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Error exponents for Neyman-Pearson detection

of a continuous-time Gaussian Markov process

from regular or irregular samples
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Abstract

This paper addresses the detection of a stochastic process in noise from a finite sample under

various sampling schemes. We consider two hypotheses. Thenoise onlyhypothesis amounts to model

the observations as a sample of a i.i.d. Gaussian random variables (noise only). Thesignal plus noise

hypothesis models the observations as the samples of a continuous time stationary Gaussian process

(the signal) taken at known but random time-instants and corrupted with an additive noise. Two binary

tests are considered, depending on which assumptions is retained as the null hypothesis. Assuming that

the signal is a linear combination of the solution of a multidimensional stochastic differential equation

(SDE), it is shown that the minimum Type II error probabilitydecreases exponentially in the number of

samples when the False Alarm probability is fixed. This behavior is described byerror exponentsthat

are completely characterized. It turns out that they are related to the asymptotic behavior of the Kalman

Filter in random stationary environment, which is studied in this paper. Finally, numerical illustrations

of our claims are provided in the context of sensor networks.
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I. INTRODUCTION

The detection of stochastic processes in noise has receiveda lot of attention in the past decades, see

for instance the tutorial paper [1] and the references therein. More recently, in the context of sensor

networks, there has been a rising interest in the analysis ofdetection performance when the stochastic

process is sampled irregularly. An interesting approach inthis direction has been initiated in [2] using

error exponentsfor assessing the performance of the optimal detection procedure. In this paper, we

follow this approach in the following general setting. Given two integersp andq, andA a positive stable

square matrix, we consider theq-dimensional stochastic process defined as the stationary solution of the

stochastic differential equation (SDE)

dX(t) = −AX(t) dt+B dW (t), t ≥ 0 (1)

where(W (t), t ≥ 0) is ap-dimensional Brownian motion andB is aq×p matrix. The SDE (1) is widely

used to describe continuous time signals (see [3], [4] and the references therein). We are interested in the

detection of the signal(X(t), t ≥ 0) from a finite sample obtained from a general spacing model. Let

C be ad× q matrix, (Tn, n ≥ 1) be a renewal sampling process and(Vn, n ≥ 1) be a noise sequence.

Based on the observed samplesY1:N = (Y1, . . . , YN ) andT1:N = (T1, . . . , TN ), our goal is to decide

whether forn = 1, . . . , N , Yn = Vn or Yn = CX(Tn) + Vn. The first situation will be referred to as the

noise hypothesisand the second as thesignal plus noise hypothesis.

The renewal hypothesis on(Tn, n ≥ 1) means thatTn =
∑n

k=1 Ik where the(Ik, k ≥ 1) are

nonnegative i.i.d. random variables calledholding timeswith common distribution denoted byτ . This is

a standard model for possibly irregular sampling, see [2], [5], [6]. The most usual examples are:

• The Poisson point process. In this case, the(Ik, k ≥ 1) are i.i.d. with exponential distribution

τ(dx) = λ exp(−λx) dx. This model has been considered in [2], [5], [6] to model the situation

where the signal is measured in time byN identical asynchronous sensors.

• The Bernoulli process. This is the discrete time counterpart of the Poisson process. In this case, the

(Ik, k ≥ 1) are i.i.d. and have geometric distribution up to a multiplicative time constantS > 0,

i.e. τ({Sℓ}) = τ({S})(1 − τ({S}))ℓ−1 for ℓ = 1, 2, . . . In practice, this model corresponds to a

regular sampling with periodS for which observations are missing at random, with failure probability

1− τ({S}). The regular sampling process corresponds toτ({S}) = 1.

Two binary tests are considered in this work: eitherH0 is the noise hypothesis andH1 is the signal

plus noise hypothesis, or the opposite. Constraining the False Alarm probability (probability for deciding

H1 underH0) to lie beneath anε ∈ (0, 1), it is well known that the minimum Type II error probability
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is achieved by the Neyman-Pearson test. It will be shown in this paper that this minimum Type II error

probabilityβN (ε) satisfiesβN (ε) = exp(−N(ξ+o(1))) asN → ∞, where the error exponentξ does not

depend onε. The error exponentξ is an indicator of the performance of the detection test. Itsvalue will

be shown to depend on the distribution of signal (given byA, B andC) and on the distribution of the

sampling process (given byτ ). An important goal in sensor network design is to optimize the sampling

process. Characterizing the error exponents offers usefulguidelines in this direction. For instance, [2],

[7]–[10] provide useful insights on such concrete problemsas the choice of the optimum mean sensor

spacing possibly subject to a cost or a power constraint. Other application examples are considered in

[11], [12]. In these contributions, error exponents are used to propose optimum routing strategies for

conveying the sensors data to the fusion center.

In the context of Neyman-Pearson detection, these error exponents are given by the limits of the

likelihood ratios, provided that these limits exist. LetZ1:N = (Z1, . . . , ZN ) be a sequence ofN observed

random vectors. Assume a binary test is performed on this sequence, and assume that under hypothesis

H0, the distribution ofZ1:N has the densityf0,N , while underH1, this distribution has the densityf1,N .

Fix ε ∈ (0, 1) and letβN (ε) be the minimum over all tests of the Type II error probabilitywhen the

False Alarm probabilityα is constrained to satisfyα ≤ ε. Let

LN (Z1:N ) =
1

N
log

(
f0,N(Z1:N )

f1,N(Z1:N )

)

be the normalized Log Likelihood Ratio (LLR) associated with the receivedZ1:N . Then the asymptotic

behavior ofβN (ε) can be obtained from the following theorem, found in [13].

Theorem 1 Assume there is a real numberξ such that the random variableLN (Z1:N ) satisfies

LN (Z1:N ) −−−−→
N→∞

ξ in probability underH0. (2)

Then for everyε ∈ (0, 1),

− 1

N
log βN (ε) −−−−→

N→∞
ξ .

In the case where theZi’s are i.i.d. under both hypotheses, the analogue of Theorem1 appeared in [14]

and is known as Stein’s lemma. The generalization to Theorem1 can be found in [13], [15]. In our case,

the observed process isZ1:N = (Z1, . . . , ZN ) with Zn = (Yn, Tn), in other words, the measurements

consist in the sampled received signal and the sampling moments. Let us consider thatY1:N = V1:N

underH0 andY1:N = (CX(Tn) + Vn)1≤n≤N underH1. Recall that the probability distribution ofT1:N
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does not depend on the hypothesis to be tested. In these conditions, the LLR is given by

LN (Z1:N ) =
1

N
log

(
f0,N(Y1:N |T1:N )

f1,N(Y1:N |T1:N )

)
(3)

where f0,N(. |T1:N ) and f1,N(. |T1:N ) are the densities ofY1:N conditionally toT1:N under H0 and

H1 respectively. It is clear thatf0,N (. |T1:N ) = N (0, 1). Being solution of the SDE (1), the process

(X(t), t ≥ 0) is a Gaussian process. In consequence,f1,N (. |T1:N ) = N (0, R(T1:N )) where matrix

R(T1:N ) is a covariance matrix that depends onT1:N . In the light of Theorem 1 we need to establish

the convergence in probability of the Right Hand Side (RHS) of Eq. (3) towards a constantξ, and to

characterize this constant, under the assumptionY1:N = V1:N . Alternatively, if we consider thatH0 is

the Signal plus Noise hypothesisY1:N = (CX(Tn)+Vn)1≤n≤N , then we study the convergence of−LN

under this assumption.

Theorem 1 has been used for detection performance analysis in [2], [7], [16], [17]. In the closely related

Bayesian framework, error exponents have been obtained in [8]–[10], [18]. The closest contributions to

this paper are [2], [7], [17] which consider different covariance structure for the process and different

sensors locations models. In [7], Sung, Tong and Poor consider the scalar version of the SDE (1) and a

regular sampling. In [17], the authors essentially generalize the results of [7] to situations where the sensor

locations follow some deterministic periodic patterns. In[2], the sampling process (sensor locations) is

a renewal process as in our paper, and the detector discriminates among two scalar diffusion processes

described by Eq. (1). Moreover, the observations are noiseless. Here, due to the presence of additive

noise, our technique for establishing the existence of the error exponents and for characterizing them

differ substantially from [2]. We establish the convergence of the LLRLN (Z1:N ) by studying the stability

(and ergodicity) of the Kalman filter, using Markov chains techniques.

The paper is organized as follows. In Section II, the main assumptions and notations are introduced

and the main results of the paper are stated. Proofs of these results are presented in Section III. Some

particular cases of interest are presented in Section IV. Section V is devoted to numerical illustrations

and to a discussion about the impact of the sampling scheme onthe detection performance. The proofs

in Section III rely heavily on a theorem for Markov chains stability shown in appendix B. The other

appendices contain technical results needed in the proofs.
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II. T HE ERROR EXPONENTS

We consider the following hypothesis test based on observations(Yn, Tn), n = 1, . . . , N , that we shall

call the “H0-Noise” test:

H0 : Yn = Vn for n = 1, . . . , N

H1 : Yn = CX(Tn) + Vn for n = 1, . . . , N

(4)

whereC is thed×q observation matrix and the involved processes satisfy the following set of conditions.

Assumption 1 The following assertions hold.

(i) The process(X(t), t ≥ 0) is a stationary solution of the stochastic differential equation (1) where

(W (t), t ≥ 0) is a p-dimensional Brownian motion.

(ii) (Tn, n ≥ 1) is a renewal process, that isTn =
∑n

1 Ik where(In, n ≥ 1) is a sequence of i.i.d.

non-negative r.v.’s with distributionτ and τ({0}) < 1.

(iii) (Vn, n ≥ 1) is a sequence of i.i.d. r.v.’s withV1 ∼ N (0, 1d).

(iv) The processes(X(t), t ≥ 0), (Tn, n ≥ 1) and (Vn, n ≥ 1) are independent.

Here1d denotes thed× d identity matrix.

