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Error exponents for Neyman-Pearson detection
of a continuous-time Gaussian Markov process

from regular or irregular samples
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Abstract

This paper addresses the detection of a stochastic progessise from a finite sample under
various sampling schemes. We consider two hypothesesndise onlyhypothesis amounts to model
the observations as a sample of a i.i.d. Gaussian randorablesi (noise only). Theignal plus noise
hypothesis models the observations as the samples of angons time stationary Gaussian process
(the signal) taken at known but random time-instants andupted with an additive noise. Two binary
tests are considered, depending on which assumptionsaisedtas the null hypothesis. Assuming that
the signal is a linear combination of the solution of a mutiensional stochastic differential equation
(SDE), it is shown that the minimum Type Il error probabilitgcreases exponentially in the number of
samples when the False Alarm probability is fixed. This barag described byerror exponentghat
are completely characterized. It turns out that they arated|to the asymptotic behavior of the Kalman
Filter in random stationary environment, which is studiedhis paper. Finally, numerical illustrations

of our claims are provided in the context of sensor networks.
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. INTRODUCTION

The detection of stochastic processes in noise has recailedof attention in the past decades, see
for instance the tutorial paper [1] and the references theblore recently, in the context of sensor
networks, there has been a rising interest in the analysget#ction performance when the stochastic
process is sampled irregularly. An interesting approacthis direction has been initiated in [2] using
error exponentdor assessing the performance of the optimal detectionggha®. In this paper, we
follow this approach in the following general setting. Givisvo integergp andg, and A a positive stable
square matrix, we consider thedimensional stochastic process defined as the statiooéution of the

stochastic differential equation (SDE)
dX(t) =—-AX(t)dt+ BdW(t), t>0 (1)

where(W (t), t > 0) is ap-dimensional Brownian motion anll is ag x p matrix. The SDE (1) is widely
used to describe continuous time signals (see [3], [4] aaddferences therein). We are interested in the
detection of the signalX (¢), ¢ > 0) from a finite sample obtained from a general spacing model. Le
C be ad x ¢ matrix, (T,,,n > 1) be a renewal sampling process ai¢,,n > 1) be a noise sequence.
Based on the observed samplésy = (Y1,...,Yn) andTi.y = (Th,...,Tn), our goal is to decide
whether forn =1,...,N, Y, =V, orY, = CX(T,) + V,,. The first situation will be referred to as the
noise hypothesiand the second as tlsgnal plus noise hypothesis

The renewal hypothesis ofif,,, » > 1) means thatl;, = Y ,_, I where the(l;,k > 1) are

nonnegative i.i.d. random variables calledlding timeswith common distribution denoted by. This is
a standard model for possibly irregular sampling, see B, [6]. The most usual examples are:

« The Poisson point process. In this case, tlig £ > 1) are i.i.d. with exponential distribution
7(dx) = Mexp(—Azx)dz. This model has been considered in [2], [5], [6] to model titaasion
where the signal is measured in time Byidentical asynchronous sensors.

« The Bernoulli process. This is the discrete time countarpfathe Poisson process. In this case, the
(I, k > 1) are i.i.d. and have geometric distribution up to a multiglice time constant > 0,

i.e. 7({St}) = T({SH( — 7({S}))*~! for £ = 1,2,... In practice, this model corresponds to a
regular sampling with periof for which observations are missing at random, with failur@bability
1 —7({S}). The regular sampling process corresponds(#5}) = 1.

Two binary tests are considered in this work: eith#r is the noise hypothesis ariil is the signal

plus noise hypothesis, or the opposite. Constraining theeFsaarm probability (probability for deciding

H1 underHO) to lie beneath am € (0, 1), it is well known that the minimum Type Il error probability
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is achieved by the Neyman-Pearson test. It will be shownig ghper that this minimum Type Il error
probability Sy (¢) satisfiessy (e) = exp(—N(£+0(1))) asN — oo, where the error exponegtdoes not
depend ore. The error exponerg is an indicator of the performance of the detection testvdisie will

be shown to depend on the distribution of signal (givenAyB and C) and on the distribution of the
sampling process (given by). An important goal in sensor network design is to optimize sampling
process. Characterizing the error exponents offers uggfiglelines in this direction. For instance, [2],
[7]-[10] provide useful insights on such concrete probleaasthe choice of the optimum mean sensor
spacing possibly subject to a cost or a power constrainteiCdipplication examples are considered in
[11], [12]. In these contributions, error exponents aredus®e propose optimum routing strategies for
conveying the sensors data to the fusion center.

In the context of Neyman-Pearson detection, these erroorexgs are given by the limits of the
likelihood ratios, provided that these limits exist. L&ty = (Z1,...,Zn) be a sequence df observed
random vectors. Assume a binary test is performed on thigesem, and assume that under hypothesis
HO, the distribution ofZ;.r has the density; », while underH1, this distribution has the densitff x.

Fix ¢ € (0,1) and letSy(e) be the minimum over all tests of the Type Il error probabiliyen the

False Alarm probabilityr is constrained to satisfy < e. Let

fO,N(leN)>
fi,n(Z1:n)

be the normalized Log Likelihood Ratio (LLR) associatedhatite receivedZ;.y. Then the asymptotic

1
,CN(ZLN) = Nlog <

behavior of 35 (¢) can be obtained from the following theorem, found in [13].

Theorem 1 Assume there is a real numbegrsuch that the random variabléy (Z;.x) satisfies
LN(Z1.N) N———>£ in probability underHO. (2)
—00

Then for every € (0,1),

1
—NlogBN(a) o £ .

In the case where thg;’s are i.i.d. under both hypotheses, the analogue of Thedrampeared in [14]
and is known as Stein’s lemma. The generalization to Thedrean be found in [13], [15]. In our case,
the observed process B.xy = (Z1,...,Zn) wWith Z, = (Y,,T,), in other words, the measurements
consist in the sampled received signal and the sampling mtanéet us consider thdt;.xy = Vi.n

underHO andYi.y = (CX(T,) + V,)1<n<n underH1. Recall that the probability distribution &f;.x
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does not depend on the hypothesis to be tested. In thesetioosdihe LLR is given by

Jon(Yi:n |T1;N)>
fHin(Yin | TiN)

where fo n(. | T1.n) and f1 n(.|T1.n) are the densities o¥;.n conditionally to7.x under HO and

©)

1
ﬁN(Zl:N) = Nlog(

H1 respectively. It is clear thafy n(.|71.n) = N(0,1). Being solution of the SDE (1), the process
(X(t),t > 0) is a Gaussian process. In consequenfgey(.|T1.ny) = N(0, R(T1.x)) Where matrix
R(Ty.n) is a covariance matrix that depends bny. In the light of Theorem 1 we need to establish
the convergence in probability of the Right Hand Side (RHBEQ. (3) towards a constagt and to
characterize this constant, under the assumptiopn = Vi.n. Alternatively, if we consider thatO is
the Signal plus Noise hypothesis.y = (CX(T},) + Vi)1<n<n, then we study the convergence-of
under this assumption.

Theorem 1 has been used for detection performance analyf&k [7], [16], [17]. In the closely related
Bayesian framework, error exponents have been obtaine8]-+#ilpD], [18]. The closest contributions to
this paper are [2], [7], [17] which consider different coeauce structure for the process and different
sensors locations models. In [7], Sung, Tong and Poor cendii@ scalar version of the SDE (1) and a
regular sampling. In [17], the authors essentially gemesrdhe results of [7] to situations where the sensor
locations follow some deterministic periodic patterns[2h the sampling process (sensor locations) is
a renewal process as in our paper, and the detector disatigsimmong two scalar diffusion processes
described by Eq. (1). Moreover, the observations are resselHere, due to the presence of additive
noise, our technique for establishing the existence of tiner @xponents and for characterizing them
differ substantially from [2]. We establish the convergewntthe LLRL x(Z1.5) by studying the stability
(and ergodicity) of the Kalman filter, using Markov chainshaiques.

The paper is organized as follows. In Section Il, the mairugggions and notations are introduced
and the main results of the paper are stated. Proofs of tlesséts are presented in Section Ill. Some
particular cases of interest are presented in Section I¢ti@eV is devoted to numerical illustrations
and to a discussion about the impact of the sampling schenikeodetection performance. The proofs
in Section 1l rely heavily on a theorem for Markov chainskslity shown in appendix B. The other

appendices contain technical results needed in the proofs.
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Il. THE ERROREXPONENTS

We consider the following hypothesis test based on obden&tY,,, 7;,), n = 1,..., N, that we shall

call the “HO-Noise” test:

HO:Y,=V, forn=1,...,N
4)
H1:Y,=CX(T,)+V, forn=1,....N

whereC' is thed x ¢ observation matrix and the involved processes satisfydtefing set of conditions.

