1 \log \det \left(1 + \sigma_T^2 \gamma_T(f) \star \tilde{\varphi}_T(f, -1) \right) \\ &+ \frac{(\mathbf{A}_T \mathbf{A}_T^*)(f)}{1 + \sigma_T^2 \gamma_T(-f) \star \varphi_T(f, -1)} \right) df \\ &+ \frac{T}{N} \int_0^1 \log (1 + \sigma_T^2 \gamma_T(-f) \star \varphi_T(f, -1)) df \\ &- \frac{T}{N} \int_0^1 \int_0^1 \sigma_T^2 \gamma_T(f - v) \tilde{\varphi}_T(v, -1) \varphi_T(f, -1) dv df. \end{split}$$

Some particular cases

It turns out that

- ▶ The form of the variance profile $\phi_T(k)^2$ has no influence on \mathcal{I}_T .
- ▶ If the channel is centered $(A_T = 0)$, then π_T is a Marchenko-Pastur distribution.
- ▶ In the limit of small coherence times $(\gamma(f) \to 1)$, the law π_T is the one obtained with a so-called "Information plus Noise" model.

Preliminaries

Ergodic operators: a quick overview

Model, assumptions and the results

Main steps of the proof

Expectations of resolvents

Let

$$Q(z) = (HH^* - z)^{-1} = [Q(z)(k,\ell)]_{k,\ell \in \mathbb{Z}} \quad (N \times N \text{ blocks})$$
$$\widetilde{Q}(z) = (H^*H - z)^{-1} = [\widetilde{Q}(z)(k,\ell)]_{k,\ell \in \mathbb{Z}} \quad (T \times T \text{ blocks})$$

Recall that the bounded operators $\mathbb{E} Q(z)$ and $\mathbb{E} \widetilde{Q}(z)$ are block-Laurent.

$$\mathbb{E}Q(z) = [\mathbb{E}Q(z)(k-\ell)(z)]_{k,\ell\in\mathbb{Z}}, \quad \mathbb{E}\widetilde{Q}(z) = [\mathbb{E}\widetilde{Q}(z)(k-\ell)]_{k,\ell\in\mathbb{Z}}$$

We want to approximate $\operatorname{tr} \mathbb{E} Q_T(z)(0)/N$, the ST of μ_T .

Tools

The basic tools are:

- ▶ Stein's lemma, *i.e.*, the integration by parts formula for $\mathbb{E}[X_i\Gamma(X)]$ where $X = (X_1, \dots, X_M)$ is a Gaussian vector and $\Gamma : \mathbb{C}^M \to \mathbb{C}$ is a C^1 function.
- ▶ Poincaré-Nash inequality for bounding $Var \Gamma(X)$.

A perturbed infinite system of equations

By adapting these tools to the infinite dimensional context, we get (omitting z)

$$\mathbb{E}Q(k) = -z^{-1}I(k) - \sigma^{2} \sum_{r} \gamma(r) \left[\frac{\operatorname{tr} \mathbb{E}\widetilde{Q}(r)}{T} \right] \mathbb{E}Q(k-r)$$

$$+ z^{-1} \mathbb{E}[AH^{*}Q](k) + E(k),$$

$$\mathbb{E}[AH^{*}Q](k) = -\sigma^{2} \sum_{r} \gamma(-r) \left[\frac{\operatorname{tr} \mathbb{E}Q(r)}{T} \right] \mathbb{E}[AH^{*}Q](k-r)$$

$$+ \mathbb{E}[AA^{*}Q](k) + E'(k)$$

 $\mathbb{E}[AH^*Q](k)$ is the k^{th} diagonal block of the block-Laurent operator $\mathbb{E}[AH^*Q]$.

Elements of "perturbation" matrices E(k) and E'(K) are **bounded by** Constant(z)/T.

Similar equations for $\mathbb{E}\widetilde{Q}$.

Operators S and S

Identifying the function $\mathbf{S}(\cdot,z)$ with a multiplication operator on the Hilbert space $\mathcal{L}^2([0,1] \to \mathbb{C}^N)$, and letting \mathcal{F} be the operator who sends $\mathbf{g} \in \mathcal{L}^2([0,1] \to \mathbb{C}^N)$, to the sequence of its Fourier coefficients in $I^2(\mathbb{Z})$, the operator

$$S_T(z) = \mathcal{F}\mathbf{S}(\cdot,z)\mathcal{F}^*$$

is bounded and block-Laurent.

Blocks of $S_T(z) = [S_T(z)(k-\ell)]_{k,\ell\in\mathbb{Z}}$ and those of $\widetilde{S}_T(z) = [\widetilde{S}_T(z)(k-\ell)]_{k,\ell\in\mathbb{Z}}$ defined similarly satisfy a system of equations similar to $\mathbb{E}Q$, $\mathbb{E}\widetilde{Q}$, but without perturbation.

ST of π_T and mutual information approximation

We show that
$$\frac{\operatorname{tr} \mathbb{E} Q(z)(0)}{N} - \frac{\operatorname{tr} S(z)(0)}{N} \to 0$$
 for large T . Since

$$m_{\pi_{\tau}}(z) = \frac{\operatorname{tr} S(z)(0)}{N} = \int_{0}^{1} \frac{\mathbf{S}(f, z)}{N} df$$

we get the large- T approximation of the ST m_{μ_T} of the IDS μ_T (Theorem 3).

To pass from the ST to the mutual information, we use

$$\int \log(1+\lambda)\mu_{\mathcal{T}} = \int_{1}^{\infty} \left(\frac{1}{t} - m_{\mu_{\mathcal{T}}}(-t)\right) dt$$

We therefore need to find an antiderivative for $(t^{-1} - m_{\pi_{\tau}}(-t))$. Derivation done in HLN'07 \Rightarrow Theorem 4.