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Abstract

We consider the problem of sampling clock synchronizatiwhehannel estimation for Orthogonal Frequency
Division Multiplex (OFDM) systems. In such systems, whee ttumber of subcarriers is large, a sampling clock
frequency mismatch between the transmitter and the readigenatically degrades the performance. So far, the lit-
erature proposes ad-hoc estimation algorithms. Howevenrgplete performance analysis, especially the Cramér-
Rao Bound (CRB) derivation, remains to be done. Obvioukly,dhannel impulse response is unknown at the
receiver and also needs to be estimated. Therefore we &wvdheoretically the Cramér-Rao Bound associated
with this joint estimation. When the number of subcarrierd the channel degree are large, very compact closed-
form expressions for the CRB are obtained. Furthermoragahdth the ML estimator, we introduce sub-optimal
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. INTRODUCTION

The detection of Orthogonal Frequency Division Multiplexi OFDM) symbols cannot be done prop-
erly without a reliable clock synchronization. One synctization step consists in estimating the OFDM
symbol timing, which is the delay between the transmitted the received OFDM symbols. In a certain
number of applications where these symbols are short, afstigithis delay is enough. However, as soon
as the number of samples per OFDM symbol (or equivalentiyntimber of subcarriers) becomes large,
the frequency offset between the transmitter’s samplingkchnd the receiver's sampling clock in its
free oscillation mode has to be considered too. Indeed fféstdeads to a sampling delay that drifts
linearly in time over the OFDM symbol. Without any compein@at this drift hampers the receiver’'s
performance as soon as the product of the relative clockifnecy offset with the number of subcarriers
becomes non negligible in comparison with one ([1]). Fotanse, in Very high speed Digital Subscriber
Lines (VDSL) transmissions, these two quantities can ety reachl0—* and4096 ([2]), making the
clock frequency offset compensation mandatory. As an akample, Power Line Transmissions (PLT)
in the band1 MHz, 20 MHz| ([3]) show a similar behavior with respect to this phenonreno
As itis well known, the part of the OFDM symbol that enters Hzest Fourier Transform (FFT) device at
the receiver comes after a cyclic prefix. As the latter hamgtlecomparable to the channel impulse re-
sponse length, it is precisely when the channel is long th@a@duration has to be chosen for the useful
part of the OFDM symbol, in order to reduce the impact of thdicyprefix on the spectral efficiency. It
is therefore worth considering the problem of the jointraation of the clock frequency offset and of the
channel impulse response, particularly in these situatwamere the observation window has to be rather
large.

The literature proposes several data-aided algorithntb¢isense that one or several OFDM symbols are
devoted to training) to perform the estimation of the cloggfiency offset ([4], [5], [6], [7], [8], [9]). In
some of these approaches, the channel is implicitly assymmeectly known while in others, the knowl-
edge of the channel is not required to perform the frequeffegtoestimation. In this paper, in order to
better understand the interactions between these twoagiims, we begin in section Il by giving the
Cramér-Rao Bound (CRB) associated with this joint estiomaproblem. In section 1V, we simplify the
closed-form expressions of the CRB when the observatiomavinlength grows large. It appears that
these expressions can be simplified further when the chateggke is large. This is in particular the
case of VDSL or the PLT wireline channels, whose degree enofif the orderl00. Section V deals

with practical estimation algorithms. We begin by the MaximiLikelihood (ML) estimator for which
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we propose a simplified version. Because the ML algorithmaieencomplicated even in its simplified
version, we study simple estimation algorithms that req@FDM training symbols having particular
structures. In section VI, the ML algorithm as well as sultiropl algorithms are tested and compared to
the CRBs. Concluding remarks are drawn in Section VII.