Assumption 1 The following assertions hold.
(i) The procesg X (t), t > 0) is a stationary solution of the stochastic differential atjon (1) where
(W(t), t > 0) is a p-dimensional Brownian motion.
(i) (T, n > 1) is a renewal process, that &, = > | I, where(l,, n > 1) is a sequence of i.i.d.
non-negative r.vs with distribution and 7({0}) < 1.
(i) (Vp, n>1) is a sequence of i.i.d. r.v's with; ~ N (0,14).

(iv) The processe§X(t), t > 0), (T, n > 1) and (V,,, n > 1) are independent.

Here 1; denotes thel x d identity matrix.
In order to be able to apply Theorem 1, we now develop the ssje of the LLR given by (3). To
that end, we derive the expressions of the likelihood fumstifo x(Yi.n | T1.8) and fi v (Yin | T1:n).

The densityfo n(. | T1.n) is simply the densityV'(0,1y4) of (V4,..., V), therefore

N
1 1
fon(Yun [ Tin) = g &xp | =3 > VY, (5)

We now developf; n(.|T1.x) by mimicking the approach developed in [19] and in [7]. lc@tz) be

the ¢ x ¢ symmetric nonnegative matrix defined by
Q(x) :/ e “ABBTe A qy . (6)
0

As A is positive stable, the covariance maté)co) exists (by Lemma 3) and is the unique solution of
the so called_yapunov’s equatio) AT + AQ = BBT, see [20, Chap. 2]. Solving Eq. (1) betwe&p
and T, (see [3, Chap. 5]), the conditional distribution of the @mes(X,,, n > 1) given (I, n > 1)

is characterized by the recursion equation
Xpp1=e AKX, + Uy, n>0, (7)

where the conditional distribution of the sequenié®, U,,, n > 1) is that of a sequence of independent
rv.s, Xo ~ N(0,Q(o0)) andU,, ~ N (0, Q) with Q,, = Q(I,,) defined by (6).
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Now we write

N
ANON | Ten) = T oy V| Vi1, Trw) ®)

n=1

where f1 , n(.| Y1:n—1,T1:n) is the density ofY,, conditionally to (Y1.,—1,T1.5). In view of Eq. (7),

Y, = CX, +V, and the assumptions di¥,,), these conditional densities are Gaussian, in other words

1 1 ~ _ ~
W exp <_§(Yn - Yn)TAnl(Yn - Yn)) (9)

JinN (Yo | Yimo1,Ti.n) =
whereY,, = E|[Y,|Yim_1,Tin] and A, = Cov (Yn—?nyleN) are respectively the conditional
expectation of the current observatidfy given the past observations and the so-called innovation

covariance matrix undddl. From Equations (5), (8) and (9), the LLBRy writes

1 1
LyYin,Ti:N) = N log fon(Yi:n | Th:n) — N log fi,v(Yi:n | T1:N)

N N N
1 1 ~ ~ 1
= =) 1 Ant 5= (V= Y) A (Y=Y, - 5= ) YY1
As (Y,,) is described undedl by the state equations

Xpy1 = e bodx, + U,
H: Qo P forn=1,..., N, (11)
Y, = CX,+V,
it is well known thatY,, and A,, can be computed using the Kalman filter recursive equatibefine

theg x 1 vector X,, and theq x ¢ matrix P, as

~

Xn = E[Xn | leznfl, Tl;N] and Pn = Cov (Xn — )?n | Tl:N) .

The Kalman recursions which provide these quantities ate P2op. 12.2.2]:

Xyt = e Tmridd (1q ~P,CT(CP,CT + 1) c) X+ e AP, cT (CP,CT + 1) Y, (12)

P = 704 (1, = PCT (CP.CT 4 10) 7 C) Pae™ 94 4 Qi (13)

The recursion is started with the initial condition§ = 0 and P, = Q(oc0). With these quantities at

hand,Y,, andA,, are given by
Y,=CX, and A,=CP,CT+1,. (14)

With these expressions at hand, our purpose is to study tmepdstic behavior ofZ 5 given by Eq. (10)

assuming that thaty,,) is i.i.d. with Y; ~ N(0,14) (underH0).
qg—1
In our analysis, we shall require Model (1) to tentrollable i.e., (A4, B) satisfiesy A‘BBTAT > 0.

=0
Recall that(A, B) is controllable if and only if the matrix)(z) defined by Equation (6) is nonsingular
for anyz > 0 (see [22, Chap. 6] for a proof).
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Since undeHo0, n,, = (I,+1,Y,), n > 1, are i.i.d. r.v.'s, the Kalman equations (12)-(13) can bétem
as a random iteration scheme. To this end we introduce soma¢éioro Let’P, denote the cone of x ¢
nonnegative symmetric matrices. For any: (I,Y) € [0, 00) x R%, we denote by, the R? x P,-valued

function defined for alw = (x,p) € RY x P, by

e 14 (lq —pCT (CpCT + ld)_1 C) x + e 1ApCT (CpCT + ld)_1 Y
Fy(w) = . N ) (15)
e 1A <1q —pCT (CpCT + 1d) C) pe 4" + Q)

Using this notation the Kalman equations read

Wy = nn(anl), n=>1,

~

where W,, = (X,41, Pr+1). UnderHo, since(n,) is a sequence of i.i.d. random variabl¢8/,,),,>¢

is a Markov chain starting &y = (0,Q(c0)). Observe also that since the second componerit,of
denoted byF;(p) in the following, does not depend on (Pn)n>1 also is a Markov chain starting at
P, = Q(oc0). Since it neither depends an, this is also true undefl as well. Let[0, Q(c0)] denote the
subset of all matricep € P, such thatp < Q(o0). It is easy to see that, for anfy> 0, [0, Q(oc0)] is a

stable set for;. Indeed, suppose that € [0, Q(c0)], then

Fi(p) = e 14 (1q —pCT (CpCT +1,) " C) pe A" 4+ Q(I)
< e—IApe—IAT + Q(I)

< e AQ(00)e ™ + Q(I) = Q(o0) |

by definition of @ in (6). Hence, in the following, we consid€¢iV,,) and (P,) as chains valued in
R? x [0, Q(c0)] and [0, Q(c0)], respectively. We will denote bl andII the transition kernels associated

to the chains(1,,) (underHO) and (P,), respectively, that is, for test functionsand f defined on
R % [0, Q(o0)] and [0, Q(0)] ,

If(w) = E[f(Fy(w))], weR?x[0,Q(c0)]
I1f(p) = E[f(Fi(p))], P €0,Q(x)],

wheren = (I,Y) is such that/ ~ 7, Y ~ N(0,1,) andI andY are independent. In the following we
will simply use the notatiom; ~ 7 ® N(0,14). We now state our main results.

First we determine the limit of the LLR under the signal hypestisH1.

Theorem 2 Suppose that Assumption 1 holds with a state realizationB, C') such thatA is positive

stable and(A, B) is controllable. Then the transition kern&l has a unique invariant distributiof.
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Moreover, ifY;.y is defined as irH1 in (4), then asN — oo, we have
—Ln(Y1:n, T1:n) = &Hosigna - @lmost surely &.s) ,
where Ly (Y1.n,T1.n) is defined in (10) and
1
Gosona = 5 (11 (CQICT)  [logdet (CoCT + 14) (o)) (16)
is positive and finite.
Remark 1 This paper deals with the detection of a stationary signhatlis why the matri¥d is assumed
to be positive stable. An interesting problem, howeversists in searching for minimum conditions on
7 that guarantee the existence @fwhen A is not positive stable. This problem could also be refined by
studying the existence of some moments. dRecently, this study has been undertaken in [23], [24] and

[25] in the case where the sampling process is a Bernoullicpss. The approach of [23] and [24] is

based on the so called random dynamical systems theory.
Let us now provide the limit of the LLR under the noise hypaikél0.

Theorem 3 Suppose that Assumption 1 holds with a state realizatibnB, C') such thatA is positive
stable and(A, B) is controllable. Then the transition kerné&l has a unique invariant distribution.

