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Context

Frequency and time selective MIMO transmission with T transmitting
and N receiving antennae. Received signal sequence:

Y (k) =
L∑

`=−L

H(k , `)S(`) + V (k)

I (S(k))k∈Z: independent CN (0, IT ) input process,

I (V (k))k∈Z: independent CN (0, IN) noise process,

I (H(k) = [H(k, k − L), . . . ,H(k , k + L)])k∈Z: Gaussian
CN×(2L+1)T -valued ergodic, generally non-centered process
representing the MIMO channel.

The three processes are independent.
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Shannon’s mutual information

Assuming the channel known at receiver,

I (S ; (Y ,H)) = lim sup
n

1

2n + 1
E log det(HnHn∗ + I(2n+1)N)

where

Hn =

H(−n,−n − L) · · · H(−n,−n + L) 0
. . .

. . .

0 H(n, n − L) · · · H(n, n + L)

 .

Purpose: Behavior of I (S ; (Y ,H)) w.r.t. parameters of the
channel statistical model.
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Channel representation as an ergodic operator

Assume N = T = 1 for simplicity. On the Hilbert space l2(Z), let H(ω)
be the random unbounded operator represented by the doubly infinite
matrix

H(ω) =

. . .
. . .

. . .
. . . 0

. . . H(−1,−2) H(−1,−1) H(−1, 1)
. . .

. . . H(0,−1) H(0, 0) H(0, 1)
. . .

. . . H(1, 0) H(1, 1) H(1, 2)
. . .

0
. . .

. . .
. . .

. . .


=
[
H(k , `), k, ` ∈ Z, |k − `| ≤ L

]
.
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Channel representation as an ergodic operator

Write

H(ω) =
(

H(ω, k) = [H(k , k − L), . . . ,H(k , k + L)]
)
k∈Z

.

I By assumption, the shift B : Ω→ Ω characterized by the equation
H(Bω, k) = H(ω, k + 1) is ergodic.

I Operator H(ω) clearly satisfies the equation

H(Bω) = UH(ω)U−1

where U is the (unitary) shift operator Ua =
∑

k αk+1ek for
a =

∑
k αkek , and ek is the k th canonical basis vector.

I Such an operator is ergodic, see Pastur and Figotin’s book.
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Ergodicity of HH∗

I The self-adjoint operator HH∗ exists and is also ergodic, since

[HH∗](Bω) = U[HH∗](ω)U−1.

I For any z ∈ C+ = {z ∈ C : =z > 0}, let

Q(z) = (HH∗ − z)−1 = [Q(z)(k , `)]k,`∈Z

be the resolvent of HH∗. The resolution of identity of HH∗, hence
Q(z), are also ergodic. It results that

1

2n + 1

n∑
i=−n

Q(z)(i , i)
a.s.−−−→

n→∞
EQ(z)(0, 0)

I More generally, EQ(z)(k , `) depends on k − ` only.
⇒ EQ(z) is a bounded Laurent operator.
We redenote EQ(z)(k , `) as EQ(z)(k − `).
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The Integrated Density of States

I The operator HH∗ has an Integrated Density of States (IDS):
there exists a deterministic probability measure µ such that

1

2n + 1
tr g(HnHn∗)

a.s.−−−→
n→∞

∫
g(λ)µ(dλ)

for all continuous and bounded functions g .

I Taking g(λ) = (λ− z)−1, we also have∫ ∞
0

1

λ− z
µ(dλ) = EQ(z)(0).

This is the Stieltjes Transform (ST) of µ.

8/26



IDS and mutual information

Theorem 1: The sequence (2n+1)−1 log det(HnHn∗+ I2n+1)
converges a.s. and in expectation as n →∞, and the limit is
the mutual information

I (S ; (Y ,H)) =

∫ ∞
0

log(1 + λ)µ(dλ) <∞.
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Mutual information approximation

I Theorem 1 characterizes the mutual information. However, the
integral is not very informative in general. Some sort of
asymptotic regime is needed.

I All shown properties of HH∗ still hold true when N or T is > 1. In
particular, IDS exists, and writing

Q(z) = (HH∗ − z)−1 = [Q(z)(k , `)]k,`∈Z

where the blocks Q(z)(k , `) are N × N matrices,
EQ(z) = [EQ(z)(k − `)]k,`∈Z is block-Laurent, and the ST of µ is

now mµ(z) =
trEQ(z)(0)

N
.