In order to be able to apply Theorem 1, we now develop the expression of the LLR given by (3). To

that end, we derive the expressions of the likelihood functionsf0,N (Y1:N |T1:N ) andf1,N (Y1:N |T1:N ).

The densityf0,N(. | T1:N ) is simply the densityN (0, 1Nd) of (V1, . . . , VN ), therefore

f0,N(Y1:N |T1:N ) =
1

(2π)Nd/2
exp

(
−1

2

N∑

n=1

Y T
n Yn

)
. (5)

We now developf1,N (. |T1:N ) by mimicking the approach developed in [19] and in [7]. LetQ(x) be

the q × q symmetric nonnegative matrix defined by

Q(x) =

∫ x

0
e−uABBTe−uAT

du . (6)

As A is positive stable, the covariance matrixQ(∞) exists (by Lemma 3) and is the unique solution of

the so calledLyapunov’s equationQAT + AQ = BBT, see [20, Chap. 2]. Solving Eq. (1) betweenTn

andTn+1 (see [3, Chap. 5]), the conditional distribution of the process(Xn, n ≥ 1) given (In, n ≥ 1)

is characterized by the recursion equation

Xn+1 = e−In+1AXn + Un+1, n ≥ 0 , (7)

where the conditional distribution of the sequence(X0, Un, n ≥ 1) is that of a sequence of independent

r.v.’s, X0 ∼ N (0, Q(∞)) andUn ∼ N (0, Qn) with Qn = Q(In) defined by (6).
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Now we write

f1,N (Y1:N |T1:N ) =

N∏

n=1

f1,n,N (Yn |Y1:n−1, T1:N ) (8)

wheref1,n,N(. | Y1:n−1, T1:N ) is the density ofYn conditionally to (Y1:n−1, T1:N ). In view of Eq. (7),

Yn = CXn + Vn and the assumptions on(Vn), these conditional densities are Gaussian, in other words

f1,n,N (Yn |Y1:n−1, T1:N ) =
1

det(2π∆n)1/2
exp

(
−1

2
(Yn − Ŷn)

T∆−1
n (Yn − Ŷn)

)
(9)

where Ŷn = E [Yn |Y1:n−1, T1:N ] and ∆n = Cov
(
Yn − Ŷn |T1:N

)
are respectively the conditional

expectation of the current observationYn given the past observations and the so-called innovation

covariance matrix underH1. From Equations (5), (8) and (9), the LLRLN writes

LN (Y1:N , T1:N ) =
1

N
log f0,N(Y1:N |T1:N )− 1

N
log f1,N(Y1:N |T1:N )

=
1

2N

N∑

n=1

log det∆n +
1

2N

N∑

n=1

(Yn − Ŷn)
T∆−1

n (Yn − Ŷn)−
1

2N

N∑

n=1

Y T
n Yn .(10)

As (Yn) is described underH1 by the state equations

H1 :




Xn+1 = e−In+1AXn + Un+1

Yn = CXn + Vn

for n = 1, . . . , N, (11)

it is well known thatŶn and∆n can be computed using the Kalman filter recursive equations.Define

the q × 1 vectorX̂n and theq × q matrix Pn as

X̂n = E[Xn |Y1:n−1, T1:N ] and Pn = Cov
(
Xn − X̂n |T1:N

)
.

The Kalman recursions which provide these quantities are [21, Prop. 12.2.2]:

X̂n+1 = e−In+1A
(
1q − PnC

T
(
CPnC

T + 1d
)−1

C
)
X̂n + e−In+1APnC

T
(
CPnC

T + 1d
)−1

Yn (12)

Pn+1 = e−In+1A
(
1q − PnC

T
(
CPnC

T + 1d
)−1

C
)
Pne

−In+1AT

+Qn+1 . (13)

The recursion is started with the initial conditionŝX1 = 0 andP1 = Q(∞). With these quantities at

hand,Ŷn and∆n are given by

Ŷn = CX̂n and ∆n = CPnC
T + 1d . (14)

With these expressions at hand, our purpose is to study the asymptotic behavior ofLN given by Eq. (10)

assuming that that(Yn) is i.i.d. with Y1 ∼ N (0, 1d) (underH0).

In our analysis, we shall require Model (1) to becontrollable, i.e., (A,B) satisfies
q−1∑

ℓ=0

AℓBBTATℓ
> 0.

Recall that(A,B) is controllable if and only if the matrixQ(x) defined by Equation (6) is nonsingular

for any x > 0 (see [22, Chap. 6] for a proof).
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Since underH0, ηn = (In+1, Yn), n ≥ 1, are i.i.d. r.v.’s, the Kalman equations (12)-(13) can be written

as a random iteration scheme. To this end we introduce some notation. LetPq denote the cone ofq × q

nonnegative symmetric matrices. For anyη = (I, Y ) ∈ [0,∞)×R
d, we denote byFη theRq×Pq-valued

function defined for allw = (x,p) ∈ R
q × Pq by

Fη(w) :=


 e−IA

(
1q − pCT

(
CpCT + 1d

)−1
C
)
x+ e−IA

pCT
(
CpCT + 1d

)−1
Y

e−IA
(
1q − pCT

(
CpCT + 1d

)−1
C
)
pe−IAT

+Q(I)


 . (15)

Using this notation the Kalman equations read

Wn = Fηn
(Wn−1), n ≥ 1 ,

whereWn = (X̂n+1, Pn+1). Under H0, since(ηn) is a sequence of i.i.d. random variables,(Wn)n≥0

is a Markov chain starting atW0 = (0, Q(∞)). Observe also that since the second component ofFη,

denoted byF̃I(p) in the following, does not depend onx, (Pn)n≥1 also is a Markov chain starting at

P1 = Q(∞). Since it neither depends onY , this is also true underH1 as well. Let[0, Q(∞)] denote the

subset of all matricesp ∈ Pq such thatp ≤ Q(∞). It is easy to see that, for anyI ≥ 0, [0, Q(∞)] is a

stable set forF̃I . Indeed, suppose thatp ∈ [0, Q(∞)], then

F̃I(p) = e−IA
(
1q − pCT

(
CpCT + 1d

)−1
C
)
pe−IAT

+Q(I)

≤ e−IA
pe−IAT

+Q(I)

≤ e−IAQ(∞)e−IAT

+Q(I) = Q(∞) ,

by definition of Q in (6). Hence, in the following, we consider(Wn) and (Pn) as chains valued in

R
q× [0, Q(∞)] and[0, Q(∞)], respectively. We will denote byΠ andΠ̃ the transition kernels associated

to the chains(Wn) (under H0) and (Pn), respectively, that is, for test functionsf and f̃ defined on

R
q × [0, Q(∞)] and [0, Q(∞)] ,

Πf(w) = E[f(Fη(w))], w ∈ R
q × [0, Q(∞)]

Π̃f̃(p) = E[f̃(F̃I(p))], p ∈ [0, Q(∞)] ,

whereη = (I, Y ) is such thatI ∼ τ , Y ∼ N (0, 1d) andI andY are independent. In the following we

will simply use the notationη ∼ τ ⊗N (0, 1d). We now state our main results.

First we determine the limit of the LLR under the signal hypothesisH1.

Theorem 2 Suppose that Assumption 1 holds with a state realization(A,B,C) such thatA is positive

stable and(A,B) is controllable. Then the transition kernel̃Π has a unique invariant distributionµ.
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Moreover, ifY1:N is defined as inH1 in (4), then asN → ∞, we have

−LN (Y1:N , T1:N ) → ξH0:Signal almost surely (a.s.) ,

whereLN (Y1:N , T1:N ) is defined in (10) and

ξH0:Signal=
1

2

(
tr
(
CQ(∞)CT

)
−
∫

log det
(
CpCT + 1d

)
dµ(p)

)
(16)

is positive and finite.

Remark 1 This paper deals with the detection of a stationary signal. That is why the matrixA is assumed

to be positive stable. An interesting problem, however, consists in searching for minimum conditions on

τ that guarantee the existence ofµ whenA is not positive stable. This problem could also be refined by

studying the existence of some moments ofµ. Recently, this study has been undertaken in [23], [24] and

[25] in the case where the sampling process is a Bernoulli process. The approach of [23] and [24] is

based on the so called random dynamical systems theory.

Let us now provide the limit of the LLR under the noise hypothesis H0.

Theorem 3 Suppose that Assumption 1 holds with a state realization(A,B,C) such thatA is positive

stable and(A,B) is controllable. Then the transition kernelΠ has a unique invariant distributionν.

Moreover, ifY1:N is defined as inH0 in (4), then asN → ∞, we have

LN (Y1:N , T1:N ) → ξH0:Noise a.s.,

whereLN (Y1:N , T1:N ) is defined in (10) and

ξH0:Noise=
1

2

∫ {
log det

(
CpCT + 1d

)
+ tr

[
C(xxT − p)CT

(
CpCT + 1d

)−1
]}

dν(x,p) (17)

is positive and finite.

Remark 2 From Theorems 2 and 3, and by definitions ofΠ and Π̃, we immediately see thatµ is the

second marginal distribution ofν, µ(·) = ν(Rq × ·).

By Theorems 1, 2 and 3, we get that the error exponents associated to the hypotheses testing problem

(4) are given byξH0:Noise andξH0:Signal. More precisely, we have the following result.

Corollary 1 Consider, under Assumption 1, the hypotheses test(4). For N ≥ 1 andε ∈ (0, 1), let βN (ε)

be the minimum of error probabilities over all tests for which the false alarm probability is at mostε.

Then, asN → ∞, N−1 log βN (ε) → ξH0:Noise, as defined in (17).
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Now, if we interchange the roles ofH0 and H1 in (4) (call this test the “H0-Signal” test), we obtain

N−1 log βN (ε) → ξH0:Signal, as defined in (16).