Moreover, ifY;.y is defined as irHO in (4), then asN — oo, we have

‘CN(Yi:NaleN) — £HO:Noise a.s.,

where Ly (Y1.n,T1.n) is defined in (10) and

€Ho:Noise = % / {log det (CpCT + ld) + tr [C(XXT — p)CT (CpCT + 1d)71} } dv(x,p) a7

is positive and finite.

Remark 2 From Theorems 2 and 3, and by definitionsIbfand II, we immediately see that is the

second marginal distribution af, u(-) = v(R? x -).

By Theorems 1, 2 and 3, we get that the error exponents assodi@ the hypotheses testing problem

(4) are given byno:noise aNd EHo:signar More precisely, we have the following result.

Corollary 1 Consider, under Assumption 1, the hypotheseg#sFor N > 1 ande € (0, 1), let By (¢)
be the minimum of error probabilities over all tests for whithe false alarm probability is at most

Then, asN — oo, N~!log Bn(e) — Enonoise @s defined in (17).
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Now, if we interchange the roles bf0 and H1 in (4) (call this test the “HO-Signal” test), we obtain

N~1log Bn(g) — &nosignar @s defined in (16).

[Il. PROOFS OF MAIN RESULTS

This section is devoted to the proofs of Theorems 2 and 3. élhesults follow from an analysis of
the Markov chains induced by the transition kerndlsndII, or, equivalently, of the random iteration
functions F;, and Fy defined in (15). We provide a fairly general result in the apfe, Theorem 4, to
deal with this general framework. Based on moment contraatbnditions, this latter result establishes
the existence and uniqueness of the invariant distribudiosh a law of large numbers for functions with
precise polynomial growth conditions at infinity. In thiscen we establish some useful preliminary
results related to moment contraction conditions for ramdteration functionsF;, and FI, and then

prove Theorems 2 and 3 by applying Theorem 4.

A. Preliminary results

We start with a series of preliminary results for which wealkthe following notations and assump-
tions: 7 is a distribution on0, co) such thatr({0}) < 1, (I,)»>1 is a sequence of i.i.d. r.v.s distributed
according to the distribution and (7,,),>1 is a sequence of i.i.d. r.v.s distributed according to the
distribution T @ A/(0, 14).

We further denote by andn two generic r.v.'s having same distribution &sandn;, respectively.
For anyx € R? andp € [0, Q(c0)], we define two Markov chains induced by andII and starting at

w = (x,p) andp, respectively
Zy¥=w and Zp =p
Z¥ =F, (Z%,) and ZP=F;(ZP ), k>1.

As noticed earlierZ};’ corresponds to the second componenZpffor eachk and is valued if0, Q(oco)].

We introduce the following notation for the Kalman gain matr
G(p) = pCT(1a+ CpC") ™,
and the short-hand notation fd;l*(Z,g’) (the Kalman gain matrix at timg):
GY =2ZPCT(14+CZPCHY, k>0, (18)
As for the Kalman transition matrix, we set
O(1,p) = (1, - G(p)C)
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and the short-hand notation fé¥(1y, Z}f_l) (the Kalman transition matrix at timg):
P =e (1, - GP |0), n>1. (19)

Using this notation and); = Q(I), the Kalman covariance update equatiéh = Fy, (ZF_,) can be

expressed for alk > 1 as

Zp =y o 4

= ORZP O + e M1y = GR L OV CTGR e Y+ Qs (20)
= OPZP O] + Q. (21)

where
Qp=eHAGP_GPT e AT Ly, E>1. (22)

We also denote a product of successive Kalman transitionigaatby
OF,, = OReP_|...0h,, 0<m<n. (23)

Note that@gmf1 = OF. If m =n, we will use the conventio®?, ,, = 1,.
Finally, we denote byz| the Euclidean norm of the vectar Ayin(H) and A< (H) the minimum and
maximum eigenvalues of the matri{ and by||H|| its operator norm||H|| = Apax(H T H)'/2.

We first derive a deterministic bound f&?, ,, based on (21), which relies on a Lyapunov function

argument similar to that in [26, Theorem 2.4] and [27, Sec. 4]

Lemma 1 For any0 < m < n, we have
5 5D\ — - )\min Qk
02,012 < 12211Z2) 1 TT (1 - %) , (24)
kb1 12|
Proof: Obviously Q. > Q, hencelmin(Qr) > Amin(Qx). Now, for a givenx,, € R, define the
T

backward recursiox;, = @Eﬂxkﬂ for k£ decreasing frorm — 1 down tom, and setV, = ng}ka for

k=m,...,n. We have

_ ST T ~P T _ T
Vo — Vo1 =%, 2P%x, —x,02 2" 0P 'x, =x,Q,X,

by (21), and mOfeOVeﬁigéan > |Xn|2)\min(an) > |Xn|2>\min(Qn) > Vn)\mln(Qn)/HZVIL)H . Hence,
Vi1 <V (1 - )\min(Qn)/HZ}i’H). Iterating, we obtain

Vo<V 1 (1—7%(@’“)) <128 T (1—7“1“@’“)) - (25)

k=m+1 ||lej|| k=m+1 ||Z]1;)H
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On the other hand, by (23);, = x% ZP x,, = x20F . ZP OF T x,,, hence\nm (Z5) xTOF 08 1 x, <
Vin. This, with Inequality (25), implies (24). [ |

Next we deduce a uniform moment bound o}, ,,,.

Lemma 2 Assume that the matrid is positive stable and that the paird, B) is controllable. For any

r > 0, there existk’ > 0 and p € (0,1) such that

E

sup H@gmHzr <Kpt™ 0<m<n.
PE(0,Q(c0)]

Proof: Recall that forp € [0,Q(c0)], we haveZP € [0,Q(c0)] for all & > 1. Note thatG is

continuous and, by Lemma 8up,, |le™"*4|| < cc. Hence,

Z*= sup sup|ZP<occ and ©*= sup sup|lOf[ <.
P€E[0,Q(00)] k=1 P€E[0,Q(00)] k=1

Let 0 < m < n. Lete > 0 that we will choose arbitrarily small later. Dendfe= inf{k > m | I, > €}.
Then we have, by (21) and (22),
)\min(er:) Z )\min(QT) Z )\min(Q(E)) >0 9 (26)

by Lemma 4. We now write, denoting b4 the indicator function of the ever,

1O % = le@p OF P Lirmpy + 108l Lirspy

< Z H@D H2r 2r(k m)]l{T I + (@*)QT(n—m)l{TZn} )
For anyk < n, applying Lemma 1 and the bound (26), we have, on the eVentk,
7% — r . )\min j 2r
08,1 < (2 Amm(@() T (1- 2 @0)
j=T+1
Observe that, for anye > m, {T' =k} = {I,, < e€,...,I;_1 < €,I; > ¢}. HenceT —m + 1 is a
geometric r.v. with parametet = 7([e, 00)) and (Q744)i>1 is i.i.d., independent of’, and follows the
same distribution a§)(I). Moreover, by Lemma 4\, (Q(Z)) > 0 for I > 0, and sinces({0}) < 1,
we havey = E[(1 — A\uin(Q(I))/Z*)*] < 1. Thus we get

E| sup [OF,,[*
p€[0,Q(0)]
n—1
< (2 Amin(Q() T T A RO (1 — )k (@) Y 7 (1 - )
k=m k>n

<{(Z" Auin(Q()) ) 7e(n — m) + 135"
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where we chose > 0 small enough so tha©®*)* (1 — 7.) < 1 and setp = v v {(0*)?"(1 — )} < 1.
This gives the result for any € (p, 1) by conveniently choosings. [ |
We conclude this series of preliminary results with usefipischitz bounds for the mappings— ZZ,

p+— O%,, andp — G}.
Proposition 1 We have, for any nonnegative symmetric matripesnd q,

ZP - Z3=0F (p—q)0¥), n>1. (27)

n,0?

Moreover, there exists a constafit> 0 such that, for allp,q € [0, Q(c0)],

IGE -G < Cllp—al O8] 62,1, n>1, (28)
108, =0 I <Clp—all > 0L 116P, 0% 6P 4, 0<m<n. (29
j=m+1

Proof: Let us prove (27). By induction, it is sufficient to show that

Fy(p) — Fi(q) =O©(I,p)(p—9)0"(I,q) . (30)

By continuity of F; and O(I,-), we may assume that and q are invertible. In this case, the matrix

inversion lemma gives that
(p—pCT(CPC +14)'Cp) = (P +CTO) T, (31)

and the same is true wit§ replacingp. Hence

Fi(p) = Fr(@) =e " [(p ' +CTO) " = (@' +CTO) e
= p +CTC) ' p T p—dla (@ + CTO) e
Using again (31) and the definition éf, we get (30), which achieves the proof of (27).