In the sequelE is the expectation operator affds the probability measurdp stands for the? x P
identity matrix andF p.¢; is the P x  matrix which element at thg* row andg*® column is#e*%pq
forp=0,...,P—1andg=0,...,Q — 1. The Kronecker product between matrices is dengiedhe

argument of a complex-valued scalar is denated

I[l. SYSTEM MODEL

Let us consider the reception of one standard OFDM block vhas passed through a non-flat fading
channel. After removing the guard interval, the observationdow size isT, = NT whereN is the
number of subcarriers] is the sampling period at the transmitter and the spacing between two

adjacent subcarriers. Consequently the continuous-taoeived signayﬁ) (t) writes as follows :

y (1) =3 dnpg @ (t — kT) + 0@ (1) (1)
keZ

where(dy 1 )k—0,.,N—1 represents the output of théfold Inverse FFT (IFFT) device of the transmitter.

This OFDM symbol is devoted to training and therefore, isiassd to be known at the receiver. As usual,
N is a power of2. The unknown impulse respongé® (¢) represents the complete channel that includes
the transmit filter, the propagation channel, and the recédw-pass filter. Finally(® (t) is an additive
noise independent of the data.

Because of the oscillators’ imperfection, the transmigtand receiver’s clocks are not synchronized.
Thereforeyg\‘}) (t) is sampled atl + )7 instead ofl’, whered is an unknown offset lying in the known
interval [—dmax, omax|- The parameteb,,.. is related to the precision of the oscillators used in the
transmission chain. The ASDL/VDSL norms [2], for instanegommend thad,,.. be equal tal0—4.

The discrete-time received signal (n) = y§3> (n(1+6)T) is then written
un(n) = Y dnnemg'® (T +ndT) + v(n) 2)
mEZ

wherev(n) = v(® (n(1 + §)T) is assumed white Gaussian circular with zero-mean and kivawiance
0% = E[Jv(n)[?]. As usual,g(®(t) is assumed time limited with the time support includedOnZ.T)

whereL is a known integer. We thus writg = ¢(®(IT") for I = 0,..., L — 1. The Fourier transform
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G (f) of g (t) is furthermore assumed to have an effective frequency stipmtuded in the interval

[0,1/T]. With these assumptions, it is possible to make the usefuloapmation
(a) —2Tmk 2m g, 5L71 —2im g
VkG{O,...,N—l},Zg“((m—|—n6)T)e N =N "Zgle N (3)
m =0
that can be justified by the following argument: being a chosen integer, I@fjﬂbé(t) = gt +
néT)e~¥*7, a function which Fourier Transform i§(®) (f + &) 2"+ x7)%T  Using Poisson

summation formula, we then have

a 1 a l k . B .
Zg/(c,r)zé(mT):?ZG( ) <T+ﬁ> G2+ R s
" l

The left hand side of this equation is precisely the left hsidd of (3). Moreover, as the effective support
of G@(f) belongs td0, 1/T7, then the right hand side i5G®@ (&) ¢ k3 By the sampling theorem,
this quantity coincides wita '~ "0 3, g,e= ¥ %, hence equation (3).
As resulting from an inverse FFT operation, the transmisi@aiplegdy ;) write

1 N-1 o

dn g = i WZZODN’W N

where(Dy ' )n/=o,...,N—1 are the training symbols in the frequency domain, sometiekesred to as the
pilot “subcarriers”. Plugging this equation and the appr@tion (3) into (2), the received signal writes

N—-1L-1

1 2im,

n)=— Dy wgie 8400 4 4y 4

yn(n) ‘/anozgo: N/ gL (n) 4)

Let the superscript be the transposition operator. Puttipg = [y (0),...,yn(N — 1)]T, vy =

[v(0),...,v(N —1)]T andg = [go, ..., g9z_1]T, we can then write

yn =Rn(d)g+ vy 5)

where the elementn, () of the matrix R (6) is Ry (8)ln; = SN Dy e ¥ (1401 for
n=20,...,N—1andl =0,...,L — 1. After removing the guard interval (which duration is assgm

greater tharl T, the vector output of the FFT device at the receiver is then

Yy =Fynyn =FynRy(0)g+Fynvn (6)