III. PROOFS OF MAIN RESULTS

This section is devoted to the proofs of Theorems 2 and 3. These results follow from an analysis of

the Markov chains induced by the transition kernelsΠ and Π̃, or, equivalently, of the random iteration

functionsFη and F̃I defined in (15). We provide a fairly general result in the appendix, Theorem 4, to

deal with this general framework. Based on moment contraction conditions, this latter result establishes

the existence and uniqueness of the invariant distributionand a law of large numbers for functions with

precise polynomial growth conditions at infinity. In this section we establish some useful preliminary

results related to moment contraction conditions for random iteration functionsFη and F̃I , and then

prove Theorems 2 and 3 by applying Theorem 4.

A. Preliminary results

We start with a series of preliminary results for which we recall the following notations and assump-

tions: τ is a distribution on[0,∞) such thatτ({0}) < 1, (In)n≥1 is a sequence of i.i.d. r.v.’s distributed

according to the distributionτ and (ηn)n≥1 is a sequence of i.i.d. r.v.’s distributed according to the

distributionτ ⊗N (0, 1d).

We further denote byI and η two generic r.v.’s having same distribution asI1 and η1, respectively.

For anyx ∈ R
q andp ∈ [0, Q(∞)], we define two Markov chains induced byΠ and Π̃ and starting at

w = (x,p) andp, respectively




Zw

0 = w and Z̃p

0 = p

Zw

k = Fηk
(Zw

k−1) and Z̃p

k = F̃Ik(Z̃
p

k−1), k ≥ 1 .

As noticed earlier,̃Zp

k corresponds to the second component ofZw

k for eachk and is valued in[0, Q(∞)].

We introduce the following notation for the Kalman gain matrix

G(p) = pCT(1d + CpCT)−1 ,

and the short-hand notation forG(Z̃p

k ) (the Kalman gain matrix at timek):

Gp

k = Z̃p

kC
T(1d + CZ̃p

kC
T)−1, k ≥ 0 , (18)

As for the Kalman transition matrix, we set

Θ(I,p) = e−IA(1q −G(p)C) ,
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and the short-hand notation forΘ(Ik, Z̃
p

k−1) (the Kalman transition matrix at timek):

Θp

k = e−IkA(1q −Gp

k−1C), n ≥ 1 . (19)

Using this notation andQk = Q(Ik), the Kalman covariance update equationZ̃p

k = F̃Ik(Z̃
p

k−1) can be

expressed for allk ≥ 1 as

Z̃p

k = Θp

k Z̃
p

k−1e
−IkAT

+Qk

= Θp

k Z̃
p

k−1Θ
pT
k + e−IkA(1q −Gp

k−1C)Z̃p

k−1C
TGpT

k−1e
−IkAT

+Qk (20)

= Θp

k Z̃
p

k−1Θ
pT
k +Qk , (21)

where

Qk = e−IkAGp

k−1G
pT
k−1e

−IkAT

+Qk, k ≥ 1 . (22)

We also denote a product of successive Kalman transition matrices by

Θp

n,m = Θp

nΘ
p

n−1 . . .Θ
p

m+1 , 0 ≤ m < n . (23)

Note thatΘp

n,n−1 = Θp

n. If m = n, we will use the conventionΘp

n,n = 1q.

Finally, we denote by|x| the Euclidean norm of the vectorx, λmin(H) andλmax(H) the minimum and

maximum eigenvalues of the matrixH and by‖H‖ its operator norm,‖H‖ = λmax(H
TH)1/2.

We first derive a deterministic bound forΘp

n,m based on (21), which relies on a Lyapunov function

argument similar to that in [26, Theorem 2.4] and [27, Sec. 4].

Lemma 1 For any 0 ≤ m < n, we have

‖Θp

n,m‖2 ≤ ‖Z̃p

n‖ ‖(Z̃p

m)−1‖
n∏

k=m+1

(
1− λmin(Qk)

‖Z̃p

k ‖

)
, (24)

Proof: ObviouslyQk ≥ Qk, henceλmin(Qk) ≥ λmin(Qk). Now, for a givenxn ∈ R
q, define the

backward recursionxk = ΘpT
k+1xk+1 for k decreasing fromn− 1 down tom, and setVk = x

T
k Z̃

p

k xk for

k = m, . . . , n. We have

Vn − Vn−1 = x
T
n Z̃

p

nxn − x
T
nΘ

p

nZ̃
p

n−1Θ
pT
n xn = x

T
nQnxn

by (21), and moreover,xT
nQnxn ≥ |xn|2λmin(Qn) ≥ |xn|2λmin(Qn) ≥ Vnλmin(Qn)/‖Z̃p

n ‖ . Hence,

Vn−1 ≤ Vn

(
1− λmin(Qn)/‖Z̃p

n ‖
)

. Iterating, we obtain

Vm ≤ Vn

n∏

k=m+1

(
1− λmin(Qk)

‖Z̃p

k ‖

)
≤ |xn|2‖Z̃p

n ‖
n∏

k=m+1

(
1− λmin(Qk)

‖Z̃p

k ‖

)
. (25)
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On the other hand, by (23),Vm = x
T
mZ̃p

mxm = x
T
nΘ

p

n,mZ̃p

mΘpT
n,mxn, henceλmin(Z̃

p

m) xT
nΘ

p

n,mΘpT
n,mxn ≤

Vm. This, with Inequality (25), implies (24).

Next we deduce a uniform moment bound forΘp

n,m.

Lemma 2 Assume that the matrixA is positive stable and that the pair(A,B) is controllable. For any

r > 0, there existK > 0 and ρ ∈ (0, 1) such that

E

[
sup

p∈[0,Q(∞)]
‖Θp

n,m‖2r
]
≤ K ρn−m, 0 ≤ m < n .

Proof: Recall that forp ∈ [0, Q(∞)], we haveZ̃p

k ∈ [0, Q(∞)] for all k ≥ 1. Note thatG is

continuous and, by Lemma 3,supk ‖e−IkA‖ < ∞. Hence,

Z̃∗ = sup
p∈[0,Q(∞)]

sup
k≥1

‖Z̃p

k ‖ < ∞ and Θ∗ = sup
p∈[0,Q(∞)]

sup
k≥1

‖Θp

k‖ < ∞ .

Let 0 ≤ m < n. Let ǫ > 0 that we will choose arbitrarily small later. DenoteT = inf{k ≥ m | Ik ≥ ǫ}.

Then we have, by (21) and (22),

λmin(Z̃
p

T ) ≥ λmin(QT ) ≥ λmin(Q(ǫ)) > 0 , (26)

by Lemma 4. We now write, denoting by1A the indicator function of the eventA,

‖Θp

n,m‖2r =
n−1∑

k=m

‖Θp

n,kΘ
p

k,m‖2r1{T=k} + ‖Θp

n,m‖2r1{T≥n}

≤
n−1∑

k=m

‖Θp

n,k‖2r(Θ∗)2r(k−m)1{T=k} + (Θ∗)2r(n−m)1{T≥n} .

For anyk < n, applying Lemma 1 and the bound (26), we have, on the eventT = k,

‖Θp

n,k‖2r ≤ (Z̃∗λmin(Q(ǫ))−1)2r
n∏

j=T+1

(
1− λmin(Qj)

Z̃∗

)2r

,

Observe that, for anyk ≥ m, {T = k} = {Im < ǫ, . . . , Ik−1 < ǫ, Ik ≥ ǫ}. HenceT − m + 1 is a

geometric r.v. with parameterτǫ = τ([ǫ,∞)) and (QT+i)i≥1 is i.i.d., independent ofT , and follows the

same distribution asQ(I). Moreover, by Lemma 4,λmin(Q(I)) > 0 for I > 0, and since,τ({0}) < 1,

we haveγ = E[(1− λmin(Q(I))/Z̃∗)2r] < 1. Thus we get

E

[
sup

p∈[0,Q(∞)]
‖Θp

n,m‖2r
]

≤ (Z̃∗λmin(Q(ǫ))−1)2r
n−1∑

k=m

γn−k(Θ∗)2r(k−m)τǫ(1− τǫ)
k−m + (Θ∗)2r(n−m)

∑

k≥n

τǫ(1− τǫ)
k−m

≤ {(Z̃∗λmin(Q(ǫ))−1)2rτǫ(n−m) + 1}ρ̃n−m .
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where we choseǫ > 0 small enough so that(Θ∗)2r(1− τǫ) < 1 and setρ̃ = γ ∨ {(Θ∗)2r(1− τǫ)} < 1.

This gives the result for anyρ ∈ (ρ̃, 1) by conveniently choosingK.

We conclude this series of preliminary results with useful Lipschitz bounds for the mappingsp 7→ Z̃p

n ,

p 7→ Θp

n,m andp 7→ Gp

n.

Proposition 1 We have, for any nonnegative symmetric matricesp andq,

Z̃p

n − Z̃q

n = Θp

n,0(p− q)ΘqT
n,0, n ≥ 1 . (27)

Moreover, there exists a constantC > 0 such that, for allp,q ∈ [0, Q(∞)],

‖Gp

n −Gq

n‖ ≤ C ‖p− q‖ ‖Θp

n,0‖ ‖Θq

n,0‖ , n ≥ 1 , (28)

‖Θp

n,m −Θq

n,m‖ ≤ C ‖p− q‖
n∑

j=m+1

‖Θq

n,j‖ ‖Θ
p

j−1,m‖ ‖Θq

j−1,1‖ ‖Θ
p

j−1,1‖ , 0 ≤ m < n . (29)

Proof: Let us prove (27). By induction, it is sufficient to show that

F̃I(p)− F̃I(q) = Θ(I,p)(p − q)ΘT(I,q) . (30)

By continuity of F̃I andΘ(I, ·), we may assume thatp andq are invertible. In this case, the matrix

inversion lemma gives that

(p− pCT(CpC + 1d)
−1Cp) = (p−1 + CTC)−1 , (31)

and the same is true withq replacingp. Hence

F̃I(p)− F̃I(q) = e−IA
[
(p−1 + CTC)−1 − (q−1 + CTC)−1

]
e−IAT

= e−IA(p−1 + CTC)−1
p
−1 [p− q]q−1(q−1 + CTC)−1e−IAT

.

