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Signal model

Y = H S∗ + X
N × T N × r r × T N × T

Rcv signal Channel Src signal Noise

N-dimensional time series observed during a time window of length
T , source signal with dimension r .

Channel and source signals assumed deterministic.

Noise matrix X has i.i.d. centered elements with variance σ2/T .
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Second order based methods

Second order methods used to detect the number of sources, to estimate
the channel H (subspace methods), etc., rely on an estimate of

R = EYY ∗ = HS∗SH∗ + σ2IN

Usually, this estimate is simply YY ∗. When T → ∞ (classical asymptotic
regime), ‖YY ∗ − R‖ a.s.−−→ 0 by the law of large numbers where ‖ · ‖ is the
spectral norm.

As an example, assuming the problem is to know whether r = 0 or 1
(presence or absence of a source), a known test statistic is based on

‖YY ∗‖
N−1 tr(YY ∗)
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What asymptotic regime ?

Classical asymptotic regime assumption is often questionable in
practice. Window length T and observed signal dimension N are
often of the same order of magnitude.

We consider here the asymptotic regime where window length and
observed signal dimension are both large and of the same order,
while number of sources is not large.

Formally,

N,T → ∞, N/T → c > 0, r is fixed

In this case, ‖XX ∗ − σ2IN‖ 6→ 0 and ‖YY ∗ − (HS∗SH∗ + σ2I )‖ 6→ 0.
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Fixed rank perturbations of large random matrices

Problem:

Behavior of the extreme eigenvalues of large random matrices
subjected to fixed rank (=r) additive or multiplicative perturbations.

Behavior of projections on their associated eigenspaces.

Some fields of application:

Statistics (Principal Component Analysis),

Wireless communications,

Fault diagnosis,

Finance (portfolio management),

Chemometrics,

...
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Limit spectral measure of XX ∗

Let λ1 ≥ · · · ≥ λN be the eigenvalues of XX ∗ with X as above, and let

LN =
1

N

N∑

n=1

δλn

be the random spectral measure of this matrix. It is well known that LN
converges to the Marchenko-Pastur (MP) probability distribution µc :

0 0.5 1 1.5 2 2.5 3

An eigenvalue histogram for N = 128,T = 3N
with the MP density for c = 1/3.
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Limit spectral measure and extreme eigenvalue of XX ∗

Put
λ− = σ2

(
1−

√
c
)2

λ+ = σ2
(
1 +

√
c
)2

.

Then the MP law has the expression

µc(dλ) =

√
(λ+ − λ) (λ− λ−)

2πcσ2λ
1[λ

−
,λ+](λ)dλ+

(
1− 1

c

)

+

δ0(dλ).

Moreover, under some assumptions mainly on moments of elements of X ,

λ1
a.s.−−−−→

N→∞

λ+,

T 2/3 λ1 − λ+

σ2(1 +
√
c)(1 + 1/

√
c)1/3

L−−−−→
N→∞

TW

where TW is the Tracy-Widom probability distribution.

Hachem (CNRS) Perturbed large random matrices 26 March 2012 9 / 39



1 The context
An application example
The unperturbed case
Basic tools: Stieltjes transforms and resolvents
Fixed rank perturbations

Hachem (CNRS) Perturbed large random matrices 26 March 2012 10 / 39



The Stieltjes Transform
The Stieltjes Transform (ST) is one of the many transforms associated
to a measure. It is particularly well-suited to study large random matrices.
The ST of a probability measure ν is the complex function

mν(z) =

∫
1

λ− z
ν(dλ)

analytical on C− support(ν).
Important example: let

M = U



λ1

. . .

λN


U∗,

be a N × N Hermitian matrix with spectral measure

LN =
1

N

N∑

n=1

δλn
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Stieltjes Transform and resolvent

Let
Q(z) = (M − zIN)

−1

is the resolvent of M.
Then

mLN
(z) =

∫
1

λ− z
LN(dλ) =

1

N

N∑

n=1

1

λn − z
=

1

N
trQ(z)

Existence and characterization of the limit spectral measure of a random
matrix can be established thanks to the asymptotic study of N−1 trQ(z).
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Stieltjes Transform and resolvent

When studying the asymptotic behavior of the spectral measure of a Gram
matrix XX ∗ where X ∈ C

N×T , a common technique consists in
considering the resolvents

Q(z) = (XX ∗ − zIN)
−1 and Q̃(z) = (X ∗X − zIT )

−1

and by showing that

1

N
trQ(z)

a.s.−−−→
n→∞

m(z) and
1

T
tr Q̃(z)

a.s.−−−→
n→∞

m̃(z)

where m(z) (resp. m̃(z) = cm(z)− (1− c)/z) shows to be the Stieltjes
Transform of the limit spectral measure of XX ∗ (resp. of X ∗X ).
Often, m(z) is defined as the solution of an implicit equation. Can be
solved only in a few particular cases. The MP case is one of these.
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Global vs local behavior

Consider the N × T matrix Y = X + P where X is random, XX ∗ has
a limit spectral measure ν, and P has a fixed rank r .

