



# Fixed Rank Perturbations of Large Random Matrices: Methodology and Some Statistical Applications

#### Walid Hachem

CNRS; Telecom ParisTech

Joint work with R. Couillet, Ph. Loubaton, X. Mestre and J. Najim

- The context
  - An application example
  - The unperturbed case
  - Basic tools: Stieltjes transforms and resolvents
  - Fixed rank perturbations
- 2 A case study with some applications

### Signal model

$$egin{array}{lll} Y & = & H & S^* & + & X \ N imes T & N imes r & r imes T & N imes T \ 
m Rcv \ signal & Channel & Src \ signal & Noise \end{array}$$

- N-dimensional time series observed during a time window of length T, source signal with dimension r.
- Channel and source signals assumed deterministic.
- Noise matrix X has i.i.d. centered elements with variance  $\sigma^2/T$ .

#### Second order based methods

Second order methods used to detect the number of sources, to estimate the channel H (subspace methods), etc., rely on an estimate of

$$R = \mathbb{E}YY^* = HS^*SH^* + \sigma^2I_N$$

Usually, this estimate is simply  $YY^*$ . When  $T \to \infty$  (classical asymptotic regime),  $\|YY^* - R\| \xrightarrow{\text{a.s.}} 0$  by the law of large numbers where  $\|\cdot\|$  is the spectral norm.

As an example, assuming the problem is to know whether r=0 or 1 (presence or absence of a source), a known test statistic is based on

$$\frac{\|YY^*\|}{N^{-1}\operatorname{tr}(YY^*)}$$

#### What asymptotic regime?

- Classical asymptotic regime assumption is often questionable in practice. Window length T and observed signal dimension N are often of the same order of magnitude.
- We consider here the asymptotic regime where window length and observed signal dimension are both large and of the same order, while number of sources is not large.
- Formally,

$$N, T \rightarrow \infty, \ N/T \rightarrow c > 0, \ r$$
 is fixed

In this case,  $\|XX^* - \sigma^2 I_N\| \not\to 0$  and  $\|YY^* - (HS^*SH^* + \sigma^2 I)\| \not\to 0$ .

### Fixed rank perturbations of large random matrices

#### Problem:

- Behavior of the extreme eigenvalues of large random matrices subjected to fixed rank (=r) additive or multiplicative perturbations.
- Behavior of projections on their associated eigenspaces.

#### Some fields of application:

- Statistics (Principal Component Analysis),
- Wireless communications,
- Fault diagnosis,
- Finance (portfolio management),
- Chemometrics,
- ...

- The context
  - An application example
  - The unperturbed case
  - Basic tools: Stieltjes transforms and resolvents
  - Fixed rank perturbations

### Limit spectral measure of $XX^*$

Let  $\lambda_1 \geq \cdots \geq \lambda_N$  be the eigenvalues of  $XX^*$  with X as above, and let

$$L_N = \frac{1}{N} \sum_{n=1}^{N} \delta_{\lambda_n}$$

be the random **spectral measure** of this matrix. It is well known that  $L_N$  converges to the **Marchenko-Pastur** (MP) probability distribution  $\mu_c$ :



An eigenvalue histogram for N = 128, T = 3N with the MP density for c = 1/3.

# Limit spectral measure and extreme eigenvalue of $XX^*$

Put

$$\lambda_- = \sigma^2 \left(1 - \sqrt{c}\right)^2 \quad \lambda_+ = \sigma^2 \left(1 + \sqrt{c}\right)^2 \ .$$

Then the MP law has the expression

$$\mu_c(d\lambda) = \frac{\sqrt{(\lambda_+ - \lambda)(\lambda - \lambda_-)}}{2\pi c\sigma^2\lambda} \mathbb{1}_{[\lambda_-, \lambda_+]}(\lambda) d\lambda + \left(1 - \frac{1}{c}\right)_+ \delta_0(d\lambda).$$

Moreover, under some assumptions mainly on moments of elements of X,

$$\lambda_{1} \xrightarrow[N \to \infty]{\text{a.s.}} \lambda_{+},$$

$$T^{2/3} \xrightarrow[\sigma^{2}(1+\sqrt{c})(1+1/\sqrt{c})^{1/3}]{\mathcal{L}} \xrightarrow[N \to \infty]{\mathcal{L}} TW$$

where TW is the **Tracy-Widom** probability distribution.