Using again (31) and the definition ofΘ, we get (30), which achieves the proof of (27).

We now prove (28). Observe thatG is continuously differentiable on the compact set[0, Q(∞)]. Hence

‖G(p)−G(q)‖ ≤ C‖p−q‖ for some constantC > 0. Thus, sinceGp

n = G(Z̃p

n ), the bound (28) follows

from (27).

Finally we prove (29). We have, for all0 ≤ m < n (recall the conventionΘp

n,n = Θp

m,m = 1q),

Θp

n,m −Θq

n,m =

n∑

j=m+1

Θq

n,j(Θ
p

j −Θq

j )Θ
p

j−1,m .

On the other hand,Θp

j −Θq

j = e−IjA(Gq

j−1 −Gp

j−1)C, and (29) thus follows from (28).
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B. Proof of Theorem 2.

Using (27) in Proposition 1, Lemma 2 and the Hölder inequality, we obtain that, for anyq > 0 there

existsC > 0 andα ∈ (0, 1) such that

E

[
‖Z̃p

n − Z̃q

n‖q
]
≤ Cαn, p,q ∈ [0, Q(∞)], n ≥ 1 . (32)

This corresponds to Condition (i) in Theorem 4. Condition (ii) is trivially satisfied for anys andr = 1

since hereX = [0, Q(∞)] is a compact state space. Hence, by Theorem 4(a) we obtain theexistence

and uniqueness ofµ.

Next, we show that−LN (Y1:N , T1:N ) defined in (10) converges toξH0:Signal in probability whenYn =

CXn + Vn for all n ≥ 1. Since, for alln ≥ 1, Pn = Z̃
Q(∞)
n−1 and log det∆n is a Lipschitz function of

Pn, we have by Theorem 4(b) that

1

N

N∑

n=1

log det∆n
a.s.−−−−→

N→∞

∫
log det(CpCT + 1d) µ(dp) . (33)

This is true independently of the definition of(Yn) and hence will also be used in the proof of Theorem 3.

In contrast the specific definition of(Yn) here implies thatŶn = E[Yn | Y1:n−1, T1:N ] and ∆n =

Cov(Yn − Ŷn | T1:N ). Hence((Yn − Ŷn)
T∆−1

n (Yn − Ŷn))n≥1 is a sequence of i.i.d.N (0, 1) r.v.’s, which

yields
1

N

N∑

n=1

(Yn − Ŷn)
T∆−1

n (Yn − Ŷn)
a.s.−−−−→

N→∞
d .

On the other hand, in (10) this limit cancels with

1

N

N∑

n=1

V T
n Vn

a.s.−−−−→
N→∞

d , (34)

which appears in the last term of (10) when developingY T
n Yn = V T

n Vn + XT
n C

TCXn + 2XT
n C

TVn.

Hence it only remains to show that

1

N

N∑

n=1

XT
n C

TCXn
a.s.−−−−→

N→∞
tr(CQ(∞)CT) , (35)

1

N

N∑

n=1

XT
n C

TVn
a.s.−−−−→

N→∞
0 . (36)

To this end, recall that(Xn) is a Markov chain, whose distribution is defined by the recurrence equation (7)

and the initial conditionX0 ∼ N (0, Q(∞)). We shall establish the ergodicity of this Markov chain by

again applying Theorem 4. For anyx ∈ R
q, we denote by(Xx

n ) the Markov chain defined with the same
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recurrence equation but with initial conditionX0 = x. Then we have, by iterating,

Xx

n = e−
∑

n

j=1
IjA

x+

n∑

k=1

e−
∑

n

j=k+1
IjA Uk , n ≥ 1 .

with the convention
∑n

j=n+1 Ij = 0. Recall that, givenIn, the conditional distribution ofUn is N (0, Qn)

andQn = Q(In) ∈ [0, Q(∞)]. HenceE[|Un|s | In] is a bounded r.v. for anys > 0. By Lemma 3, we

haveE[‖e−
∑

n

j=k+1
IjA‖s] ≤ K (E[e−asI1 ])n−k for sameK, s > 0. Hence, we obtain, for anys > 0, for

some constantsC > 0 andα ∈ (0, 1), for all x,y ∈ R
q,

E[|Xx

n −Xy

n |s] ≤ Cαn (1 + |x|s + |y|s) ,

E[|Xx

n |s] ≤ C(1 + |x|s) .

These are conditions (i) and (ii) of Theorem 4 withr = p = 1. Moreover,(Xn) has a constant marginal

distribution, namelyN (0, Q(∞)), so that the invariant distributionµ of Theorem 4(a) is necessary

µ = N (0, Q(∞)). Now, applying Theorem 4(b) and Theorem 4(c), we get (35) and(36), with a = 2

anda = 1 respectively.

To achieve the proof of Theorem 2, it remains to prove thatξH0:Signal> 0. This results fromlog det(CpCT+

1d) < tr(CQ(∞)CT) for everyp ∈ [0, Q(∞)].

C. Proof of Theorem 3.

Letw = (x,p) ∈ R
q×[0, Q(∞)]. We denote the first component ofZw

k byZw

k so thatZw

k = (Zw

k Z̃p

k ).

Using the notation introduced above, we have, for allk ≥ 1, Zw

k = Θp

kZ
w

k−1+e−IkAGp

k−1Yk−1, and, by

iterating,

Zw

n = Θp

n,0x+

n∑

k=1

Θp

n,ke
−IkAGp

k−1Yk−1, n ≥ 1 .

By continuity of G, it is bounded on the compact set[0, Q(∞)], hencesup
p,n ‖Gp

k‖ < ∞. Also by

Lemma 3,supk ‖e−IkA‖ < ∞. Applying these bounds, Lemma 2, the Minkowski Inequality and the

Hölder Inequality in the previous display, we obtain, for any s > 0 and some constantC > 0,

E[|Zw

n |s] ≤ C (1 + |x|s), w = (x,p) ∈ R
q × [0, Q(∞)], n ≥ 1 . (37)

Since the second component ofZw

k stays in the compact set[0, Q(∞)], this implies Condition (i) in

Theorem 4 withr = 1 for the complete chain(Zp

k )k≥0.

Let nowv = (y,q) ∈ R
q × [0, Q(∞)]. We have

Zw

n −Zv

n = Θp

n,0x−Θq

n,0y+

n∑

k=1

(Θp

n,k −Θq

n,k)e
−IkAGp

k−1Yk−1 +

n∑

k=1

Θq

n,ke
−IkA(Gp

k−1 −Gq

k−1)Yk−1 .
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Note that, using Lemma 2, the bounds (28) and (29) in Proposition 1, the Hölder Inequality and the

Minkowski Inequality, we obtain, for anyr > 0 and some constantsC > 0, andρ ∈ (0, 1) not depending

on p,q,

E[‖Gp

n −Gq

n‖r] ≤ Cρn and E[‖Θp

n,m −Θq

n,m‖r] ≤ Cρn, 0 ≤ m < n .

Using these bounds, Lemma 2 and the previous two displays, wethus obtain, for anyq > 0 and some

constantsC > 0, andα ∈ (0, 1) not depending onw,v,

E [|Zw

n − Zv

n|q] ≤ Cαn (1 + |x|q + |y|q), n ≥ 1 .

This, with (32), implies Condition (i) in Theorem 4 withp = 1 for the chain(Zp

k )k≥0. Hence Theorem 4(a)

applies, which yields the existence and uniqueness of the measureν. Moreover we get that
∫
|w|rdν(w) <

∞ for any r > 0.

Let us now show thatLN (Y1:N , T1:N ) converges toξH0:Noise whenYn = Vn for all n ≥ 1. Some of

the terms appearing in (10) are identical to the case whereYn = CXn + Vn for all n ≥ 1 investigated

for the proof of Theorem 2. Writing

(Yn − Ŷn)
T∆−1

n (Yn − Ŷn) = V T
n ∆−1

n Vn + 2V T
n ∆−1

n CX̂n + X̂T
n C

T∆−1
n CX̂n ,

and usingµ = ν(Rq, ·), (33), (34) and some algebra, it is in fact sufficient to provethat

1

N

N∑

n=1

X̂T
n C

T∆−1
n CX̂n

a.s.−−−−→
N→∞

∫
x
TCT(CpCT + 1d)

−1Cx dν(x,p) , (38)

1

N

N∑

n=1

V T
n ∆−1

n Vn
a.s.−−−−→

N→∞

∫
tr(CpCT + 1d)

−1 dµ(p) , (39)

1

N

N∑

n=1

V T
n ∆−1

n CX̂n
a.s.−−−−→

N→∞
0 . (40)

Now, these limits hold by observing that(X̂n, Pn) = Z
(0,Q(∞))
n−1 and by apply Theorem 4(b) witha = 1

for (38), Theorem 4(c) witha = 1 for (40) and Theorem 4(c) witha = 2 for (40).

It remains to prove thatξH0:Noise > 0. From Equation (17),ξH0:Noise ≥
∫
f(p)dµ(p) where f(p) =

0.5
(
log det(CpCT + 1d)− CpCT(CpCT + 1d)

−1
)
. This function satisfiesf(p) ≥ 0 andf(p) = 0 if

and only if CpCT = 0. Let Z̃ ∈ [0, Q(∞)] be a random variable with the invariant distributionµ, and

assume thatCZ̃CT = 0 with probability one. From Equation (15) we have with probability one

0 = CF̃I(Z̃)C
T = Ce−IAZ̃e−IAT

CT −Ce−IAZ̃CT
(
CZ̃CT + 1d

)−1
CZ̃e−IAT

CT + CQ(I)CT

= Ce−IAZ̃e−IAT

CT + CQ(I)CT = CQ(I)CT

DRAFT



SUBMITTED TO IEEE TRANS. INFORMATION THEORY 16

Due to the controllability of(A,B) and the fact thatτ({0}) < 1, this is a contradiction. Therefore

f(Z̃) > 0 with probability one, and henceξH0:Noise> 0, which achieves the proof of Theorem 3.