We now prove (28). Observe thétis continuously differentiable on the compact getQ(c0)]. Hence
|G(p)—G(q)|| < C|lp—ql| for some constan®' > 0. Thus, since?h, = G(ZP), the bound (28) follows
from (27).

Finally we prove (29). We have, for all < m < n (recall the conventio®}, , = ©F, ,,, = 1,),

Gg,m - @g,m = Z @g,](@? - 9?)9?71,1% :
j=m+1

On the other handd? — 6 = e*Iﬂ'A(G;{1 —G%_,)C, and (29) thus follows from (28). [
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B. Proof of Theorem 2.

Using (27) in Proposition 1, Lemma 2 and the Holder inedqualve obtain that, for any > 0 there

existsC' > 0 anda € (0,1) such that
E[I1Z8 - 23] < Ca”, p.ac[,Q(x)l n=1. (32)

This corresponds to Condition (i) in Theorem 4. Conditiahi§ trivially satisfied for anys andr = 1
since hereX = [0,Q(c0)] is a compact state space. Hence, by Theorem 4(a) we obtaiexisince
and unigueness qf.

Next, we show that-Lx(Y1.n,T1.v) defined in (10) converges o signain probability wheny,, =
CX, +V, forall n > 1. Since, for alln > 1, P, = ZT?_(C{O) andlog det A,, is a Lipschitz function of
P,,, we have by Theorem 4(b) that

—ZlogdetA ———> /logdet CpCT +14) p(dp) . (33)

n=1

This is true independently of the definition @f,,) and hence will also be used in the proof of Theorem 3.
In contrast the specific definition afY,,) here implies that,, = ElY, | Y1.n—1,T1.n] and A,, =
Cov(Y, — Y, | T1.n). Hence((Y, — Y,)TA; 1 (Y, — Y,))n>1 is @ sequence of i.i.dV(0,1) r.v.’s, which

yields
N
Z Yo = Yo)TASN (Y, = Y,) =25 4.
1 N—o00

On the other hand, in (10) this limit cancels with

1 N

T a.s.
— 4
N 2—:1 Vi Va m d, (34)

which appears in the last term of (10) when developinfy, = V'V, + XTCTCX, +2XTCTV;,.

Hence it only remains to show that

N
1 Z T AT as. T
1 N
1 T ~T as.

To this end, recall thatX,,) is a Markov chain, whose distribution is defined by the rezuee equation (7)
and the initial conditionX, ~ N (0, Q(c0)). We shall establish the ergodicity of this Markov chain by

again applying Theorem 4. For aryc RY, we denote by X*) the Markov chain defined with the same
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recurrence equation but with initial conditioXiy = x. Then we have, by iterating,

n
Xy = e Xim LA x 4 ZQ*ZL,M AU, n>1.
k=1
with the conventiord 7 ,, I; = 0. Recall that, givert,,, the conditional distribution of,, is N'(0, Q»)

and @, = Q(I,,) € [0,Q(c0)]. HenceE||U,|* | I,,] is a bounded r.v. for any > 0. By Lemma 3, we
haveE|||e~ 2i=r+1Ti4||5] < K (E[e~*"'])"~* for sameK, s > 0. Hence, we obtain, for any > 0, for

some constant§’ > 0 anda € (0, 1), for all x,y € RY,
E[| Xy — X717 < Ca™ (1 + [x[° + [y]°)
E[I X311 < C1+ [x]°).

These are conditions (i) and (ii) of Theorem 4 with= p = 1. Moreover,(X,,) has a constant marginal
distribution, namely\ (0, Q(c0)), so that the invariant distributiom of Theorem 4(a) is necessary
w = N(0,Q(x)). Now, applying Theorem 4(b) and Theorem 4(c), we get (35) @), with a = 2
anda = 1 respectively.

To achieve the proof of Theorem 2, it remains to prove §agkigna > 0. This results froniog det(CpCT+
14) < tr(CQ(c0)C™) for everyp € [0, Q(c0)].

C. Proof of Theorem 3.

Letw = (x,p) € R?7x[0,Q(c0)]. We denote the first component 8} by Z}’ so thatZ}¥ = (Z}' Z,ﬁ’).
Using the notation introduced above, we have, forkalt 1, Z}¥ = @EZX’A +e*IkAGg_1Yk,1, and, by
iterating,

n
A @270)( + Z @E’kefl’“AG}?_lYk_l, n>1.
k=1

By continuity of G, it is bounded on the compact sgt Q(co)], hencesup,, ,, |G} || < oc. Also by
Lemma 3,supy, [[e"*4|| < co. Applying these bounds, Lemma 2, the Minkowski Inequalibd @he

Holder Inequality in the previous display, we obtain, faryas > 0 and some constardt > 0,
EZY] < C1+[x), w=(xp)€R x[0,Q(c0)], n>1. (37)

Since the second component Bf" stays in the compact séi, (oco)], this implies Condition (i) in
Theorem 4 withr = 1 for the complete chaifiZ});>o.

Let nowv = (y,q) € R? x [0, Q(c0)]. We have

n n
Zy —Zy =0y x— 6] oy + Z(eg,k - @g,k)eflkAGg—lykfl + Z Gg,keflkA(Gg—l -Gl Y1
=1 P
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Note that, using Lemma 2, the bounds (28) and (29) in Prapasit, the Holder Inequality and the
Minkowski Inequality, we obtain, for any > 0 and some constan& > 0, andp € (0,1) not depending
onp,q,

El|GE —Gall'l < Cp™ and E[|[OF ,, — ©5 ,[I") < Cp", 0<m <n.
Using these bounds, Lemma 2 and the previous two displayshugeobtain, for any; > 0 and some

constant” > 0, anda € (0,1) not depending ow, v,
EllZy - Z3") < Ca™ (1 + x[" + [y[), n=1.

This, with (32), implies Condition (i) in Theorem 4 wigh= 1 for the chain(Z});>o. Hence Theorem 4(a)
applies, which yields the existence and uniqueness of tizesunes. Moreover we get thaf |w|"dv(w) <
oo for anyr > 0.

Let us now show that (Yi.n,71.x) converges t&ponoise WhenY,, = V,, for all n > 1. Some of
the terms appearing in (10) are identical to the case whgre C X, + V,, for all n > 1 investigated

for the proof of Theorem 2. Writing
(Yo = YVo)TAZL(Y, = Y,) = VIASYWY, +2VIACICX, + XTCTA L OX,

and usingu = v(RY, ), (33), (34) and some algebra, it is in fact sufficient to prévat

N
1 N N
v Y XTCTACX, % x'CT(CpC™T + 1) 'Cx dv(x,p) , (38)
n=1
N
1 > VAV, 22 [ (CpCT +14) 7 du(p) (39)
N n n " N—o0 ’
n=1
N
1 Y vIAieX, 2250 (40)
N = nn N—oo

Now, these limits hold by observing th(aﬁ’n, P, = Zéog?(oo)) and by apply Theorem 4(b) with = 1
for (38), Theorem 4(c) witlu = 1 for (40) and Theorem 4(c) with = 2 for (40).

It remains to prove thatyo:noise > 0. From Equation (17)&Ho:Noise = ff(p)du(p) where f(p) =
0.5 (log det(CpC™ + 14) — CpCT(CPCT + 14)71). This function satisfies’(p) > 0 and f(p) = 0 if
and only if CpCT = 0. Let Z € [0,Q(c0)] be a random variable with the invariant distributipnand

assume tha€'ZC™ = 0 with probability one. From Equation (15) we have with proitigbone

- . N . . . -1 .
0= CE(Z)CT = Ce1AZe TATCT — Ce~1A 70T (CZCT + 1d) CZe AT 4 oQ(I)CT

= Ce M4 Ze™ A CT 1 cQNCT = cQUCT
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Due to the controllability of(A4, B) and the fact that-({0}) < 1, this is a contradiction. Therefore

f(Z) > 0 with probability one, and henc&o:noise > 0, Which achieves the proof of Theorem 3.