By the interlacing inequality, we can show that P does not impact the
global spectral behavior of YY ∗: spectral measure of YY ∗ still
converges to ν.

However, YY ∗ might have isolated eigenvalues which stay out of
the support of ν.
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A spectrum example for YY ∗

X has iid centered elements with variance 1/T ,

P is deterministic with rank 2 and singular values 2 and 2.5.

 0  1  2  3  4  5  6  7  8  9  10

An eigenvalue histogram for (X + P)(X + P)∗

with N = 64 and T = 3N
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Overview of perturbed large random matrix models

Purpose: study isolated eigenvalues and possibly their eigenspaces when a
large random matrix X is perturbed with the fixed rank matrix P .

(I + P)1/2XX ∗(I + P)1/2 where P is Hermitian and X has centered
iid elements (“population covariance matrix” is I + P): Johnstone’01,
Baik et.al.’05, Baik Silverstein’06, ...

X + P where X and P are hermitian and X is a Wigner matrix:
Capitaine et.al.’09.

(X + P)(X + P)∗ where X is rectangular: Benaych-Georges
Nadakuditi’11, HLMNV’11, CCHM’12.

Benaych-Georges and Nadakuditi devised a generic and powerful method
for studying the three models.
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Model and notations

We get back to the rectangular model Y = P + X ∈ C
N×T where X has

centered iid elements with variance σ2/T and where P is deterministic
with fixed rank r .

Singular value decompositions: P = U
√
ΩŨ∗ and Y = W

√
Λ̂W̃ ∗,

U =


u1 · · · ur


 ∈ C

N×r , Ω =



ω1

. . .

ωr


 ,

W =


w1 · · · wN


 ∈ C

N×N , Λ̂ =



λ̂1

. . .

λ̂N




where ω1 ≥ · · · ≥ ωr are assumed not to depend on N, and where
λ̂1 ≥ · · · ≥ λ̂N .
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Main result on the eigenvalues

Theorem 1: Consider the previous model. Assume N,T → ∞
with N/T → c > 0. Let i ≤ r be the maximum index for which
ωi > σ2√c . Then for k = 1, . . . , i ,

λ̂k

a.s.−−−−→
N→∞

ρk =

(
σ2c + ωk

) (
ωk + σ2

)

ωk

> λ+ = σ2(1 +
√
c)2

while
λ̂i+1

a.s.−−−−→
N→∞

λ+.
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Main result on the eigenvectors

Theorem 2: Assume the setting of Theorem 1. Assume in
addition that ω1 > ω2 > · · · > ωi (> σ2√c). For k = 1, . . . , i ,
let

Πk = uku
∗
k and Π̂k = wkw

∗
k .

Then for any sequence aN of deterministic N × 1 vectors with
bounded Euclidean norms,

a∗Π̂ka − h(ρk)a
∗Πka

a.s.−−−−→
N→∞

0, h(x) =
xm(x)2m̃(x)

(xm(x)m̃(x))′

where m(z) is the ST of the MP law µc and where m̃(z) =
cm(z)− (1− c)/z .

Generalization to the case where P has eigenspaces with dimensions > 1 is
possible.
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Eigenvalues: principle of the proof of Theorem 1
We follow the approach of Benaych-Georges and Nadakuditi’2011.
We study the isolated eigenvalues of YY ∗, or equivalently, the isolated
singular values of Y .