In short, this equation describes the structure of the OFRiMb®I collected at the output of the FFT

device during the training phase.
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This paper will focus on the estimation issue of the paramied@d also of the channel. In practice we
do not need the knowledge of the changddut rather the knowledge of its Fourier transform. Morepver
during the training and data transmission modes, the OFDivbsys are often subjected to a certain fre-
guency mask constraint. Therefore only the knowledge ofrrgrency response of the changeadt the
FFT frequencyn /N (withn = 0,..., N — 1) weighted by the mask is actually necessary at the receiver.
More precisely, lef{ Py ., }n—0,.. n—1 be the sequence of positive real numbers representing tek ma
profile and leff' v ;, be the matrix extracted frofi ;- by keeping its first. columns. Assuming that the
frequency clock offset is perfectly compensated for dutirgdata phase, it is easy to check that the FFT
output vector for an OFDM symbol during the data phase it = ND ™™ Py Fy g + vy
whereDgﬁata) isaN x N diagonal matrix that bears on its diagonal the random inédian symbols,
andPy = diag ([Pny, ..., Py ~n-1]). Notice thatF y ;g stands for the Fourier transform of vecigr
Because the receiver will have to compensate for the chalistersions in the frequency domain during
the data transmission phase, an estimate of the végioe= Py F v g should therefore be available
at its site. Our purpose is therefore to derive the Crans&r-Round on the column vectc{ﬁﬁ,ér
wherehy = [Re (h}),9m (h})]", and wherefie(.) and Jm(.) denote the real and the imaginary

parts respectively.

[1l. EXACT CRAMER-RAO BOUND

Considering the general model (6), the vecYay is circular Gaussian with the unknown meag =
F y nRy(9)g and the known covariance mateXI . Additionally, the complexV x L matrix function
Ry (9) is differentiable. Consequently, according to [10], thehier Information Matrix (FIM) associated
}T

with the parameter vectdt = [g*, 6]~ with g = [Re (g7) ,Tm (gT)]T expresses as follows

_ 2 Op Opy
I = g %e [WW

where the superscript stands for the transpose-conjugate gg‘g = [%*TON, e ,%]. More pre-

cisely, asuy = Fy vRy(0)g andFﬁNFN,N = I, one can then easily show that

NRe(Uy) —NIm(Uy)  N*Re(Vyg)
2
Iv="5| NmUy)  NRe(Uy)  N2m(Vyg) ()
N*Re(g'VR) —N?Im(ghVy) NglWyg
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where
L on
Uy = NRN((S)RN((S)
1
Vy = WR%(@QN(‘S)

Wy = Ql0)av0)

andQx (8) = dRy(8)/ds. The reason for introducing the factargN, 1/N2, and1/N? will become

apparent later. By applying the well known formulas for theersion of block partitioned matrices, we

obtain :
Ay b
gp=| Ty @)
b% CN
where
o (| Me(UY) —Im(UY) 1 | Re(By)
Av = ox ] g B R | 2e(ah) omish) || ©
Im(Uy) Re(Uy) N | Im(By)
2 R
by = — 0'2 e(By) (10)
2NFW | am(By)
2
g
cCN = M (11)
with
By = Uy'Vyg (12)
w = g (Wy-VyUy'Vy)e. (13)
As a consequence, we can find the following inequalities
E [len — gl?] > tr(Aw) = (20 (U3!) + =8y (14
N 2N N N
and
E|(5y—4) o 15
_ > S
{(N )}_CN 2N3yn (15)

wheregy andéy are estimates af andé obtained from the observatioyi y .
. T
Ashy = PyFy g, the CRB associated with the parameters of inteEh%ﬁ, 6] can be written as

follows

CrB{™Y CRB%Q}

EvANEL Eyby }

crRB{"™ CRBY” bLEL o
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~ Re (EN) —Jm (EN) .
whereEy = andEy = PyFy 1. Ityields that
Jm (EN) Re (EN)

2

H
- o _ T
E |||hy — hNHQ} > o5 <2tr (UN'Tw) + M)

IN

(16)

whereh,y is any unbiased estimate hfy andT y = E%EN.