IV. SOME PARTICULAR CASES

Different particular cases and limit situations will be eaered in this section. We begin with the case
where the sampling is regulare., I; is equal to a constant that we take equal to one without loss of
generality. In this case, we obtain compact expressionthéoerror exponents. We then consider the case
where the holding times are large with high probabilitg, the sensors tend to be far apart. Finally, we
consider the case where the SDE (1) is a scalar equationelsdalar case, we will be able to analyze
the impact ofE[/;], the Signal to Noise Ratio, and the distribution &f on &no:signar All proofs are

deferred to Appendix C.

Regular sampling

When the sampling is regular, the model 1dr,) underH1 (see Egs. (11)) is a general model for
stable Gaussian multidimensional ARMA processes cordupiith a Gaussian white noise. In this case
we denote byd = e 14 = exp(—A) and byQ = Q(1) = fol exp(—uA)BBT exp(—uAT) du the

state transition matrix and the excitation covariance magspectively.

Proposition 2 (Regular sampling) Assume thaf; = 1 and defin&o:signal@aNd&Ho:noise DY (16) and (17),
respectively. Then we have

1

Enosignal = = (tr (CQ(c0)CT) —logdet (CPRCT +14)) | (41)

2
EHoNoise = % (10g det (CPRC + 1) — tr [CPRCT (CRRCT +14) |
Ftr [CECT (CPCT + 1d)‘1]> , (42)
where PR is the unique solution of the matrix equation
P=3Pd" —oPCT (CPCT +1,) ' CPO" 4+ Q (43)
and where they x ¢ symmetric matrix: is the unique solution of the matrix linear equation

Y -1, - GO)X(1, - GC)TeT = aaGT o (44)

with G = PrCT (CPCT +14) .
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Equation (43) is the celebrated discrete algebraic Riaiiation. Its solutionPy is the asymptotic
(steady state) error covariance matrix when the sampliregislar. The matrixG = PRC™ (CPrC™ + 1) !

is the Kalman filter steady state gain matrix [28, Chap. 4].

Large Holding Times

We now study the behavior of the error exponents when theitpltimes are large with high
probability. We shall say that a familir) of probability distributions orf0, oo) “escapes to infinity” if,
ass — oo

for all K > 0, 7,5([0, K]) —— 0.

5—00
In order to study the large holding time behavior of the eegponents, we index the distribution of
the holding times by and assume that, escapes to infinity. A typical particular case that illuss
this situation is when we assume that theare equal in distribution tel wherel is some nonnegative

random variable, and when we study the behavior of the exporeents for large values of

Proposition 3 (Large holding times) Assume thatr;) escapes to infinity and defiggo.signai@andro:Noise
by (16) and (17), respectively. Then, as+ o,
1 _
Eronose— 5 (logdet (CQ(o)CT +14) — tr [CQ()CT (CQI)CT +14) ' ]) . (45)

EHo:Signal — é (tr (CQ(00)CT) —logdet (CQ(0)CT + 1)) (46)

Given anR%-valued i.i.d. sequend#;,) such that'; ~ N(0, 14) underH0 andY; ~ N (0, CQ(o0)CT+
14) underH1, it is well known that, undeHO, the LLR converges to the Kullback-Leibler divergence
D (N(0,14) | N(0,CQ(c0)CT +14)), which equals the RHS of (45), while undetl, the negated
LLR converges toD (NV(0,CQ(c0)CT +14) | N(0,14)), which equals the RHS of (46). This can be
explained as follows. When, escapes to infinity, two consecutive samplé¢T;,) and X (7)) are
asymptotically uncorrelated. Hence, under the signal thgsis and as, escapes to infinity, the process

(Y,,) can be seen as a centered Gaussian i.i.d. sequence withacweamatrixCQ(co)C™" + 1.

The Scalar Case

In the scalar case, the SDE (1) becomes

dX(t) = —a X(t)dt +bdW (t), t>0, (47)
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where W (¢t) is a scalar Brownian motion an@, b) are known real non zero constants. The SDE (47)
defines a so called Ornstein-Uhlenbeck (O-U) process. Utldestationary assumption,> 0 and the
initial value X (0) is independent froniV (¢) and follows the law\V (0, Q(c0)) where the varianc€) (o)

is given byQ(co) = b?/(2a). We observeY,,, T,,)1<n<n Where(Y,,) is a scalar process and we write

the HO-Noise test as
HO:Y,=V, forn=1,...,N (48)
H1:Y,=X(T,)+V, forn=1,...,N, (49)

where the observation noise procé$s) is i.i.d. with V; ~ N(0,1). Solving Equation (47) betwe€R,
and 7,1 we obtain thatX,, = X(7,,) is given by

Xpp1=e X, +U,1, neN, (50)

where, given(1l,,), (U,) is a sequence of independent variables such that- N (0,Q,) with Q,, =
Q(oc0)(1 —e~22l), The distribution of the proces¥;,) underH1 is completely described by the scalars
a andQ(co0) and by the distribution- of I, and so are the error exponents. Recall that we assume here
that I; is integrable. In this case, we can &f;] = 1 by including the mean holding time int@ The
parameter)(co) determines the marginal distribution &f, since X (¢t) ~ NV (0, Q(oc0)) for everyt > 0,
and can thus be interpreted as the Signal to Noise Ratio SNRX2]/E[V/?].

We now provide the error exponents when the sampling is agg the scalar case, it is easy to solve
Equations (43) and (44) in the statement of Proposition 2 tanobtain the error exponents in closed

forms.

Corollary 2 (Regular sampling in the scalar case) In the scalar case, definingo:signai and {Ho:noise

as in (41) and (42), respectively, we have

1
§HO:SignaI = 5 (SNR_ log (1 + PR)) s (51)
1 Pr P2 PR
Noise= = | log (1 + P, -1 52
EHo:Noise 2<0g( + R)+PR+1<PF%+2PR—|—1—<I>2 >> ) (52)

where® = exp(—a) and

. _ (SNR=1)(1 - ®?) + /(SNR—1)2(1 — ®2)2 + 4SNR1 — 32)
R = .
2

We note that (52) was first proved in [7, Theorem 1]. The prdofsd) is straightforward and thus

omitted.
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We now consider a general distribution for the holding tina@sl consider the behavior gfio:signal

with respect toa, the Signal to Noise Ratio SNR (o), and the distribution of;.

Proposition 4 Defineéyo:signalandéno:noiseDY (16) and (17), respectively. In the scalar case, the ¥ahg
properties hold true.
() The error exponento:signal decreases as increases. Moreover, ag — 0, &no:signal = Q(00)/2
and, asa — 00, &Ho:signal = (Q(00) — log(Q(o0) + 1)) /2.
(i) &Ho:signal iNncreases ag)(co) increases.

(i) The distributiont of I; that minimizesyo:signa Under the constrainE[/;] = 1 is 7 = 0;.

The proof of Proposition 4 can be found in Appendix C.

Some practical design guidelines can be inferred from thipgsition: from the stand point of the
error exponent theory, wheHO refers to the presence of a noisy O-U signal, one has an attere
choosing close sensors if one wants to reduce the Type It prabability. This probability is reduced
by exploiting the correlations between thg,. As regards the sampling strategy, the worst sampling from
the error exponent stand point is the regular sampling. We tiat the problem of determining the best
distribution 7, that is, the one that maximize&go.signa With a given mean is an open question.

In the setting of Theorem 3, the behavior&:noise With respect tax has been analyzed in the regular
sampling case only (Corollary 2) in [7]. The authors of [7pyped that when SNR- 0 dB, £no:Noise IS
an increasing function of while when SNR< 0 dB, £no-noise 2dMits a maximum with respect to By
a numerical estimation ofyo:noise (S€€ below), we observe a similar behavior in the case of ssBoi
sampling. However, a more formal characterization of thapshof &o:noise fOr @ general distribution
7 seems to be difficult. A more detailed discussion on the hehaf &o-noise IS provided in the next

section.

V. NUMERICAL ILLUSTRATION AND INTERPRETATION OF THERESULTS

Let us first describe the simulation procedure. (&t., P,) be a random element &7 x [0, Q(c0)]
distributed according to the invariant distributienof the Markov procese‘gf(n,Pn). Then the error

exponent defined by (17) can be written as
1 ~ = _
Eronose = SE |logdet (CPoCT 4 12) + C (XoXE = P ) OT (CPoCT +14) |
and the error exponent defined by (16) as

EHo:signal = % (tr (CQ(o0)C™) — E [logdet (CPxCT +14)]) -
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Fig. 1. Scalar cas&no:signa VS a for SNR= —3,0 and3 dB

By the stability of the Markov chail(l)?n,Pn) shown in Section lll, we estimate the error exponents by
simulating the Kalman Equations (12)-(13) with’,) i.i.d. A(0,14), and by estimating the expectation
in the equations above by empirical means takeerm, P,)n=1,..n for N large enough. A scalar case

and a vector case are considered.