- The context
  - An application example
  - The unperturbed case
  - Basic tools: Stieltjes transforms and resolvents
  - Fixed rank perturbations

### The Stieltjes Transform

The **Stieltjes Transform** (ST) is one of the many transforms associated to a measure. It is particularly well-suited to study large random matrices. The ST of a probability measure  $\nu$  is the complex function

$$m_{
u}(z) = \int \frac{1}{\lambda - z} \nu(d\lambda)$$

analytical on  $\mathbb{C}$  – support( $\nu$ ).

Important example: let

$$M = U \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_N \end{bmatrix} U^*,$$

be a  $N \times N$  Hermitian matrix with spectral measure

$$L_N = \frac{1}{N} \sum_{n=1}^{N} \delta_{\lambda_n}$$

### Stieltjes Transform and resolvent

Let

$$Q(z) = (M - zI_N)^{-1}$$

is the **resolvent** of *M*.

Then

$$m_{L_N}(z) = \int \frac{1}{\lambda - z} L_N(d\lambda) = \frac{1}{N} \sum_{n=1}^N \frac{1}{\lambda_n - z} = \frac{1}{N} \operatorname{tr} Q(z)$$

Existence and characterization of the limit spectral measure of a random matrix can be established thanks to the asymptotic study of  $N^{-1}$  tr Q(z).

### Stieltjes Transform and resolvent

When studying the asymptotic behavior of the spectral measure of a Gram matrix  $XX^*$  where  $X \in \mathbb{C}^{N \times T}$ , a common technique consists in considering the resolvents

$$Q(z) = (XX^* - zI_N)^{-1}$$
 and  $\widetilde{Q}(z) = (X^*X - zI_T)^{-1}$ 

and by showing that

$$\frac{1}{N}\operatorname{tr} Q(z) \xrightarrow[n \to \infty]{\text{a.s.}} m(z) \quad \text{and} \quad \frac{1}{T}\operatorname{tr} \widetilde{Q}(z) \xrightarrow[n \to \infty]{\text{a.s.}} \widetilde{m}(z)$$

where m(z) (resp.  $\tilde{m}(z) = cm(z) - (1-c)/z$ ) shows to be the Stieltjes Transform of the limit spectral measure of  $XX^*$  (resp. of  $X^*X$ ). Often, m(z) is defined as the solution of an implicit equation. Can be solved only in a few particular cases. The MP case is one of these.

- The context
  - An application example
  - The unperturbed case
  - Basic tools: Stieltjes transforms and resolvents
  - Fixed rank perturbations

#### Global vs local behavior

- Consider the  $N \times T$  matrix Y = X + P where X is random,  $XX^*$  has a limit spectral measure  $\nu$ , and P has a fixed rank r.
- By the interlacing inequality, we can show that P does not impact the global spectral behavior of  $YY^*$ : spectral measure of  $YY^*$  still converges to  $\nu$ .
- However,  $YY^*$  might have **isolated eigenvalues** which stay out of the support of  $\nu$ .

### A spectrum example for $YY^*$

- X has iid centered elements with variance 1/T,
- P is deterministic with rank 2 and singular values 2 and 2.5.



An eigenvalue histogram for  $(X + P)(X + P)^*$ with N = 64 and T = 3N

### Overview of perturbed large random matrix models

Purpose: study isolated eigenvalues and possibly their eigenspaces when a large random matrix X is perturbed with the fixed rank matrix P.

- $(I+P)^{1/2}XX^*(I+P)^{1/2}$  where P is Hermitian and X has centered iid elements ("population covariance matrix" is I+P): Johnstone'01, Baik et.al.'05, Baik Silverstein'06, ...
- X + P where X and P are hermitian and X is a Wigner matrix: Capitaine *et.al.*'09.
- $(X + P)(X + P)^*$  where X is rectangular: Benaych-Georges Nadakuditi'11, HLMNV'11, CCHM'12.

Benaych-Georges and Nadakuditi devised a generic and powerful method for studying the three models.