IV. SOME PARTICULAR CASES

Different particular cases and limit situations will be considered in this section. We begin with the case

where the sampling is regular,i.e., I1 is equal to a constant that we take equal to one without loss of

generality. In this case, we obtain compact expressions forthe error exponents. We then consider the case

where the holding times are large with high probability,i.e., the sensors tend to be far apart. Finally, we

consider the case where the SDE (1) is a scalar equation. In the scalar case, we will be able to analyze

the impact ofE[I1], the Signal to Noise Ratio, and the distribution ofI1 on ξH0:Signal. All proofs are

deferred to Appendix C.

Regular sampling

When the sampling is regular, the model for(Yn) underH1 (see Eqs. (11)) is a general model for

stable Gaussian multidimensional ARMA processes corrupted with a Gaussian white noise. In this case

we denote byΦ = e−In+1A = exp(−A) and byQ = Q(1) =
∫ 1
0 exp(−uA)BBT exp(−uAT) du the

state transition matrix and the excitation covariance matrix respectively.

Proposition 2 (Regular sampling) Assume thatI1 = 1 and defineξH0:Signal andξH0:Noiseby (16) and (17),

respectively. Then we have

ξH0:Signal=
1

2

(
tr
(
CQ(∞)CT

)
− log det

(
CPRC

T + 1d
))

, (41)

ξH0:Noise=
1

2

(
log det

(
CPRC

T + 1d
)
− tr

[
CPRC

T
(
CPRC

T + 1d
)−1
]

+tr
[
CΣCT

(
CPRC

T + 1d
)−1
])

, (42)

wherePR is the unique solution of the matrix equation

P = ΦPΦT − ΦPCT
(
CPCT + 1d

)−1
CPΦT +Q (43)

and where theq × q symmetric matrixΣ is the unique solution of the matrix linear equation

Σ− Φ(1q −GC)Σ(1q −GC)TΦT = ΦGGTΦT (44)

with G = PRC
T
(
CPRC

T + 1d
)−1

.
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Equation (43) is the celebrated discrete algebraic Riccatiequation. Its solutionPR is the asymptotic

(steady state) error covariance matrix when the sampling isregular. The matrixG = PRC
T
(
CPRC

T + I
)−1

is the Kalman filter steady state gain matrix [28, Chap. 4].

Large Holding Times

We now study the behavior of the error exponents when the holding times are large with high

probability. We shall say that a family(τs) of probability distributions on[0,∞) “escapes to infinity” if,

ass → ∞
for all K > 0, τs([0,K]) −−−→

s→∞
0.

In order to study the large holding time behavior of the errorexponents, we index the distribution of

the holding times bys and assume thatτs escapes to infinity. A typical particular case that illustrates

this situation is when we assume that theIn are equal in distribution tosĪ whereĪ is some nonnegative

random variable, and when we study the behavior of the error exponents for large values ofs.

Proposition 3 (Large holding times) Assume that(τs) escapes to infinity and defineξH0:Signal andξH0:Noise

by (16) and (17), respectively. Then, ass → ∞,

ξH0:Noise→
1

2

(
log det

(
CQ(∞)CT + 1d

)
− tr

[
CQ(∞)CT

(
CQ(∞)CT + 1d

)−1
])

, (45)

ξH0:Signal→
1

2

(
tr
(
CQ(∞)CT

)
− log det

(
CQ(∞)CT + 1d

))
. (46)

Given anRd-valued i.i.d. sequence(Yn) such thatY1 ∼ N (0, 1d) underH0 andY1 ∼ N (0, CQ(∞)CT+

1d) underH1, it is well known that, underH0, the LLR converges to the Kullback-Leibler divergence

D
(
N (0, 1d) ‖N (0, CQ(∞)CT + 1d)

)
, which equals the RHS of (45), while underH1, the negated

LLR converges toD
(
N (0, CQ(∞)CT + 1d) ‖N (0, 1d)

)
, which equals the RHS of (46). This can be

explained as follows. Whenτs escapes to infinity, two consecutive samplesX(Tn) and X(Tn+1) are

asymptotically uncorrelated. Hence, under the signal hypothesis and asτs escapes to infinity, the process

(Yn) can be seen as a centered Gaussian i.i.d. sequence with covariance matrixCQ(∞)CT + 1d.

The Scalar Case

In the scalar case, the SDE (1) becomes

dX(t) = −aX(t) dt+ bdW (t), t ≥ 0 , (47)
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whereW (t) is a scalar Brownian motion and(a, b) are known real non zero constants. The SDE (47)

defines a so called Ornstein-Uhlenbeck (O-U) process. Underthe stationary assumption,a > 0 and the

initial valueX(0) is independent fromW (t) and follows the lawN (0, Q(∞)) where the varianceQ(∞)

is given byQ(∞) = b2/(2a). We observe(Yn, Tn)1≤n≤N where(Yn) is a scalar process and we write

the H0-Noise test as

H0 : Yn = Vn for n = 1, . . . , N (48)

H1 : Yn = X(Tn) + Vn for n = 1, . . . , N , (49)

where the observation noise process(Vn) is i.i.d. with V1 ∼ N (0, 1). Solving Equation (47) betweenTn

andTn+1 we obtain thatXn = X(Tn) is given by

Xn+1 = e−aIn+1Xn + Un+1, n ∈ N, (50)

where, given(In), (Un) is a sequence of independent variables such thatUn ∼ N (0, Qn) with Qn =

Q(∞)(1− e−2aIn). The distribution of the process(Yn) underH1 is completely described by the scalars

a andQ(∞) and by the distributionτ of I1, and so are the error exponents. Recall that we assume here

that I1 is integrable. In this case, we can setE[I1] = 1 by including the mean holding time intoa. The

parameterQ(∞) determines the marginal distribution ofX, sinceX(t) ∼ N (0, Q(∞)) for everyt ≥ 0,

and can thus be interpreted as the Signal to Noise Ratio SNR= E[X2
n]/E[V

2
n ].

We now provide the error exponents when the sampling is regular. In the scalar case, it is easy to solve

Equations (43) and (44) in the statement of Proposition 2 andto obtain the error exponents in closed

forms.

Corollary 2 (Regular sampling in the scalar case) In the scalar case, definingξH0:Signal and ξH0:Noise

as in (41) and (42), respectively, we have

ξH0:Signal=
1

2
(SNR− log (1 + PR)) , (51)

ξH0:Noise=
1

2

(
log (1 + PR) +

PR

PR + 1

(
Φ2PR

P 2
R + 2PR + 1− Φ2

− 1

))
, (52)

whereΦ = exp(−a) and

PR =
(SNR− 1)(1 − Φ2) +

√
(SNR− 1)2(1− Φ2)2 + 4SNR(1− Φ2)

2
.

We note that (52) was first proved in [7, Theorem 1]. The proof of (51) is straightforward and thus

omitted.
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We now consider a general distribution for the holding timesand consider the behavior ofξH0:Signal

with respect toa, the Signal to Noise Ratio SNR= Q(∞), and the distribution ofI1.

Proposition 4 DefineξH0:Signal andξH0:Noiseby (16) and (17), respectively. In the scalar case, the following

properties hold true.

(i) The error exponentξH0:Signal decreases asa increases. Moreover, asa → 0, ξH0:Signal = Q(∞)/2

and, asa → ∞, ξH0:Signal= (Q(∞)− log(Q(∞) + 1)) /2.

(ii) ξH0:Signal increases asQ(∞) increases.

(iii) The distributionτ of I1 that minimizesξH0:Signal under the constraintE[I1] = 1 is τ = δ1.

The proof of Proposition 4 can be found in Appendix C.

Some practical design guidelines can be inferred from this proposition: from the stand point of the

error exponent theory, whenH0 refers to the presence of a noisy O-U signal, one has an interest in

choosing close sensors if one wants to reduce the Type II error probability. This probability is reduced

by exploiting the correlations between theXn. As regards the sampling strategy, the worst sampling from

the error exponent stand point is the regular sampling. We note that the problem of determining the best

distributionτ , that is, the one that maximizesξH0:Signal with a given mean is an open question.

In the setting of Theorem 3, the behavior ofξH0:Noise with respect toa has been analyzed in the regular

sampling case only (Corollary 2) in [7]. The authors of [7] proved that when SNR≥ 0 dB, ξH0:Noise is

an increasing function ofa while when SNR< 0 dB, ξH0:Noise admits a maximum with respect toa. By

a numerical estimation ofξH0:Noise (see below), we observe a similar behavior in the case of a Poisson

sampling. However, a more formal characterization of the shape of ξH0:Noise for a general distribution

τ seems to be difficult. A more detailed discussion on the behavior of ξH0:Noise is provided in the next

section.

V. NUMERICAL ILLUSTRATION AND INTERPRETATION OF THERESULTS

Let us first describe the simulation procedure. Let(X̂∞, P∞) be a random element ofRq × [0, Q(∞)]

distributed according to the invariant distributionν of the Markov process(X̂n, Pn). Then the error

exponent defined by (17) can be written as

ξH0:Noise=
1

2
E

[
log det

(
CP∞CT + 1d

)
+ C

(
X̂∞X̂T

∞ − P∞

)
CT
(
CP∞CT + 1d

)−1
]

and the error exponent defined by (16) as

ξH0:Signal=
1

2

(
tr
(
CQ(∞)CT

)
− E

[
log det

(
CP∞CT + 1d

)])
.
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Fig. 1. Scalar case:ξH0:Signal vs a for SNR= −3, 0 and3 dB

By the stability of the Markov chain(X̂n, Pn) shown in Section III, we estimate the error exponents by

simulating the Kalman Equations (12)-(13) with(Yn) i.i.d. N (0, 1d), and by estimating the expectation

in the equations above by empirical means taken on(X̂n, Pn)n=1,...,N for N large enough. A scalar case

and a vector case are considered.