A. The scalar case

Figures 1 and 2 describe the behavior of the error exponeriteeiscalar case. Poisson sampling with
E[l;] = 1 and regular sampling witli; = 1 are both displayed in the figures.

In Fig. 1, the error exponero:signal IS plotted as a function of for SNR (= Q(o0)) = —3,0 and
3 dB. We note that the empirical results match the theorefindings stated in Proposition 4.

In Fig. 2, £Ho:Noise IS plottedvs a for SNR= —3,0 and 3 dB. We notice thatyo:noise — 0 @asa — 0.
Moreover, this error exponent is an increasing functionradior SNR = 0 and 3 dB while it has a
maximum with respect ta for SNR= —3 dB. As said in Section IV, this behavior has been established
in [7] in the case of a regular sampling. We also notice thas$om sampling is worse than regular
sampling for SNR= 3 dB and better than regular sampling for SNR—3 dB. We will further discuss

these findings in Section V-C below.
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Fig. 2. Scalar cas&no:noise VS a for SNR= —3,0 and3 dB

B. The vector case

We now consider a vector case and investigate whether thdagwa findings in the scalar case are

again observed. The following 2-dimensional process isicaned.

0 0
dX(t) = — X()dt+ | | dw()
1 1 1

whereW (t) is a scalar Brownian motion. We take = 1, in (4). Figures 3 and 4 concern the behavior
of &no:signal @nd EHo:noise IN the vector case. Both Poisson and regular sampling arsidened. In the
Poisson sampling case, we assume thatithare equal in distribution ta/ whereI is an exponential
random variable with mean one, and we plot the error expenianterms of the mean holding time

In the regular sampling case,is simply the sensor spacing. The last parameter is the Sk&h diy

CE[CX,+V, 2] tr (CQ(c0)CT)
SNSRI T a

In this experimental setting, a behavior comparable to ttadas case is observed for both tests. In the
case of the HO-Signal test, we also observe fhgkigna decreases asincreases, and Poisson sampling
enjoys a higher error exponent than the regular samplinghthree considered SNR. In the case of the
HO-Noise test, the error exponent increases witht high SNR, while it has a maximum with respect

to s at low SNR, and the Poisson sampling is worse than the regalapling at high SNR.
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Fig. 3. Vector casetHo:signa VS s for SNR= —3,0 and3 dB

C. Discussion on the error exponents behavior.

Small sampling spacingFigures 1 and 2 show thatio:signa inCreases ta)(co)/2 asa | 0 (as
predicted by Proposition 4) whil&4o:noise d€Creases to zero as) 0. This behavior has the following
heuristic interpretation. At = 0, Equations (50) boil down toXy = -+ = X, = --- = Xy ~
N(0,Q()). UnderH1, it is easy to show that the corresponding negated LLR cgegsoX?3 /2, which
has expectatioii)(co)/2, the limit of £qosignai @S a | 0. In contrast, as already noticed in [7], a direct
derivation shows that the error exponeéns:noise Of the limit model is zero, since the Neyman-Pearson
Type |l error probability decreases &41/v/N), that is much more slowly than the usual exponential
decreasing. This is in accordance with the observed behawisimulations, namel§ho:noise — 0 as
a 0.

Small versus large SNRHere we denote the SNR by = Q(c0) and lety,(a) = E [e=2¢/1],
for I; with distribution 7. In Appendix D we provide a heuristic calculation that yelthe following

approximations. Ag; — 0,
) 5 1+ ¢r(a)
EHO:Noise ~ ¢ 74(1 — SOT(G)) (53)
and, asg — oo,
(E [log(1 —e )] —1) . (54)

N |

1
£Ho:Noise — By IOg(Q) —
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Fig. 4. Vector casefHo:noise VS s for SNR= —3,0 and 3 dB

These results show that for small SNR, the regular samplagy the lowest error exponent, and for
high SNR the regular sampling enjoys the highest error espoim the set of distributions for which
E[[1] = 1. Indeed, asxp(—=z) is convex and1 + z)/(1 — z) is increasing orf0, 1), the ¢*> term at the
right hand side of (53) is minimum wheR = 1 with probability one. At low SNR, the error exponent
loss L due to the use of a regular sampling (that is, the SNR to paychiege an equivalent error

exponent) is

(1 = ¢r(a))(1 + exp(—2a))
At large SNR, adog(1—exp(—x)) is concave, the right hand side of (54) is maximum whgg- 1 with

I = 510g10 <(1 + @T(a))(l B eXp(_za’))> dB . (55)

probability one. Thus, at high SNR, the error exponent gaidue to the use of the regular sampling is
G =10 (log;o(1 — exp(—2a)) — E [log;o(1 — 672“11)]) dB . (56)

These results are illustrated in Figure 5 for the low SNRmegiand in Figure 6 for the high SNR
regime, where{ho:noise IS plotted as a function of the SNR for ¢ = 1. In these figures, the curves
termed “Asymp. Poisson” and “Asymp. Regular’ represent aegmptotic values ofo:noise pProvided
by Equations (53) for Fig. 5 and (54) for Fig. 6. At low SNR, theymptotic loss incurred by the
regular sampling with respect to a Poisson sampling as @eatlby (55) isL = 0.91 dB, and this is
confirmed numerically in Figure 5. At high SNR, (56) preditas the regular sampling the asymptotic

gain G = 2.03 dB with respect to the Poisson sampling. This is confirmederigally by Figure 6.
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Fig. 5. &nooise (l0g scale) vs SNR in dB in the low SNR regime~= 1.

APPENDIX
A. Technical lemmas

In this section we provide some useful technical lemmas.

Lemma 3 Assume thatd is positive stable. Then there exists constants 0 and K > 0 such that

|le®4|| < K exp(—za) for z > 0.

Proof: Leta > 0 be smaller than the real parts of all the eigenvalued @ndC be a rectangle in
the complex half plandz : £(z) > a} whose interior contains all these eigenvalues (hefe) is the
real part ofz). Applying Theorem 6.2.28 of [20], we have®4 = ;L. [,e=*A(AT — A)~! d\. Hence,

we have
le=4) < e"”“/ (AT — A)~HdA.
C

By continuity of A — (A1 — A)~! on C, the previous integral is finite, which gives the result. m

Lemma 4 Assume that the matrid is positive stable and that the paid, B) is controllable. Then the
matrix function@(z) defined by (6) is strictly increasing in the positive semidefiordering from0 to

Q(o0) as x increases fron to oo.
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Fig. 6. &Ho:Noise VS SNR in dB in the high SNR regime, = 1.

Proof: Since (A, B) is controllable,Q(xz) > 0 for any z > 0. Assume thatz < y. We have
Qy) —Q(z) = [Y exp(—ud)BBT exp(—udT)du = exp(—zA)Q(y — z) exp(—zAT) > 0 which proves

the lemma. ]

B. A stability result on Markov chains

Here we present our Swiss knife result on Markov chains. Wevicthe approach in [29] for obtaining
the geometric ergodicity of Markov chains using simple motneonditions, although we use a more
direct proof inspired from [30]. For tha.s. convergence of the empirical mean, we will rely on the

following standard result for martingales [31].

Lemma 5 Let (M,),>o be a martingale sequence and, = M, — M, _; be its increments. If there

existsp € [1,2] such thaty_, ., kPE[|X;[P] < oo, then M, /n as

n—oo

We adopt the following setting for our generic Markov chdiet (n;, £ > 1) be an i.i.d. sequence of
random variables valued iR and letX’ be a closed subset &¢. We further denote by, a random
variable having the same distribution as thes and independent of them. Lét,(x) be defined for all

y € E andx € X with values inX and such thatz,y) — F,(z) is a measurablg’ x E — X" function.
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This allows to define a Markov chaifZ, k > 0) by

Zy =,

(57)
Zi = By (Zi ), k=1.
This Markov chain is valued i’ and start at timé® with the valuez. We denote byP the corresponding

kernel defined on any bounded continuous function — R by

Pf(z) =E(f(2])) = E(f o Fy,(z)), ze€d,
whereo denotes the composition operator. Observe that (57) is\piar alln > 1

Zy=F, o0k, (x).

n

Recalling that| - | is the Euclidean norm oR?, we denote for any > 1 and f : X — R,

1 fllLip, = sup |f(z) — f ()]

varex? [€ —af| (L+[aP~ + [/ |P)

)

which is the Lipschitz norm fop = 1. We now state the main result of this appendix.