- The context
- A case study with some applications
  - Results
  - Proof technique
  - Some applications
  - A word about fluctuations

#### Model and notations

We get back to the rectangular model  $Y = P + X \in \mathbb{C}^{N \times T}$  where X has centered iid elements with variance  $\sigma^2/T$  and where P is deterministic with fixed rank r.

Singular value decompositions:  $P = U\sqrt{\Omega}\widetilde{U}^*$  and  $Y = W\sqrt{\widehat{\Lambda}}\widetilde{W}^*$ ,

$$U = \begin{bmatrix} u_1 & \cdots & u_r \end{bmatrix} \in \mathbb{C}^{N \times r}, \quad \Omega = \begin{bmatrix} \omega_1 & & & \\ & \ddots & & \\ & & \omega_r \end{bmatrix},$$

$$W = \begin{bmatrix} w_1 & \cdots & w_N \end{bmatrix} \in \mathbb{C}^{N \times N}, \quad \hat{\Lambda} = \begin{bmatrix} \hat{\lambda}_1 & & & \\ & \ddots & & \\ & & \hat{\lambda}_N \end{bmatrix}$$

where  $\omega_1 \ge \cdots \ge \omega_r$  are assumed not to depend on N, and where  $\hat{\lambda}_1 \ge \cdots \ge \hat{\lambda}_N$ .

### Main result on the eigenvalues

with  $N/T \to c > 0$ . Let  $i \le r$  be the maximum index for which  $\omega_i > \sigma^2 \sqrt{c}$ . Then for  $k = 1, \ldots, i$ ,  $\hat{\lambda}_k \xrightarrow[N \to \infty]{\text{a.s.}} \rho_k = \frac{\left(\sigma^2 c + \omega_k\right) \left(\omega_k + \sigma^2\right)}{\omega_k} > \lambda_+ = \sigma^2 (1 + \sqrt{c})^2$ Theorem 1: Consider the previous model. Assume  $N, T \to \infty$ 

$$\hat{\lambda}_k \xrightarrow[N o \infty]{\text{a.s.}} 
ho_k = rac{\left(\sigma^2 c + \omega_k
ight)\left(\omega_k + \sigma^2
ight)}{\omega_k} > \lambda_+ = \sigma^2 (1 + \sqrt{c})^2$$

$$\hat{\lambda}_{i+1} \xrightarrow[N \to \infty]{\mathsf{a.s.}} \lambda_+$$

### Main result on the eigenvectors

Theorem 2: Assume the setting of Theorem 1. Assume in addition that  $\omega_1 > \omega_2 > \cdots > \omega_i$  (>  $\sigma^2 \sqrt{c}$ ). For  $k = 1, \ldots, i$ , let

$$\Pi_k = u_k u_k^*$$
 and  $\widehat{\Pi}_k = w_k w_k^*$ .

Then for any sequence  $a_N$  of deterministic  $N \times 1$  vectors with bounded Euclidean norms,

$$a^*\widehat{\Pi}_k a - h(\rho_k)a^*\Pi_k a \xrightarrow{\text{a.s.}} 0, \quad h(x) = \frac{xm(x)^2 \widetilde{m}(x)}{(xm(x)\widetilde{m}(x))'}$$

where  $\emph{m}(\emph{z})$  is the ST of the MP law  $\mu_\emph{c}$  and where  $\tilde{\emph{m}}(\emph{z}) = \emph{cm}(\emph{z}) - (1-\emph{c})/\emph{z}$ .

Generalization to the case where P has eigenspaces with dimensions > 1 is possible.

- 2 A case study with some applications
  - Results
  - Proof technique
  - Some applications
  - A word about fluctuations

We follow the approach of Benaych-Georges and Nadakuditi'2011. We study the isolated eigenvalues of  $YY^*$ , or equivalently, the isolated singular values of Y.