Expressions (15) and (16) provide the Cramér-Rao lowentdar the parameters of interest. Nev-
ertheless these expressions are difficult to interpret. vBsomme this drawback and to obtain simpler
expressions, we will analyze the asymptotic behavior oféhexpressions. By “asymptotic”, we mean

that a large number of subcarriers, then a long channel sepelsponse are considered.

IV. AsYMPTOTIC CRAMER-RAO BOUND

By “asymptotic” one frequently means that the number of olesgsamples or equivalently the num-
ber V of subcarriers in our context, grows towards infinity, tharhel lengthl. being held fixed. With
some assumptions, it will appear that in this regime, mesfi¢y, V5, andW y converge elementwise
to deterministic matrice¥J, V, andW respectively. This will be the first part of this section. Hzwer,
in our particular situation, it is interesting to go furtherd to assume in a second step that> co. As
said in the introduction, this assumption has a practidar@st in wireline communications. Notice that
we assumeV — oo thenL — oo. In practice, our study will be relevant in situations whéf@and L. are
large butl < N.

As afirst step, we thus focus on the asymptotic analysis o£fRB asN — oco. Most of the training
sequence structures encountered in the literature ([B]]12]) can be encompassed within an unique

framework by writing the elements of the training sequefiog o, ..., Dy v—1) as follows
Dy, = XN,lP(l/N) a7

wheref — P(f)is a bounded real function defined on the inteffgall] and integrable in the Riemann
sense. Note thalP(f) refers to the frequency mask constraint. Lebe any integer. The variabl¥
is a random variable of zero-mean and variafigeX v ;|°] = Q if Q divides!, andE[| Xy |°] = 0
otherwise. The random variabléX y ;);—o,... n—1 are furthermore assumed to be independent and their
8h moments exist and are uniformly boundéd,, there exists a constaft such that

stp | nax 1E DXN,HS] <C. (18)

=U,...,
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With this definition ofX y ;, the energy consumed by the OFDM symbol associated(Mi#;);—o,... n—1
does not depend aof.

The asymptotic behavior of the CRB is driven by the asymptotihavior of the matrice¥ , Vy and
Wy when N — oo, the channel lengttl, being fixed. The following lemma will help us to do this
asymptotic study, since the elements of matritles, V y andW y can be decomposed according to the

expression of .

Lemma 1: Letx > 0 and let¢y : N — C be a function such that for every integewith 1 < |k| <
laN ]|, |pn (k)| < % whereC'is a constant that does not depend@n Then, for every real number

LaNJ N—1
27,'7r

Z > DnaDig-re” ¥ "on (k)

k=1 I=k
converges almost surely tbas N — cc.

Proof: See Appendix A. [ |
Let us begin with the evaluation & . The(p, ¢) element of this matrix fofp, ¢} € {0,...,L—1}

writes
1 = 2 (0)
Unla =5 > DvasDivg,e” ¥ @y (1 = )(1+9)) (19)
l1,l12=0
where
N— —ir¥=ly 1 sinmz :
1 e N PLSELE x40
_ = Z N sin N 7& (20)
N = 1 ifx=0

Equation (19) can be rewritten
(Unlpg=Uno+Un1+Unpo

where

Uno =

N—1N-—
1 2im _2ix
UN,l = N Z Z lD}ka_ke_QN (q p)l Pk¢(0 ( (1 +6))
=k

1 — 21
Ung = ﬁk_l Zo DNiDy k€ e

)l 2im

Frhp (~k(1+9)) .