I Theorem 1 becomes

1

N
I (S ; (Y ,H)) =

∫ ∞
0

log(1 + λ)µ(dλ) <∞.
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Mutual information approximation

I In order to make the integral w.r.t. µ more informative given the
parameters of the channel statistical model, we make

T →∞, 0 < lim inf N/T ≤ supN/T <∞.

and we study the asymptotic behavior of mµ(z) in this regime, along
the lines of Khorunzhyi-Pastur’93.

I Specifically, we find a sequence mπT
(z) of ST of probability

measures πT such that

mπT
(z)− trEQ(z)(0)

N
−−−−→
T→∞

0

for =z > 0. We then deduce an expression for
∫

log(1 + λ)πT (dλ).

I Other asymptotic regimes are possible.
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The channel model

Recall that Y (k) =
∑
` H(k , `)S(`) + V (k).

We assume H(k, `) = A(k − `) + X (k , `) ∈ CN×T where

I (A(−L), . . . ,A(L)) is deterministic (frequency selective specular
part),

I X (k, `) =
1√
T
φ(k − `)W (k , `), where φ : {−L, . . . , L} → R is a

function whose square is the multipath variance profile,

I (W (k, `) = [Wn,t(k , `), n = 0 : (N − 1), t = 0 : (T − 1)])k,`∈Z is a
complex Gaussian proper centered random field such that

E[Wn1,t1(k1, `1)W̄n2,t2(k2, `2)] = 1n1=n21t1=t21k1−`1=k2−`2γ(k1 − k2)

where γ(k) is a summable covariance function modeling the
Doppler effect.
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The channel model

H = A + X

=


. . . A(1) A(0) A(−1)

. . . 0
. . . A(1) A(0) A(−1)

. . .

0
. . . A(1) A(0) A(−1)

. . .


︸ ︷︷ ︸

Constant block-Laurent banded operator

+


. . . X (−1,−2) X (−1,−1) X (−1, 1)

. . . 0
. . . X (0,−1) X (0, 0) X (0, 1)

. . .

0
. . . X (1, 0) X (1, 1) X (1, 2)

. . .


︸ ︷︷ ︸

• Elements of each X (k , `) are iid,
• Mutually independent block diagonals,
• Variance of an element depends on the b.-diagonal,
• Time correlations on every b.-diagonal.

Since A is block-Laurent and γ is summable, H is ergodic.
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Assumptions

We add the index T when necessary to stress dependency on T .
We assume

1. σ2
T =

∑
`

φT (`)2 satisfies supT σ
2
T <∞.

2. sup
T

∑
`

|γT (`)| <∞.

3. sup
T

∑
`

‖AT (`)‖ <∞ where ‖ · ‖ is the spectral norm.

Comments:

I Received power due to random part of the channel is σ2
T .

I Assumption 2 means that the coherence time of the channel does
not grow with T . The channel will become harder and harder to
estimate !

I Assumption 3 can be lightened.
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Results : characterization of πT
Fourier transforms :

γT (f ) =
∑
k

exp(2ıπkf )γT (k), AT (f ) =
∑
k

exp(2ıπkf )AT (k)

Write (ATA∗T )(f ) = AT (f )A∗T (f ) and (A∗TAT )(f ) = A∗T (f )AT (f ).
Consider the system of equations

ϕT (f , z) =
tr ST (f , z)

T
and ϕ̃T (f , z) =

tr S̃T (f , z)

T

where ST (f , z) and S̃T (f , z) are the N × N and T × T matrices

ST (f , z) =
[
−z
(
1 + σ2

TγT (f ) ? ϕ̃T (f , z)
)

+
(
1 + σ2

TγT (−f ) ?ϕT (f , z)
)−1

(ATA∗T )(f )
]−1

,

S̃T (f , z) =
[
−z
(
1 + σ2

TγT (−f ) ?ϕT (f , z)
)

+
(
1 + σ2

TγT (f ) ? ϕ̃T (f , z)
)−1

(A∗TAT )(f )
]−1

,
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Results : characterization of πT

γT (f ) ? ϕ̃T (f , z) =

∫ 1

0

γT (f − u)ϕ̃T (u, z) du, and

γT (−f ) ?ϕT (f , z) =

∫ 1

0

γT (u − f )ϕT (u, z) du,

Theorem 2: For any z ∈ C+, this system admits a unique
solution (ϕT (·, z), ϕ̃T (·, z)) such that

ϕT (·, z), ϕ̃T (·, z) : [0, 1]→ C

are both measurable and Lebesgue-integrable on [0, 1] and
such that =ϕ(f , z), =ϕ̃(f , z), =(zϕ(f , z)) and =(zϕ̃(f , z))
are nonnegative for any f ∈ [0, 1].