A matrix algebraic lemma: Let A be a  $N \times T$  matrix. Then  $\sigma_1, \ldots, \sigma_{N \wedge T}$  are the singular values of A if and only if

$$\sigma_1, \ldots, \sigma_{n \wedge N}, -\sigma_1, \ldots, -\sigma_{n \wedge N}, \underbrace{0, \ldots, 0}_{|N-T|}$$

are the eigenvalues of

$$\mathbf{A} = \begin{bmatrix} 0 & A \\ A^* & 0 \end{bmatrix}$$

Recall the SVD  $P = U\sqrt{\Omega}\widetilde{U}^*$ . Write

$$\mathbf{Y} = \begin{bmatrix} 0 & Y \\ Y^* & 0 \end{bmatrix} = \begin{bmatrix} 0 & X \\ X^* & 0 \end{bmatrix} + \begin{bmatrix} U & 0 \\ 0 & \widetilde{U}\sqrt{\Omega} \end{bmatrix} \begin{bmatrix} 0 & I_r \\ I_r & 0 \end{bmatrix} \begin{bmatrix} U^* & 0 \\ 0 & \sqrt{\Omega}\widetilde{U}^* \end{bmatrix} = \mathbf{X} + CJC^*$$

Assume

$$\hat{\lambda} \not\in \operatorname{spectrum}(XX^*), \quad \hat{\lambda} \in \operatorname{spectrum}(YY^*)$$

or equivalently

$$\det\left(\boldsymbol{X}-\sqrt{\hat{\lambda}}\textit{I}_{N+T}\right)\neq0,\quad\det\left(\boldsymbol{Y}-\sqrt{\hat{\lambda}}\textit{I}_{N+T}\right)=0.$$

We have

$$\det(\mathbf{Y} - xI) = \det(\mathbf{X} - xI + CJC^*)$$

$$= \det(\mathbf{X} - xI) \det\left(I_{2r} + JC^*(\mathbf{X} - xI)^{-1}C\right)$$

4ロト 4回 ト 4 重 ト 4 重 ト 9 Q @

Using inversion formula for partitioned matrices,

$$(\mathbf{X} - xI)^{-1} = \begin{bmatrix} -xI & X \\ X^* & -xI \end{bmatrix}^{-1} = \begin{bmatrix} xQ(x^2) & X\widetilde{Q}(x^2) \\ \widetilde{Q}(x^2)X^* & x\widetilde{Q}(x^2) \end{bmatrix}$$

where  $Q(x) = (XX^* - xI)^{-1}$  and  $\widetilde{Q}(x) = (X^*X - xI)^{-1}$  are the usual resolvents.

Hence  $\sqrt{\hat{\lambda}}$  is a zero of

$$\det\left(I_{2r} + JC^* \left(\mathbf{X} - xI\right)^{-1} C\right)$$

$$= (-1)^r \det\left[ \underbrace{ \begin{bmatrix} xU^*Q(x^2)U & I_r + U^*X\widetilde{Q}(x^2)\widetilde{U}\sqrt{\Omega} \\ I_r + \sqrt{\Omega}\widetilde{U}^*\widetilde{Q}(x^2)X^*U & x\sqrt{\Omega}\widetilde{U}^*\widetilde{Q}(x^2)\widetilde{U}\sqrt{\Omega} \end{bmatrix}}_{\widehat{H}(x)} \right]$$

When  $x > \sqrt{\lambda_+}$ ,  $Q(x^2)$  and  $\widetilde{Q}(x^2)$  are well defined for large N, because  $\|XX^*\| \xrightarrow{\text{a.s.}} \lambda_+$ .

An essential part consists in proving that for  $x>\sqrt{\lambda_+}$ ,

$$\begin{array}{c} U^* \, Q(x^2) U \xrightarrow[N \to \infty]{\text{a.s.}} m(x^2) \mathbf{I}_r, \quad \widetilde{U}^* \, \widetilde{Q}(x^2) \widetilde{U} \xrightarrow[N \to \infty]{\text{a.s.}} \widetilde{m}(x^2) \mathbf{I}_r, \text{and} \\ \\ \widetilde{U}^* \, \widetilde{Q}(x^2) X^* \, U \xrightarrow[N \to \infty]{\text{a.s.}} \mathbf{0}, \end{array}$$

Traditionally, random matrix techniques deal with the **normalized traces** of the resolvents. Here we are interested in **bilinear forms** involving these resolvents. In the MP case, this can be done easily.

Thanks to these results,

$$\widehat{H}(x) \xrightarrow[n \to \infty]{\text{a.s.}} H(x) = \begin{bmatrix} xm(x^2)I_r & I_r \\ I_r & x\widetilde{m}(x^2)\Omega \end{bmatrix}$$

outside the support of  $\mu_c$ , *i.e.*, the eigenvalue bulk.