A. The scalar case

Figures 1 and 2 describe the behavior of the error exponents in the scalar case. Poisson sampling with

E[I1] = 1 and regular sampling withI1 = 1 are both displayed in the figures.

In Fig. 1, the error exponentξH0:Signal is plotted as a function ofa for SNR (= Q(∞)) = −3, 0 and

3 dB. We note that the empirical results match the theoreticalfindings stated in Proposition 4.

In Fig. 2, ξH0:Noise is plottedvs a for SNR= −3, 0 and3 dB. We notice thatξH0:Noise→ 0 asa → 0.

Moreover, this error exponent is an increasing function ofa for SNR = 0 and 3 dB while it has a

maximum with respect toa for SNR= −3 dB. As said in Section IV, this behavior has been established

in [7] in the case of a regular sampling. We also notice that Poisson sampling is worse than regular

sampling for SNR= 3 dB and better than regular sampling for SNR= −3 dB. We will further discuss

these findings in Section V-C below.
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Fig. 2. Scalar case:ξH0:Noise vs a for SNR= −3, 0 and3 dB

B. The vector case

We now consider a vector case and investigate whether the qualitative findings in the scalar case are

again observed. The following 2-dimensional process is considered.

dX(t) = −


0 −1

1 1


X(t) dt+


0
1


 dW (t)

whereW (t) is a scalar Brownian motion. We takeC = 12 in (4). Figures 3 and 4 concern the behavior

of ξH0:Signal and ξH0:Noise in the vector case. Both Poisson and regular sampling are considered. In the

Poisson sampling case, we assume that theIn are equal in distribution tosI whereI is an exponential

random variable with mean one, and we plot the error exponents in terms of the mean holding times.

In the regular sampling case,s is simply the sensor spacing. The last parameter is the SNR given by

SNR=
E[|CXn + Vn|2]

E[|Vn|2]
=

tr
(
CQ(∞)CT

)

d
.

In this experimental setting, a behavior comparable to the scalar case is observed for both tests. In the

case of the H0-Signal test, we also observe thatξH0:Signal decreases ass increases, and Poisson sampling

enjoys a higher error exponent than the regular sampling forthe three considered SNR. In the case of the

H0-Noise test, the error exponent increases withs at high SNR, while it has a maximum with respect

to s at low SNR, and the Poisson sampling is worse than the regularsampling at high SNR.
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Fig. 3. Vector case:ξH0:Signal vs s for SNR= −3, 0 and3 dB

C. Discussion on the error exponents behavior.

Small sampling spacing:Figures 1 and 2 show thatξH0:Signal increases toQ(∞)/2 as a ↓ 0 (as

predicted by Proposition 4) whileξH0:Noise decreases to zero asa ↓ 0. This behavior has the following

heuristic interpretation. Ata = 0, Equations (50) boil down toXN = · · · = Xn = · · · = X0 ∼
N (0, Q(∞)). UnderH1, it is easy to show that the corresponding negated LLR converges toX2

0/2, which

has expectationQ(∞)/2, the limit of ξH0:Signal asa ↓ 0. In contrast, as already noticed in [7], a direct

derivation shows that the error exponentξH0:Noise of the limit model is zero, since the Neyman-Pearson

Type II error probability decreases asO(1/
√
N), that is much more slowly than the usual exponential

decreasing. This is in accordance with the observed behavior on simulations, namely,ξH0:Noise → 0 as

a ↓ 0.

Small versus large SNR:Here we denote the SNR byq = Q(∞) and letϕτ (a) = E
[
e−2aI1

]
,

for I1 with distribution τ . In Appendix D we provide a heuristic calculation that yields the following

approximations. Asq → 0,

ξH0:Noise∼ q2
1 + ϕτ (a)

4(1− ϕτ (a))
(53)

and, asq → ∞,

ξH0:Noise−
1

2
log(q) → 1

2

(
E
[
log(1− e−2aI1)

]
− 1
)
. (54)
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Fig. 4. Vector case:ξH0:Noise vs s for SNR= −3, 0 and3 dB

These results show that for small SNR, the regular sampling has the lowest error exponent, and for

high SNR the regular sampling enjoys the highest error exponent in the set of distributionsτ for which

E[I1] = 1. Indeed, asexp(−x) is convex and(1 + x)/(1− x) is increasing on[0, 1), the q2 term at the

right hand side of (53) is minimum whenI1 = 1 with probability one. At low SNR, the error exponent

loss L due to the use of a regular sampling (that is, the SNR to pay to achieve an equivalent error

exponent) is

L = 5 log10

(
(1 + ϕτ (a))(1 − exp(−2a))

(1− ϕτ (a))(1 + exp(−2a))

)
dB . (55)

At large SNR, aslog(1−exp(−x)) is concave, the right hand side of (54) is maximum whenI1 = 1 with

probability one. Thus, at high SNR, the error exponent gainG due to the use of the regular sampling is

G = 10
(
log10(1− exp(−2a))− E

[
log10(1− e−2aI1)

])
dB . (56)

These results are illustrated in Figure 5 for the low SNR regime, and in Figure 6 for the high SNR

regime, whereξH0:Noise is plotted as a function of the SNRq for a = 1. In these figures, the curves

termed “Asymp. Poisson” and “Asymp. Regular” represent theasymptotic values ofξH0:Noise provided

by Equations (53) for Fig. 5 and (54) for Fig. 6. At low SNR, theasymptotic loss incurred by the

regular sampling with respect to a Poisson sampling as predicted by (55) isL = 0.91 dB, and this is

confirmed numerically in Figure 5. At high SNR, (56) predictsfor the regular sampling the asymptotic

gainG = 2.03 dB with respect to the Poisson sampling. This is confirmed numerically by Figure 6.
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APPENDIX

A. Technical lemmas

In this section we provide some useful technical lemmas.

Lemma 3 Assume thatA is positive stable. Then there exists constantsa > 0 and K > 0 such that

‖e−xA‖ ≤ K exp(−xa) for x ≥ 0.

Proof: Let a > 0 be smaller than the real parts of all the eigenvalues ofA andC be a rectangle in

the complex half plane{z : ℜ(z) ≥ a} whose interior contains all these eigenvalues (hereℜ(z) is the

real part ofz). Applying Theorem 6.2.28 of [20], we havee−xA = 1
2π i

∫
C e

−xλ(λ I − A)−1 dλ. Hence,

we have

‖e−xA‖ ≤ e−xa

∫

C
‖(λ I −A)−1‖dλ.

By continuity of λ 7→ (λ I −A)−1 on C, the previous integral is finite, which gives the result.

Lemma 4 Assume that the matrixA is positive stable and that the pair(A,B) is controllable. Then the

matrix functionQ(x) defined by (6) is strictly increasing in the positive semidefinite ordering from0 to

Q(∞) as x increases from0 to ∞.
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Proof: Since (A,B) is controllable,Q(x) > 0 for any x > 0. Assume thatx < y. We have

Q(y)−Q(x) =
∫ y
x exp(−uA)BBT exp(−uAT)du = exp(−xA)Q(y−x) exp(−xAT) > 0 which proves

the lemma.

B. A stability result on Markov chains

Here we present our Swiss knife result on Markov chains. We follow the approach in [29] for obtaining

the geometric ergodicity of Markov chains using simple moment conditions, although we use a more

direct proof inspired from [30]. For thea.s. convergence of the empirical mean, we will rely on the

following standard result for martingales [31].

Lemma 5 Let (Mn)n≥0 be a martingale sequence andXn = Mn − Mn−1 be its increments. If there

existsp ∈ [1, 2] such that
∑

k≥1 k
−p

E[|Xk|p] < ∞, thenMn/n
a.s.−−−→

n→∞
0.

We adopt the following setting for our generic Markov chain.Let (ηk, k ≥ 1) be an i.i.d. sequence of

random variables valued inE and letX be a closed subset ofRd. We further denote byη a random

variable having the same distribution as theηk ’s and independent of them. LetFy(x) be defined for all

y ∈ E andx ∈ X with values inX and such that(x, y) 7→ Fy(x) is a measurableX ×E → X function.
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This allows to define a Markov chain(Zx
k , k ≥ 0) by





Zx
0 = x ,

Zx
k = Fηk

(Zx
k−1), k ≥ 1 .

(57)

This Markov chain is valued inX and start at time0 with the valuex. We denote byP the corresponding

kernel defined on any bounded continuous functionf : X → R by

Pf(x) = E(f(Zx
1 )) = E(f ◦ Fη1

(x)), x ∈ X ,

where◦ denotes the composition operator. Observe that (57) implies, for all n ≥ 1

Zx
n = Fηn

◦ · · · ◦ Fη1
(x) .

Recalling that| · | is the Euclidean norm onRd, we denote for anyp ≥ 1 andf : X → R,

‖f‖Lipp
= sup

x,x′∈X 2

|f(x)− f(x′)|
|x− x′| (1 + |x|p−1 + |x′|p−1)

,

which is the Lipschitz norm forp = 1. We now state the main result of this appendix.

Theorem 4 Define(Zx
k , k ≥ 0) as in (57). Assume thatFη is a.s.continuous, and that, for someC > 0,

α ∈ (0, 1), p, r ≥ 0, q ≥ 1 and s ≥ p,

(i) For all (x, x′) ∈ X 2 andn ≥ 1,

E
[
|Fηn

◦ · · · ◦ Fη1
(x)− Fηn

◦ · · · ◦ Fη1
(x′)|q

]
≤ Cαn (1 + |x|pq + |x′|pq) .

(ii) For all x ∈ X andn ≥ 1,

E [|Fηn
◦ · · · ◦ Fη1

(x)|s] ≤ C(1 + |x|rs) . (58)

Then the following conclusions hold.