A matrix algebraic lemma: Let A be a N × T matrix. Then
σ1, . . . , σN∧T are the singular values of A if and only if

σ1, . . . , σn∧N ,−σ1, . . . ,−σn∧N , 0, . . . , 0︸ ︷︷ ︸
|N − T |

are the eigenvalues of

A =

[
0 A
A∗ 0

]
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Eigenvalues: principle of the proof of Theorem 1

Recall the SVD P = U
√
ΩŨ∗. Write

Y=

[
0 Y
Y ∗ 0

]
=

[
0 X
X ∗ 0

]
+

[
U 0

0 Ũ
√
Ω

] [
0 Ir
Ir 0

] [
U∗ 0

0
√
ΩŨ∗

]
= X+CJC ∗

Assume
λ̂ 6∈ spectrum(XX ∗), λ̂ ∈ spectrum(YY ∗)

or equivalently

det
(
X−

√
λ̂IN+T

)
6= 0, det

(
Y −

√
λ̂IN+T

)
= 0.

We have

det (Y − xI ) = det (X− xI + CJC ∗)

= det (X− xI ) det
(
I2r + JC ∗ (X− xI )−1 C

)
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Eigenvalues: principle of the proof of Theorem 1

Using inversion formula for partitioned matrices,

(X− xI )−1 =

[
−xI X
X ∗ −xI

]−1

=

[
xQ(x2) XQ̃(x2)

Q̃(x2)X ∗ xQ̃(x2)

]

where Q(x) = (XX ∗ − xI )−1 and Q̃(x) = (X ∗X − xI )−1 are the usual
resolvents.

Hence
√

λ̂ is a zero of

det
(
I2r + JC ∗ (X− xI )−1 C

)

= (−1)r det

[
xU∗Q(x2)U Ir + U∗XQ̃(x2)Ũ

√
Ω

Ir +
√
ΩŨ∗Q̃(x2)X ∗U x

√
ΩŨ∗Q̃(x2)Ũ

√
Ω

]

︸ ︷︷ ︸
Ĥ(x)
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Eigenvalues: principle of the proof of Theorem 1

When x >
√

λ+, Q(x2) and Q̃(x2) are well defined for large N, because

‖XX ∗‖ a.s.−−→ λ+.

An essential part consists in proving that for x >
√
λ+,

U∗Q(x2)U
a.s.−−−−→

N→∞

m(x2)Ir , Ũ∗Q̃(x2)Ũ
a.s.−−−−→

N→∞

m̃(x2)Ir , and

Ũ∗Q̃(x2)X ∗U
a.s.−−−−→

N→∞

0,

Traditionally, random matrix techniques deal with the normalized traces

of the resolvents. Here we are interested in bilinear forms involving these
resolvents. In the MP case, this can be done easily.
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Eigenvalues: principle of the proof of Theorem 1

Thanks to these results,

Ĥ(x)
a.s.−−−→

n→∞
H(x) =

[
xm(x2)Ir Ir

Ir xm̃(x2)Ω

]

outside the support of µc , i.e., the eigenvalue bulk.

So YY ∗ should have isolated eigenvalues near the zeros of equation
detH(

√
x) which lie outside the support of µc .
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Eigenvalues: principle of the proof of Theorem 1

Consider the equation

detH(
√
x) =

r∏

k=1

(xm(x)m̃(x)ωk − 1) = 0 . (1)

Recall ω1 ≥ · · · ≥ ωr . Arrange the zeros of (1) in decreasing order,
similarly to the eigenvalues λ̂k of YY ∗.

From the general properties of the Stieltjes Transforms, function
G (x) = xm(x)m̃(x) decreases from G (λ+

+) to zero for x ∈ (λ+,∞).

Assume ωℓ > 1/G (λ+
+). Then the ℓth zero ρℓ of (1) (which satisfies

G (ρℓ) = 1/ωℓ) will satisfy ρℓ > λ+.

In that situation, due to det Ĥ
a.s.−−→ detH outside the eigenvalue bulk,

we infer that λ̂ℓ
a.s.−−→ ρℓ. Otherwise, λ̂ℓ

a.s.−−→ λ+.
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Illustration

.

G(x)

G(λ+
+)

1/ωk

λ+ ρk .

Exploiting the expressions of m(z) and m̃(z) (Stieltjes Transforms of MP
distributions), condition ωk > 1/G (λ+

+) can be rewritten ωk > σ2√c .
In this case, solving G (ρk) = 1/ωk gives ρk =

(
σ2c + ωk

) (
ωk + σ2

)
/ωk .

Hence Theorem 1.

Theorem 2 is proven with similar arguments.

Hachem (CNRS) Perturbed large random matrices 26 March 2012 29 / 39



2 A case study with some applications
Results
Proof technique
Some applications
A word about fluctuations

Hachem (CNRS) Perturbed large random matrices 26 March 2012 30 / 39



Passive Signal Detection

Y = P +X , non observable signal + AWGN. Noise variance unknown.