So  $YY^*$  should have isolated eigenvalues near the zeros of equation  $\det H(\sqrt{x})$  which **lie outside the support of**  $\mu_c$ .

#### Consider the equation

$$\det H(\sqrt{x}) = \prod_{k=1}^{r} (xm(x)\tilde{m}(x)\omega_k - 1) = 0.$$
 (1)

- Recall  $\omega_1 \ge \cdots \ge \omega_r$ . Arrange the zeros of (1) in decreasing order, similarly to the eigenvalues  $\hat{\lambda}_k$  of  $YY^*$ .
- From the general properties of the Stieltjes Transforms, function  $G(x) = xm(x)\tilde{m}(x)$  decreases from  $G(\lambda_+^+)$  to zero for  $x \in (\lambda_+, \infty)$ .
- Assume  $\omega_{\ell} > 1/G(\lambda_{+}^{+})$ . Then the  $\ell^{\text{th}}$  zero  $\rho_{\ell}$  of (1) (which satisfies  $G(\rho_{\ell}) = 1/\omega_{\ell}$ ) will satisfy  $\rho_{\ell} > \lambda_{+}$ .
- In that situation, due to  $\det \widehat{H} \xrightarrow{\text{a.s.}} \det H$  outside the eigenvalue bulk, we infer that  $\hat{\lambda}_{\ell} \xrightarrow{\text{a.s.}} \rho_{\ell}$ . Otherwise,  $\hat{\lambda}_{\ell} \xrightarrow{\text{a.s.}} \lambda_{+}$ .

#### Illustration



Exploiting the expressions of m(z) and  $\tilde{m}(z)$  (Stieltjes Transforms of MP distributions), condition  $\omega_k > 1/G(\lambda_+^+)$  can be rewritten  $\omega_k > \sigma^2 \sqrt{c}$ . In this case, solving  $G(\rho_k) = 1/\omega_k$  gives  $\rho_k = \left(\sigma^2 c + \omega_k\right) \left(\omega_k + \sigma^2\right)/\omega_k$ . Hence Theorem 1.

Theorem 2 is proven with similar arguments.

- 2 A case study with some applications
  - Results
  - Proof technique
  - Some applications
  - A word about fluctuations

### Passive Signal Detection

- Y = P + X, non observable signal + AWGN. Noise variance unknown.
- ullet P is a rank one matrix (r=1 source) such that  $\|P\|^2 \xrightarrow[N o \infty]{} \omega > 0$ .

Generalized Likelihood Ratio Test (GLRT):

$$\xi = rac{\hat{\lambda}_1}{\mathit{N}^{-1}\operatorname{tr}\left(\mathit{YY}^*
ight)}$$

Asymptotic behavior of this statistic?



# Passive signal detection and perturbed model

- Under either **H0** or **H1**,  $N^{-1}$  tr  $(YY^*) \xrightarrow[N \to \infty]{a.s.} \sigma^2$ .
- Under **H1** (consequence of main result on eigenvalues):
  - If  $\omega > \sigma^2 \sqrt{c}$ , then

$$\begin{split} \hat{\lambda}_1 & \xrightarrow[N \to \infty]{\text{a.s.}} \rho = \frac{\left(\sigma^2 c + \omega\right) \left(\omega + \sigma^2\right)}{\omega} > \sigma^2 (1 + \sqrt{c})^2, \\ \hat{\lambda}_2 & \xrightarrow[N \to \infty]{\text{a.s.}} \sigma^2 (1 + \sqrt{c})^2. \end{split}$$

• If  $\omega \leq \sigma^2 \sqrt{c}$ , then

$$\hat{\lambda}_1 \xrightarrow[N \to \infty]{\mathsf{a.s.}} \sigma^2 (1 + \sqrt{c})^2.$$



# Passive Signal Detection and perturbed model

We therefore have

• Under H0,

$$\xi_N \xrightarrow[N \to \infty]{\text{a.s.}} (1 + \sqrt{c})^2.$$

- Under H1,
  - If  $\omega > \sigma^2 \sqrt{c}$ , then

$$\xi_N \xrightarrow[N \to \infty]{\text{a.s.}} \frac{\left(\sigma^2 c + \omega\right) \left(\omega + \sigma^2\right)}{\sigma^2 \omega} > (1 + \sqrt{c})^2$$

• If  $\omega \leq \sigma^2 \sqrt{c}$ , then

$$\xi_N \xrightarrow[N \to \infty]{\text{a.s.}} (1 + \sqrt{c})^2.$$

 $\omega>\sigma^2\sqrt{c}$  provides the **limit of detectability** by the GLRT.