(a) There exists a unique probability measureµ on X such that

ξ ∼ µ and ξ independent ofη ⇒ Fη(ξ) ∼ µ . (59)

Moreover such a measureµ has a finites-th moment.

(b) Let a ∈ [1, s ∧ {1 + s(q − 1)/q}] and f : X → R such that‖f‖Lipa
< ∞. Suppose in addition that

s > b = p+ r(a− 1). Then, for allx ∈ X ,

1

n

n∑

k=1

f(Zx
k )

a.s.−−−→
n→∞

µ(f) =

∫
fdµ .
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(c) Let(Un)n≥1 be a sequence of i.i.d. real-valued random variables such that E[|U1|1+ǫ] < ∞ for some

ǫ > 0 and, for all n ≥ 1, Un is independent ofη1, . . . , ηn. Then, under the same assumptions as in

(b), if moreovers > a, then, for allx ∈ X ,

1

n

n∑

k=1

Ukf(Z
x
k )

a.s.−−−→
n→∞

m µ(f) ,

wherem = E[U1].

Proof: Let us introduce the backward recurrence process starting at x defined byY0 = x and

Yn = Fη1
◦ · · · ◦ Fηn

(x), n ≥ 1 .

Note that for anyn, Yn
d
= Zx

n , that is, the processes(Yn) and(Zx
n) has the same marginal distributions.

Moreover, using (i) and the Jensen Inequality, we have

E


∑

n≥0

|Yn+1 − Yn|


 ≤

∑

n≥0

C1/qαn/q (1 + |x|p + E [|Fηn
(x)|p]) .

By (ii), since s ≥ p, E [|Fηn
(x)|p] < ∞ and thus

∑
n≥0 |Yn+1 − Yn| < ∞ a.s. By completeness of the

state spaceX , Yn converges inX a.s.We denote the limit byξ and its probability distribution byµ. By

a.s.continuity ofFη, we haveFη(Yn)→Fη(ξ) a.s.On the other handFη(Yn) ∼ Yn+1→ξ a.s.Henceµ

satisfies (59), that is,µ is an invariant distribution of the induced Markov chain. Moreover by (ii), we

havesupn E[|Yn|s] < ∞ which by Fatou’s Lemma implies thatE[|ξ|s] < ∞. Let us show thatµ is the

unique invariant distribution. By (i), for anyx, y ∈ X , Zx
n − Zy

n
a.s.−−−→

n→∞
0. Now drawx andy according

to two invariant distributions, respectively, so that(Zx
n)n≥0 and(Zy

n)n≥0 are two sequences with constant

marginal distributions. Then necessarily these two distributions are the same and thusµ is the unique

invariant distribution, which achieves the proof of (a).

We now prove (b). First observe thatf is continuous andf(x) = O(|x|a) as |x| → ∞. Hence by (a),

sincea ≤ s, f is integrable with respect toµ. Also, by (ii), E[|f(Zx
k )|] < ∞ for all k ≥ 1 andx ∈ X .

We use the classical Poisson equation for decomposing the empirical mean of the Markov chain as

the empirical mean of martingale increments plus a negligible remainder. Using that‖f‖Lipa
< ∞, the

Hölder inequality and (i), we have, for anyx, y ∈ X ,

E

∑

k≥1

|f(Zx
k )− f(Zy

k )| ≤
∑

k≥1

C1/qαk/q (1 + ‖Zx
k ‖a−1

q′(a−1)
+ ‖Zy

k‖a−1
q′(a−1)

) (1 + |x|p + |y|p) ,

where we used the notation‖ · ‖p = (E[| · |p])1/p andq′ = q/(q − 1). Sinceq′(a− 1) ≤ s, we can apply

the Jensen Inequality and (ii) to bound‖Zx
k ‖q′(a−1) and‖Zy

k‖q′(a−1). We obtain, for some constantc > 0

E

∑

k≥1

|f(Zx
k )− f(Zy

k )| ≤ c (1 + |x|b + |y|b) .
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with b = p+ r(a− 1). Since we assumeds > b, using (a), the right-hand side of the previous display is

integrable iny with respect toµ and we get

∑

k≥1

|E[f(Zx
k )]− µ(f)| ≤

∫
E

∑

k≥1

|f(Zx
k )− f(Zy

k)|µ(dy) ≤ c′ (1 + |x|b) .

Hence we may define the real-valued function

f̂(x) =
∑

k≥1

{E[f(Zx
k )]− µ(f)} ,

which is the solution of the Poisson equationf(x)− µ(f) = f̂(x)− P f̂(x) and satisfies

sup
x∈X

(1 + |x|b)−1|f̂(x)| < ∞ . (60)

Hence the decomposition

1

n

n∑

k=1

{f(Zx
k )− µ(f)} =

1

n

n∑

k=1

{f̂(Zx
k )− P f̂(Zx

k )} =
1

n

n∑

k=1

Xk +
1

n
{P f̂(x)− P f̂(Zx

n)} ,

whereXk = f̂(Zx
k ) − P f̂(Zx

k−1), k ≥ 1. Observe that(Xk)k≥1 is a sequence of martingale incre-

ments. By the Jensen Inequality, we haveE[|P f̂(Zx
n)|s/b] ≤ E[|f̂(Zx

n+1)|s/b] and by (60) and (ii),

supn≥1 E[|f̂(Zx
n+1)|s/b] < ∞. Sinces/b > 1, by the Markov Inequality and Borel-Cantelli’s lemma, this

implies thatP f̂(Zx
n)/n→0 a.s.We also get thatsupk≥1 E[|Xk|s/b] < ∞ and, by Lemma 5

∑n
k=1Xk/n→0

a.s.This proves (b).

We conclude with the proof of (c). Using (b) we may replaceUk by Uk − m, that is, we assume

m = 0 without loss of generality. Then(Ukf(Z
x
k ))k≥1 is a sequence of martingale increments. Let

u = (1 + ǫ) ∧ s/a > 1. We havesupk≥1 E[|Ukf(Z
x
k )|u] = E[|U1|u] supk≥1 E[|f(Zx

k )|u] < ∞ by (ii) and

the result follows from Lemma 5.

C. Proofs for Section IV.

1) Proof of Proposition 2:Given any deterministic nonnegative matrixp ∈ [0, Q(∞)], the sequence

of covariance matrices̃Zp

k = F̃1(Z̃
p

k−1) where F̃1 is the second component of (15) withI = 1 is a

deterministic sequence. From Lemma 1 and Proposition 1–Eq.(27), one get that‖Z̃p

K− Z̃q

K‖ ≤ α‖p−q‖
for α ∈ (0, 1) andK large enough. Hence, by the fixed point theorem,Z̃p

k converges to a limitPR defined

as the unique solution in[0, Q(∞)] of the equationP = F̃1(P ) which is the discrete algebraic Riccati

equation (43). This amounts to say that the invariant distributionµ defined in Theorem 2 coincides with

δPR. It remains to show that Equation (43) has no solutions outside [0, Q(∞)]. Indeed, assume thatp is
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a solution of (43). Consider the state equations (11) where it is assumed thatX(0) ∼ N (0,p). By the

very nature of the Kalman filter, the covariance matrixPk satisfies

Pk ≤ E
[
XkX

T
k

]
= e−TkA

pe−TkAT

+Q(Tk) < e−TkA
pe−TkAT

+Q(∞)

As Pk = p for any k, we havep ≤ Q(∞) by taking the limit ask → ∞.

We now consider the invariant distributionν defined in Theorem 3. This distribution writesν =

νX ⊗ δPR, and we shall show thatνX = N (0,Σ) whereΣ is the unique solution of Equation (44). To

that end, we begin by showing that the steady state Kalman filter transition matrixΘ = Φ(1q − GC)

with G = PRC
T(CPRC

T + 1d)
−1 has all its eigenvalues{λi} in the open unit disk. Indeed, taking

the limit in (20), we getPR = ΘPRΘ
T + ΦGGTΦT + Q. Assumingti is an eigenvector ofΘ with

eigenvalueλi, we obtain from this last equation that(1 − |λi|2)tTi PRti = tTi ΦGGTΦTti + tTi Qti > 0

due toQ = Q(1) > 0, hence|λi| < 1. Consequently, the matrix equation (44) has a unique solution

Σ =
∑∞

n=0 Θ
nΦGGTΦT(ΘT)n [28, Chap. 4.2]. WhenZk = (Zk, Z̃k) ∈ R

q × [0, Q(∞)] follows the

distributionν, we have (see (15))Zk = ΘZk−1 +ΦGYk. Recall thatYk ∼ N (0, 1d) and is independent

with Zk−1. In these conditions, it is clear thatZk ∼ N (0,Σ) when Zk−1 ∼ N (0,Σ). Therefore,

ν = N (0,Σ)⊗ δPR is invariant, and it is the unique invariant distribution. Replacingν andµ with their

values at the right hand sides of (17) and (16), we obtain (42)and (41) respectively. Proposition 2 is

proven.