Theorem 4 Define(Z, k > 0) as in (57). Assume thdf, is a.s.continuous, and that, for sont > 0,
a € (0,1), p,r>0,g>1ands > p,

(i) Forall (z,2') € X? andn > 1,
E (|, 00 Fy (1) = Fy, 00 Fy, ()[1] < Ca™ (14 |afPt + [2/[P9) .
(i) Forall x € X andn > 1,
E[|F,, oo Fy (x)Y] < C(L+ |2 (58)

Then the following conclusions hold.

(&) There exists a unique probability measwre®n X such that
¢ ~ p and ¢ independent of) = F; (&) ~ . (59)

Moreover such a measuge has a finites-th moment.
(b) Leta e [1,s A {1+ s(q—1)/q}] and f : X — R such that|| f||.;, < oo. Suppose in addition that
s>b=p+r(a—1). Then, for allz € X,

P D) s () = [ fau.
k=1
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(c) Let(U,)n>1 be a sequence of i.i.d. real-valued random variables suahEfU; | *¢] < oo for some
e > 0 and, for alln > 1, U, is independent of,...,n,. Then, under the same assumptions as in

(b), if moreovers > a, then, for allz € X,

RS o as.

- kzl Urf(Zit) == m p(f)
wherem = E[U;].

Proof: Let us introduce the backward recurrence process startingdafined byYy = 2 and
Y,=F,o0---0okF, (x), n>1.
Note that for anyn, Y, 4 Z*, that is, the process€¥,,) and (Z?) has the same marginal distributions.
Moreover, using (i) and the Jensen Inequality, we have

E Y Yo —Yo|| > CY9™1 (14 2P + E[|F,, (2)7]) .

n>0 n>0
By (i), sinces > p, E[|F;,, (z)[P] < oo and thus}_, -, [Ys+1 — Y,| < oo a.s.By completeness of the
state spacet’, Y,, converges int’ a.s.We denote the limit by and its probability distribution by.. By
a.s.continuity of F;,, we haver),(Y,,)—F,(§) a.s.On the other hand’,(Y,,) ~ Y, 1—¢{ a.s.Hencep
satisfies (59), that isy is an invariant distribution of the induced Markov chain. idover by (ii), we
havesup,, E[|Y,|*] < oo which by Fatou’s Lemma implies th&|[|¢|*] < oo. Let us show thaj is the
unique invariant distribution. By (i), for any,y € X, Z% — Z, % 0. Now drawz andy according
to two invariant distributions, respectively, so that®),,>o and(Zy),>o are two sequences with constant
marginal distributions. Then necessarily these two distions are the same and thusis the unique
invariant distribution, which achieves the proof of (a).

We now prove (b). First observe thgtis continuous and (z) = O(|z|*) as|z| — oo. Hence by (a),
sincea < s, f is integrable with respect tp. Also, by (i), E[| f(Z})|]] < oo for all k > 1 andz € X.
We use the classical Poisson equation for decomposing thmrieah mean of the Markov chain as
the empirical mean of martingale increments plus a nedégibmainder. Using thatf||Li,, < oo, the
Holder inequality and (i), we have, for anyy € X,

EY 1F(Z) = 12D < Y CYa T A 1 ZE 150y +12E 5 yy) (L [P + 1y lP)
k>1 k>1

where we used the notatidn ||, = (E[| - |P])"/? and¢’ = ¢/(¢ — 1). Sinceq'(a — 1) < s, we can apply

the Jensen Inequality and (i) to boufid}||, a1y and||Z}]4—1)- We obtain, for some constant> 0

EY If(Z8) - £(Z)) < e (L+ 2]+ [y]) -
k>1
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with b = p+ r(a — 1). Since we assumed> b, using (a), the right-hand side of the previous display is
integrable iny with respect toux and we get

SIELER] - uh)l < [BY 12D - F(Z) utdy) < ¢ 1+ fa).

k>1 k>1

Hence we may define the real-valued function
©) =Y {E[F(ZD)] = u(H)}
k>1

which is the solution of the Poisson equatipfr) — u(f) = f(z) — Pf(x) and satisfies

sup(1 + [2[") | f(2)] < o0 . (60)
zeX

Hence the decomposition
lE {f(ZZ)—u(f)}=l§ {f(zi) - PF(Z0)} E Xp +— {Pf( ) - Pf(Z3)},
n n
k=1 k=1

where X, = f(Z¢) — Pf(ZF_,), k > 1. Observe that(Xk)kzl is a sequence of martingale incre-
ments. By the Jensen Inequality, we haRBPf(Z2)*/"] < E[f(Z%,,)]*’*] and by (60) and (ii),
supn>1EHf (Z%.1)]*/*] < cc. Sinces/b > 1, by the Markov Inequality and Borel-Cantelli's lemma, this
implies thatP f(Z%) /n—0 a.s.We also get thatupy, E[|X1|*/*] < oo and, by Lemma 5 }_, X;/n—0
a.s.This proves (b).

We conclude with the proof of (c). Using (b) we may repldée by U, — m, that is, we assume

= 0 without loss of generality. TheU; f(Z}))r>1 iS a sequence of martingale increments. Let

w=(14¢) As/a> 1. We havesupys, E[[Usf(Z)["] = E[U1["] supssy E[l£(ZE)]"] < oo by (ii) and

the result follows from Lemma 5. [ ]

C. Proofs for Section IV.

1) Proof of Proposition 2:Given any deterministic nonnegative matgxe [0, Q(c0)], the sequence
of covariance matrices’} = Fy(ZP |) where I is the second component of (15) with= 1 is a
deterministic sequence. From Lemma 1 and Proposition 1. one get thal(ZI‘;—Z;}H < allp—d|
for a € (0,1) and K large enough. Hence, by the fixed point theoré@,converges to a limifr defined
as the unique solution ifd, Q(cc)] of the equationP = F|(P) which is the discrete algebraic Riccati
equation (43). This amounts to say that the invariant thstidon ; defined in Theorem 2 coincides with

dps. It remains to show that Equation (43) has no solutions dats$i, Q(cc)]. Indeed, assume that is
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a solution of (43). Consider the state equations (11) wheie assumed thak (0) ~ A (0, p). By the

very nature of the Kalman filter, the covariance matfix satisfies
P < E [XX]] = e T pe T 1 Q1) < o Ape AT 4 Q(oc)

As P, = p for any k, we havep < Q(oo) by taking the limit ask — oo.

We now consider the invariant distributian defined in Theorem 3. This distribution writes =
vx ® dp,, and we shall show thaty = N(0,X) whereX is the unique solution of Equation (44). To
that end, we begin by showing that the steady state Kalmaar filansition matrixo = ®(1, — GC)
with G = PRCT(CPRC™ + 14)~! has all its eigenvalue$);} in the open unit disk. Indeed, taking
the limit in (20), we getPr = OPROT + ®GGT®T + Q. Assumingt; is an eigenvector 0B with
eigenvalue);, we obtain from this last equation thét — |\;|>)t] Prt; = t] ®GGTOTt; + t7Qt; > 0
due to@ = Q(1) > 0, hence|)\;| < 1. Consequently, the matrix equation (44) has a unique soluti
Y =30, 0"dGGEToT(OT)" [28, Chap. 4.2]. WherZy, = (Z;, Z1) € R x [0,Q(c0)] follows the
distributionv, we have (see (15)¥, = ©Z,_, + ®GY}. Recall thaty;, ~ N (0,1,) and is independent
with Z,_,. In these conditions, it is clear thaf, ~ N(0,%) when Z,_; ~ N(0,%). Therefore,
v =N(0,X) ® dp, is invariant, and it is the unique invariant distributionefiRacingr and . with their
values at the right hand sides of (17) and (16), we obtain &) (41) respectively. Proposition 2 is
proven.