P is a rank one matrix (r = 1 source) such that ‖P‖2 −−−−→
N→∞

ω > 0.

Hypothesis test:

{
H0 : Y = X (Noise)
H1 : Y = P + X (Info+Noise)

Generalized Likelihood Ratio Test (GLRT):

ξ =
λ̂1

N−1 tr (YY ∗)

Asymptotic behavior of this statistic ?
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Passive signal detection and perturbed model

Under either H0 or H1, N−1 tr (YY ∗)
a.s.−−−−→

N→∞

σ2.

Under H1 (consequence of main result on eigenvalues):
◮ If ω > σ2

√
c, then

λ̂1
a.s.−−−−→

N→∞

ρ =

(
σ2c + ω

) (
ω + σ2

)

ω
> σ2(1 +

√
c)2,

λ̂2
a.s.−−−−→

N→∞

σ2(1 +
√
c)2.

◮ If ω ≤ σ2
√
c, then

λ̂1
a.s.−−−−→

N→∞

σ2(1 +
√
c)2.
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Passive Signal Detection and perturbed model
We therefore have

Under H0,
ξN

a.s.−−−−→
N→∞

(1 +
√
c)2.

Under H1,
◮ If ω > σ2

√
c, then

ξN
a.s.−−−−→

N→∞

(
σ2c + ω

) (
ω + σ2

)

σ2ω
> (1 +

√
c)2

◮ If ω ≤ σ2
√
c, then

ξN
a.s.−−−−→

N→∞

(1 +
√
c)2.

ω > σ2√c provides the limit of detectability by the GLRT.

False Alarm Probability can be approximated with the help of the
Tracy-Widom law.
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Source localization

Problem: r radio sources send their signals to a uniform array
of N antennas during T signal snapshots.

Estimate arrival angles ϕ1, . . . , ϕr

.

ϕ1

ϕ2

.

Example with two sources
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Source localization with a subspace method (MUSIC)
Model: Y = T−1/2AS∗

︸ ︷︷ ︸
P

+ X with

A =
[
a(ϕ1) · · · a(ϕr )

]
∈ C

N×r with a(ϕ) =
1√
N




1
eıπ sinϕ

...

eı(N−1)π sinϕ




S is deterministic, rank(S) = r .

Let Π be the orthogonal projection matrix on the span of A, or
equivalently, on the eigenspace of EYY ∗ = PP∗ + σ2I associated with the
eigenvalues > σ2 (“signal subspace”). Notice that Π = UU∗.

MUSIC algorithm principle:

a(ϕ)∗(I − Π)a(ϕ) = 0 ⇔ ϕ ∈ {ϕ1, . . . , ϕK}.
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MUSIC algorithm

Traditional MUSIC: angles are estimated as local minima of

a(ϕ)∗(I − Π̂)a(ϕ)

where Π̂ is the orthogonal projection matrix on the eigenspace associated
with the r largest eigenvalues of YY ∗. Equivalently, local maxima of
a(ϕ)∗Π̂a(ϕ).

Notice that Π̂ =
[
w1 · · ·wr

][
w1 · · ·wr

]∗
.

Behavior of a(ϕ)∗Π̂a(ϕ) in our asymptotic regime ?

Is it possible to improve the traditional estimator and to adapt it to
our asymptotic regime ?
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Modification of the traditional MUSIC algorithm

Modified MUSIC estimator: Application of Theorem 2

Assume that lim inf
N

ωr > σ2√c . Then

a(ϕ)∗Πa(ϕ)−
r∑

k=1

|a(ϕ)∗wk |2

h(λ̂k)

a.s.−−−−→
N→∞

0

uniformly on ϕ ∈ [0, π].

⇒ find local maxima of
r∑

k=1

|a(ϕ)∗wk |2

h(λ̂k)
.
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Isolated eigenvalues fluctuations

Fluctuations of the isolated eigenvalues and the projections on associated
eigenspaces have been studied for some instances of the three structures
(I + P)1/2XX ∗(I + P)1/2, X + P and (X + P)(X + P)∗ introduced above.
(Bai-Yao’08, Capitaine et.al.’09, Benaych et.al.’11, HLMNV’11, CH’11,
CCHM’12, ...)

In general, √
N
(
λ̂i − ρi

)
= OP(1)

However, the Gaussian limit is not universal

Large deviations of the isolated eigenvalues have been studied in some
simple cases (Bianchi et.al.’11).
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