2) Proof of Proposition 3: We assume that the holding timesIn are equal in distribution toIs

(distributed asτs) to point out the dependence ons. We also denote the invariant distribution of the

Markov chain (Z̃k) defined in Section III asµs. We begin by proving thatµs converges weakly to

δQ(∞) as s → ∞ (we will use the notationµs ⇒ δQ(∞)). By Lemma 3 we haveE[‖ exp(−IsA)‖2] ≤
KE[exp(−2aIs)] =

∫
exp(−2ax)τs(dx) with a > 0. Given aK > 0, we have

∫
exp(−2ax)τs(dx) =

∫ K
0 exp(−2ax)τs(dx) +

∫∞
K exp(−2ax)τs(dx) ≤ τs([0,K]) + exp(−2aK). Sinceτs escapes to infinity,

E[‖e−IsA‖2] → 0 ass → ∞, which implies thate−IsA → 0 in probability ass → ∞. Moreover, we have

‖Q(Is)−Q(∞)‖ =

∥∥∥∥
∫ ∞

Is

exp(−uA)BBT exp(−uAT) du

∥∥∥∥

≤ ‖B‖2
∫ ∞

Is

‖ exp(−uA)‖2 du ≤ K

∫ ∞

Is

exp(−2ua) du = (K/2a) exp(−2aIs)

henceQ(Is) → Q(∞) in probability ass → ∞. Now, assume that the random variableZ̃ ∈ [0, Q(∞)] is

distributed asµs. Recalling thatF̃ is the random iteration function defined as the second component of

Equation (15), we have‖F̃Is(Z̃)−Q(∞)‖ ≤ K‖e−IsA‖2 + ‖Q(Is)−Q(∞)‖, henceF̃Is(Z̃) → Q(∞)

in probability ass → ∞. As F̃Is(Z̃) ∼ µs, µs ⇒ δQ(∞). Due to the continuity of thelog det on the
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compact set[0, Q(∞)], we have, ass → ∞,
∫
log(1 + p)dµs(p) →

∫
log(CQ(∞)CT + 1d), and (46)

results from (16).

Now assume thatZ = (Z, Z̃) ∈ R
q× [0, Q(∞)] follows the invariant distributionν, and let(Z1, Z̃1) =

F(Is,V )(Z), where F(Is,V ) is defined by Equation (15). In particular, we haveZ1 = Θ(Is, Z̃)Z +

e−IsAG(Z̃)V . As E[‖e−IsA‖2] → 0 and Z̃ ≤ Q(∞), we haveE[‖Θ(Is, Z̃)‖2] = E[‖e−IsA(I −
G(Z̃)C)‖2] → 0 as s → ∞ andE[|e−IsAG(Z̃)V |2] → 0, henceE[|Z1|2] → 0. The third term in the

RHS of the Expression (17) ofξH0:Noise satisfies
∫

x
TCT

(
CpCT + 1d

)−1
Cx dν(x,p) ≤ ‖C‖2

∫
|x|2dν(x,p) = ‖C‖2E[|Z1|2] → 0 ,

ass → ∞. Asµs ⇒ δQ(∞), the second term in the RHS of (17) converges to−tr[CQ(∞)CT(CQ(∞)CT+

1d)
−1], which achieves the proof of Proposition 3.

3) Proof of Proposition 4:We begin with(i). In the scalar case, the covariance update equation (13)

writes

Pk+1 = F̃ a
Ik+1

(Pk) = e−2aIk+1

(
Pk

Pk + 1
−Q(∞)

)
+Q(∞) . (61)

Given a sequence of holding times(Ik)k≥1 and two positive numbersa1 ≥ a2, consider the two

Markov chainsZ̃p

ai,k
= F̃ ai

Ik
(Z̃p

ai,k−1) for i = 1, 2, both starting at the same valuep = Q(∞). Let

f(p) = p/(p + 1) − Q(∞). As f(Q(∞)) < 0 and 0 < exp(−2a1I1) ≤ exp(−2a2I1), it is clear

that Z̃p

a1,1
≥ Z̃p

a2,1
. Assume thatZ̃p

a1,k−1 ≥ Z̃p

a2,k−1. As f(p) is negative and increasing forp ∈
[0, Q(∞)] and0 < exp(−2a1Ik) ≤ exp(−2a2Ik), we haveZ̃p

a1,k
= exp(−2a1Ik)f(Z̃

p

a1,k−1) +Q(∞) ≥
exp(−2a2Ik)f(Z̃

p

a2,k−1) +Q(∞) = Z̃p

a2,k
.

From Theorem 2, both the chains̃Zp

a1,k
and Z̃p

a2,k
have unique invariant distributionsµ1 andµ2 respec-

tively, and by repeating the arguments of the proof of Theorem 2,

1

N

N−1∑

k=0

log
(
1 + Z̃p

ai,k

)
−−−−→
N→∞

∫
log (1 + p) dµi(p) for i = 1, 2, a.s.

As Z̃p

a1,k
≥ Z̃p

a2,k
for all k, by passing to the limit we have

∫
log(1+p)dµ1(p) ≥

∫
log(1+p)dµ2(p). As

ξH0:Signal= 0.5
(
Q(∞)−

∫
log(1 + p)dµ(p)

)
in the scalar case (see Expression (16)), this error exponent

decreases witha.

We now show thatlima→0 ξH0:Signal= Q(∞)/2. Assume that̃Z ∈ [0, Q(∞)] has the invariant distribution

that we denoteµa. From Eq. (61), we haveE[Z̃] = E[F̃ a
I (Z̃)] = E[e−2aI ]

(
E

[
Z̃

Z̃+1
−Q(∞)

])
+Q(∞)

which yields

E

[
Z̃2 + (1− E[e−2aI ])Z̃

Z̃ + 1

]
= Q(∞)(1 − E[e−2aI ]) .
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As Z̃ ≤ Q(∞), we haveE
[

Z̃2

Q(∞)+1

]
≤ E

[
Z̃2

Z̃+1

]
≤ Q(∞)(1−E[e−2aI ]). By the dominated convergence

theorem,E[exp(−2aI)] →a→0 1, thereforeE[Z̃2] → 0 asa → 0. It follows thatµa converges weakly to

δ0 asa → 0, therefore
∫
log(1 + p)dµa(p) → 0. Hencelima→0 ξH0:Signal= Q(∞)/2.

The limit asa → ∞ is obtained by applying Proposition 3.

To show (ii) , the argument is similar to the one used above to show thatξH0:Signal decreases asa

increases.

We now prove(iii) . Consider the Markov chaiñZk = F̃ a
Ik
(Z̃k−1) whereF̃ a

Ik
is given by (61). Assuming

that Z̃k has the invariant distributionµ, we have

E

[
Z̃k

]
= E

[
e−2aIk

]
(
E

[
Z̃k

Z̃k + 1

]
−Q(∞)

)
+Q(∞)

≤ e−2a

(
E

[
Z̃k

Z̃k + 1

]
−Q(∞)

)
+Q(∞)

≤ e−2a E[Z̃k]

E[Z̃k] + 1
+Q(∞)

(
1− e−2a

)

= h
(
E[Z̃k]

)

where the first inequality is due to the convexity ofe−2ax in conjunction withZ̃k ≤ Q(∞) with probability

one, and the second inequality is due to the concavity ofx/(1 + x). If we chooseτ = δ1, then the

corresponding invariant distribution isδPR wherePR is the unique solution of the equationh(p) = p (see

Proposition 2). Ash(p) − p is decreasing,
∫
p dµ(p) = E[Z̃k] ≤ PR. As log is an increasing concave

function, the error exponent satisfies

ξH0:Signal=
1

2

(
Q(∞)−

∫
log(p+ 1) dµ(p)

)

≥ 1

2

(
Q(∞)− log

(∫
p dµ+ 1

))
≥ 1

2
(Q(∞)− log(PR + 1))

which achieves the proof of Proposition 4.

D. Heuristic calculations for small VS large SNR discussion

In the scalar case, the Kalman recursions (12)-(13) write

X̂n+1 =
e−aIn+1

Pn + 1
X̂n + e−aIn+1

Pn

Pn + 1
Yn (62)

Pn+1 = e−2aIn+1
Pn

Pn + 1
+ q(1− e−2aIn+1) (63)
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We assume that vector(X̂n, Pn) has the invariant distributionν. In order to obtain (53) and (54), we

study the asymptotic behavior of

ξH0:Noise=
1

2
E

[
log(Pn + 1) +

X̂2
n − Pn

Pn + 1

]
(64)

for small and large values ofq.

We start withq → 0. Let us expand the RHS of (63) to the orderO(q), by recalling thatPn ≤ q and

by taking the expectations, we obtainE[Pn] = E[Pn+1] = ϕτ (a)E[Pn] + q(1 − ϕτ (a)) + o(q). Hence

E[Pn] = q + o(q). As Pn ≤ q, we also havePn = q + o(q). Inserting this back into (63), we obtain

Pn = q + q2Bn + o(q2) with

q + q2Bn+1 = e−2aIn+1

(
q + q2Bn

)
(1− q) + q(1− e−2aIn+1) + o(q2) .

By identifying the coefficient ofq2 in the two members we getBn+1 = e−2aIn+1(Bn − 1). Taking the

expectations and recalling that we are under an invariant distribution, we obtain

E[Pn] = q + q2E[Bn] + o(q2) = q − q2
ϕτ (a)

1− ϕτ (a)
+ o(q2) .

Turning to Equation (62) and developing as above, we have

E

[
X̂2

n

]
= E

[
X̂2

n+1

]
= ϕτ (a)E



(

X̂n

Pn + 1

)2

+ ϕτ (a)E

[(
Pn

Pn + 1

)2
]

= ϕτ (a)E
[
X̂2

n

]
+ ϕτ (a)q

2 + o(q2)

hence

E

[
X̂2

n

Pn + 1

]
= E

[
X̂2

n

]
+ o(q2) = q2

ϕτ (a)

1− ϕτ (a)
.

Similarly, we have

E

[
Pn

Pn + 1

]
= E

[(
q + q2Bn

)
(1− q)

]
+ o(q2) = q − q2

1− ϕτ (a)
+ o(q2) .

Plugging these expressions into (64) and recalling thatlog(1 + x) = x− x2/2 + o(x2) we obtain (53).

Next we considerq → ∞. It is easily seen from (63) that

q + 1

q
≥ Pn+1 + 1

q
↓ 1− e−2aIn+1 asq → ∞

therefore, by the monotone convergence theorem,E[log(Pn+1)]−log q → E
[
log(1− e−2aI1)

]
. Moreover,

we readily haveE[(Pn+1)/Pn] → 1. Using (62), asPn ∼ q(1− e−2aIn−1), we haveE[X̂2
n] → ϕ(a) and

E[X̂2
n/(Pn + 1)] → 0. Replacing into (64), we obtain (54).
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