2) Proof of Proposition 3:We assume that the holding timdg are equal in distribution ta®
(distributed asr,) to point out the dependence en We also denote the invariant distribution of the
Markov chain (Z;) defined in Section Ill ag:;. We begin by proving thaj, converges weakly to
Qo) @Ss — oo (we will use the notationu, = dg(o))- By Lemma 3 we havé[|| exp(—I5A)|*] <
KElexp(—2al®)] = [ exp(—2az)7s(dz) with a > 0. Given aK > 0, we have [ exp(—2az)7s(dz) =
fOK exp(—2az)7s(dz) + [0 exp(—2az)7s(dz) < 75([0, K]) + exp(—2aK). Sincer, escapes to infinity,

E[le="4||?] — 0 ass — oo, which implies that=/"4 — 0 in probability ass — co. Moreover, we have

Q) = Qo) = | [~ exp(-ua) BB xp(-ua) au

< ||BJ? /I | exp(—ud)|* du < K/I exp(—2ua) du = (K/2a) exp(—2al®)

henceQ(I*) — Q(oc) in probability ass — oc. Now, assume that the random variabes [0, Q(c0)] is
distributed asu,. Recalling thatF” is the random iteration function defined as the second coeronf
Equation (15), we haviiFy. () — Q(co)|| < Klle™ 4|12 + |Q(I*) — Q(c0)||, henceFy.(Z) — Q(cc)
in probability ass — co. As Fy«(Z) ~ ps, 115 = 0g(0)- DUe to the continuity of théog det on the
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compact sef0, Q(c0)], we have, as — oo, [log(l + p)dus(p) — [log(CQ(c0)CT +1,4), and (46)
results from (16).

Now assume thaf = (Z, Z) € R? x [0, Q(c0)] follows the invariant distributiow, and let(Z,, Z;) =
Fips vy (Z), where F;. vy is defined by Equation (15). In particular, we hasg = ©(I°, 2)Z +
e I"AG(Z)WV. As E[|le"4|?] — 0 and Z < Q(c0), we haveRE[||O(I%, 2)|?] = E[|e "4 —
G(2)0)|?] — 0 ass — oo andE[le "AG(Z)V|?] — 0, henceE[|Z,[>] — 0. The third term in the
RHS of the Expression (17) GHo:noise Satisfies

[xreT (epe 107 Ox dvtp) < 1 [ IxPavte) = [CIPEIZ) - 0

ass — 00. AS ju; = 0 (o), the second term in the RHS of (17) converges to[C'Q(c0)CT (CQ(c0)CT +
14)~!], which achieves the proof of Proposition 3.
3) Proof of Proposition 4:We begin with(i). In the scalar case, the covariance update equation (13)

writes
Py,

P — Fa P — 72alk+1
k+1 Ik+1( k) € <Pk +1

—MmQ+QWﬂ. (61)

Given a sequence of holding timég;),>; and two positive numbers; > as, consider the two
Markov chainsZ? , = Fy"(ZP ) for i = 1,2, both starting at the same valge = Q(co). Let

f(p) = p/(P+1) — Q(x). As f(Q(x)) < 0 and 0 < exp(—2ail;) < exp(—2aqly), it is clear
that ZP , > ZP |. Assume thatZz? , | > ZP . As f(p) is negative and increasing fgs <

[0,Q(c0)] and0 < exp(—2a1l) < exp(—2agly), we haveZé’hk = exp(—2alfk)f(Z51 p1) + Q(o0) >

exp(—2a21x) f(Z}, ;1) + Q(o0) =

From Theorem 2, both the chai@’h,C and Z(i’k have unique invariant distributions, and xo respec-

tively, and by repeating the arguments of the proof of Theoge
| V-1
N Zlog (14—2p k) N———>/log 1+ p)du;(p) fori=1,2, a.s.

As ZP > ZP | forall k, by passing to the limit we havglog(1+p)dui(p) > [log(1+p)dua(p). As
&Ho:signal = 0.5 (Q 00) — [log(1 + p)du(p)) in the scalar case (see Expression (16)), this error exponen
decreases with.

We now show thatim, .o {Ho:signa = @ (00)/2. Assume that/ € [0, Q(o0)] has the invariant distribution

that we denote,. From Eq. (61), we havE[Z] = E[F{(Z)] = Ele™ 2] (E [ZLH — Q(oo)D + Q(o0)
which yields
72+ (1 —E[e 21))z

E =
Z+1

= Q(00)(1 — E[e™*]) .
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As Z < Q(x), we haveR [Q(%)H} <E [ZZ—;] < Q(o0)(1—E[e~2¢1]). By the dominated convergence
theorem E[exp(—2al)] =40 1, thereforeE[Z%] — 0 asa — 0. It follows that z, converges weakly to
6o asa — 0, therefore [ log(1 + p)duq(p) — 0. Hencelim, o &Ho:signa = Q(c0) /2.

The limit asa — oo is obtained by applying Proposition 3.

To show (ii), the argument is similar to the one used above to show §@digna decreases as
increases.

We now prove(iii) . Consider the Markov chaiff, = F{ (Z—1) whereF is given by (61). Assuming
that Zk has the invariant distributiop, we have

E|Z] = E[e™"] (E

Zy;
Zk—l-l

- Q(OO)) +Q(0)

94 Zy,
<e? (E 7o —Q(OO)> + Q(00)
—2a E[Zk] 00 _ e 2a
eQE[Zk]—Fl_'_Q( ) *)
—h (E[Z,J)

where the first inequality is due to the convexityeof** in conjunction withZ;, < Q(co) with probability
one, and the second inequality is due to the concavity &fi + ). If we chooser = ¢;, then the
corresponding invariant distribution &, where Py is the unique solution of the equatidiip) = p (see
Proposition 2). Ash(p) — p is decreasing, pdu(p) = E[Z] < Pr. As log is an increasing concave

function, the error exponent satisfies
1
EHo:signal = 5 (Q(OO) - / log(p + 1)du(p))

oo (1)

which achieves the proof of Proposition 4.

(Q(00) — log(Fr +1))

DN |

D. Heuristic calculations for small VS large SNR discussion

In the scalar case, the Kalman recursions (12)-(13) write

BN e~ 0t P
Xp1 = 5—Xp +e Iy, 62
n+1 P, +1 nte Pn+1n ( )
P,
Py = e 20l 1 i 1 + q(1 — e 2adny (63)
n
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We assume that vect(wA(n,Pn) has the invariant distributiorr. In order to obtain (53) and (54), we
study the asymptotic behavior of
X2-p,

4
P11 (64)

1
EHO:Noise = §E log(Py, + 1) +

for small and large values af.

We start withg — 0. Let us expand the RHS of (63) to the ord@(q), by recalling thatP,, < ¢ and
by taking the expectations, we obtdfiP,] = E[P,+1] = ¢, (a)E[P,] + q(1 — ¢-(a)) + o(q). Hence
E[P,] = q+ o(q). As P, < ¢, we also haveP, = g + o(q). Inserting this back into (63), we obtain
P, = q+ ¢*B, + o(¢?) with

4+ @Bny1 = e 2 (¢ +¢*B,) (1 —q) + q(1 — e 1) + o(¢?) .

By identifying the coefficient of;? in the two members we gé8,,,1 = e 2¢/»+1(B,, — 1). Taking the

expectations and recalling that we are under an invariagttilolition, we obtain

E[P.] = ¢+ @EBa] + o) = ¢ — =27 1 o(g?) .

1 er(a)
Turning to Equation (62) and developing as above, we have

P, 2

<Pn + 1)

~

[02) -2 (8] - o0z | () | + oo

hence N
2
n _ 2 2y _ 2 ©r(a)
£ P,+1 E[X"}_Fo(q)_ql—%(a)
Similarly, we have
El-" |-k [((¢+ ¢*Bn) (1—q)] +0(¢®) =q— . o(q®) .
Pn +1 1- SOT(G)

Plugging these expressions into (64) and recalling gl + =) = » — 22/2 + o(2?) we obtain (53).
Next we considery — oo. It is easily seen from (63) that

C]+1 >Pn+1+1

q q
therefore, by the monotone convergence theoigftog (P, +1)]—log ¢ — E [log(1 — e~2*/1)]. Moreover,

we readily haveE[(P, +1)/P,] — 1. Using (62), asP, ~ ¢(1 —e~2¢1»-1) we haveE[X2] — ¢(a) and
E[X2/(P, 4+ 1)] — 0. Replacing into (64), we obtain (54).

l1—e 201 asg— oo
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