The complex function N−1
∫ 1

0

tr S(f , z) df is the ST of a

probability measure πT carried by [0,∞).
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Large-T approximation of the IDS

Theorem 3: For any z ∈ C+,∫
1

λ− z
µT (dλ) −

∫
1

λ− z
πT (dλ) −−−−→

T→∞
0.

Moreover, the sequences µT and πT are tight, and∫
g(λ)µT (dλ) −

∫
g(λ)πT (dλ) −−−−→

T→∞
0

for any continuous and bounded real function g .
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Mutual information approximation

Theorem 4: It holds that

N−1IT (S ; (Y ,H))− IT −−−−→
T→∞

0

where IT =

∫
log(1 + λ)πT (dλ). This integral is given by

IT =
1

N

∫ 1

0

log det
(

1 + σ2
TγT (f ) ? ϕ̃T (f ,−1)

+
(ATA∗T )(f )

1 + σ2
TγT (−f ) ?ϕT (f ,−1)

)
df

+
T

N

∫ 1

0

log(1 + σ2
TγT (−f ) ?ϕT (f ,−1)) df

− T

N

∫ 1

0

∫ 1

0

σ2
TγT (f − v)ϕ̃T (v ,−1)ϕT (f ,−1) dv df .
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Some particular cases

It turns out that

I The form of the variance profile φT (k)2 has no influence on IT .

I If the channel is centered (AT = 0), then πT is a Marchenko-Pastur
distribution.

I In the limit of small coherence times (γ(f )→ 1), the law πT is the
one obtained with a so-called “Information plus Noise” model.
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Expectations of resolvents

Let

Q(z) = (HH∗ − z)−1 = [Q(z)(k , `)]k,`∈Z (N × N blocks)

Q̃(z) = (H∗H − z)−1 = [Q̃(z)(k , `)]k,`∈Z (T × T blocks)

Recall that the bounded operators EQ(z) and EQ̃(z) are block-Laurent.

EQ(z) = [EQ(z)(k − `)(z)]k,`∈Z, EQ̃(z) = [EQ̃(z)(k − `)]k,`∈Z

We want to approximate trEQT (z)(0)/N, the ST of µT .
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Tools

The basic tools are :

I Stein’s lemma, i.e., the integration by parts formula for E[XiΓ(X )]
where X = (X1, . . . ,XM) is a Gaussian vector and Γ : CM → C is a
C 1 function.

I Poincaré-Nash inequality for bounding Var Γ(X ).
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A perturbed infinite system of equations

By adapting these tools to the infinite dimensional context, we get
(omitting z)

EQ(k) = −z−1I (k)− σ2
∑
r

γ(r)
[ trEQ̃(r)

T

]
EQ(k − r)

+ z−1E[AH∗Q](k) + E (k),

E[AH∗Q](k) = −σ2
∑
r

γ(−r)
[ trEQ(r)

T

]
E[AH∗Q](k − r)

+ E[AA∗Q](k) + E ′(k)

E[AH∗Q](k) is the k th diagonal block of the block-Laurent operator
E[AH∗Q].
Elements of “perturbation” matrices E (k) and E ′(K ) are bounded by
Constant(z)/T .

Similar equations for EQ̃.
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Operators S and S̃

Identifying the function S(·, z) with a multiplication operator on the
Hilbert space L2([0, 1]→ CN), and letting F be the operator who sends
g ∈ L2([0, 1]→ CN), to the sequence of its Fourier coefficients in l2(Z),
the operator

ST (z) = FS(·, z)F∗

is bounded and block-Laurent.

Blocks of ST (z) = [ST (z)(k − `)]k,`∈Z and those of

S̃T (z) = [S̃T (z)(k − `)]k,`∈Z defined similarly satisfy a system of

equations similar to EQ, EQ̃, but without perturbation.
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ST of πT and mutual information approximation

We show that
trEQ(z)(0)

N
− tr S(z)(0)

N
→ 0 for large T . Since

mπT
(z) =

tr S(z)(0)

N
=

∫ 1

0

S(f , z)

N
df

we get the large-T approximation of the ST mµT
of the IDS µT

(Theorem 3).

To pass from the ST to the mutual information, we use∫
log(1 + λ)µT =

∫ ∞
1

(
1

t
−mµT

(−t)

)
dt

We therefore need to find an antiderivative for (t−1 −mπT
(−t)).

Derivation done in HLN’07 ⇒ Theorem 4.
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