• False Alarm Probability can be approximated with the help of the Tracy-Widom law.

#### Source localization

*Problem:* r radio sources send their signals to a uniform array of N antennas during T signal snapshots.

Estimate arrival angles  $\varphi_1, \ldots, \varphi_r$ 



Example with two sources

# Source localization with a subspace method (MUSIC)

Model: 
$$Y = \underbrace{T^{-1/2}AS^*}_{P} + X$$
 with

• 
$$A = [a(\varphi_1) \quad \cdots \quad a(\varphi_r)] \in \mathbb{C}^{N \times r} \text{ with } a(\varphi) = \frac{1}{\sqrt{N}} \begin{bmatrix} 1 \\ e^{i\pi \sin \varphi} \\ \vdots \\ e^{i(N-1)\pi \sin \varphi} \end{bmatrix}$$

• S is deterministic, rank(S) = r.

Let  $\Pi$  be the orthogonal projection matrix on the span of A, or equivalently, on the eigenspace of  $\mathbb{E} YY^* = PP^* + \sigma^2 I$  associated with the eigenvalues  $> \sigma^2$  ("signal subspace"). Notice that  $\Pi = UU^*$ .

MUSIC algorithm principle: 
$$a(\varphi)^*(I-\Pi)a(\varphi)=0 \quad \Leftrightarrow \quad \varphi \in \{\varphi_1,\ldots,\varphi_K\}.$$

# MUSIC algorithm

Traditional MUSIC: angles are estimated as local minima of

$$a(\varphi)^*(I-\widehat{\Pi})a(\varphi)$$

where  $\widehat{\Pi}$  is the orthogonal projection matrix on the eigenspace associated with the r largest eigenvalues of  $YY^*$ . Equivalently, local maxima of  $a(\varphi)^*\widehat{\Pi}a(\varphi)$ .

Notice that 
$$\widehat{\Pi} = \left[ w_1 \cdots w_r \right] \left[ w_1 \cdots w_r \right]^*$$
.

- Behavior of  $a(\varphi)^*\widehat{\Pi}a(\varphi)$  in our asymptotic regime ?
- Is it possible to improve the traditional estimator and to adapt it to our asymptotic regime ?

# Modification of the traditional MUSIC algorithm

 $Modified\ MUSIC\ estimator:\ Application\ of\ Theorem\ 2$ 

Assume that  $\liminf_{N} \omega_r > \sigma^2 \sqrt{c}$ . Then

$$a(\varphi)^* \Pi a(\varphi) - \sum_{k=1}^r \frac{|a(\varphi)^* w_k|^2}{h(\hat{\lambda}_k)} \xrightarrow[N \to \infty]{a.s.} 0$$

uniformly on  $\varphi \in [0,\pi]$ .

 $\Rightarrow$  find local maxima of  $\sum_{k=1}^{r} \frac{|a(\varphi)^* w_k|^2}{h(\hat{\lambda}_k)}$ .



- 2 A case study with some applications
  - Results
  - Proof technique
  - Some applications
  - A word about fluctuations

#### Isolated eigenvalues fluctuations

Fluctuations of the isolated eigenvalues and the projections on associated eigenspaces have been studied for some instances of the three structures  $(I+P)^{1/2}XX^*(I+P)^{1/2}$ , X+P and  $(X+P)(X+P)^*$  introduced above. (Bai-Yao'08, Capitaine *et.al.*'09, Benaych *et.al.*'11, HLMNV'11, CH'11, CCHM'12, ...)

In general,

$$\sqrt{N}\left(\hat{\lambda}_i - \rho_i\right) = \mathcal{O}_P(1)$$

However, the Gaussian limit is not universal

Large deviations of the isolated eigenvalues have been studied in some simple cases (Bianchi *et.al.*'11).