Let us prove thal/y,; converges t® almost surely. The proof of the convergencd/af » towards) can

be done similarlyUy ; can be written
Unvi=Un11+Uni2+Uni3
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where

N\Z

1 1) 115J 1 L N—
Unig = N Sk, Unji2 = ~ Z Sk and Un,13 = N Z
= (¥ 1)+ R
and Sy is the inner sum in the expression bly ;. It is easy to check thamg) ()] < 2\:v\ for
|| < N/2. Lemma 1 can therefore be used after identifying the functig (k) in its statement with

e*%p%}\?) (k(1 +9)), the number- with ¢ — p and o with By consequencel/y 11 — 0

ﬁ.
a.s. whenV — oo. The termsJ/y 1 2 andUy 1,3 can be treated similarly after noticing tﬂ&t}? (m)‘ is
periodic with periodV.

It leads to

Z |Dn.l?e N @Dl 0as. (21)

According to the definition of the sequer‘(déN,l)l:Q___,N_l introduced in (17), and by using tools similar

to those of the proof of lemma 1, it can be seen that

L N1 N 0 o 10\? 2irc
N |DN7Z|267%(qu)l - N Z P <W> em v @l gas, (22)
1=0 =0

Moreover, asf — P(f) is assumed Riemann-integrable, we get

N
@7 2 _ 1
Jim Z ( ) I = [ p(pag(nhali e 23)
whered, (e2™f) = [1,. .., 2m/(L=D]T,

From (21), (22), and (23), we deduce that the m&kfix converges elementwise almost surely towards
1
U= [Py 24)
0

One notices thalJ coincides with the covariance matrix of a stationary predes/ingP(f)? as a spectral
density.

Let us now consider the asymptotic behavioMof. The elementp, ¢) of this matrix writes

2277 2im _
Valpa = 2% S Dy Diygye F 000 () — 1)(1+ )
11,l2 0
where [12]

_ _ e—2i7rac(N+l)/N7 e—2i7rac e—2i7rac/N .

(1) 1 p _ 2ix (=) N2 —2im/]>[v,1 3 — ifz#0
) = 1y 3 e = T

N2 .

n=0 (N —-1)/2N ifz=0
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Once again, it is possible to verify thm%)(k)\ < C/kfor1 < |k| < N/2. After some computations

similar to those ofU v, , that lead to (21), we obtain

1% 1 2ix
[VNlpg — N ;0 N|DN71|2€_T(q_p)l — 0 a.s.
Therefore the almost sure linif of V  expresses as
V =ir /O 1 FP(f)?AL(e*™)df (e*™ )df - (25)
Similar derivations lead to the almost sure lifMif of Wy which expresses as follows
m’ /0 PP (26)

In order to analyze the right hand side of (16) in the asyniptaetgime, we also need to study the
asymptotic behavior o'y asN — oo. In parallel with the model (17) relative to the training Begce
symbols, we will assume that diagonal element®af (which represent the frequency mask for the
data transmission phase) satigty; = P(I/N) forl = 0,...,N — 1. The elemen{p, q) of T for
p,q=0,...,L — 1writes then

2i7r(7)l
g () e

Therefore, this matrix clearly converges to the Toeplitarirdl’ defined as
1
T = lim ENEy = / P(f)*d (2™ Ndl (2™ af = U. (27)
—0Q 0

In order to obtain more compact CRB expressions, we put irdfitphe Toeplitz structure of matrices
U, V andW obtained above and study the asymptotic regime where thenehtengthL is large {.e,,
L — o0). The rest of the study will be practically relevant in thiuations wheregV and L are large but

L < N.

In practice the mask profil®( f) is band limited. Indeed, some frequencies are forbidderrdero
to mitigate the interference with systems operating atcadljafrequencies or with systems using narrow
frequency bands within our band of interest. A typical exbargf such system is the radio amateur
system which is known to use frequencies that lie in the valarsed by VDSL or PLT systems. Because
of this band-limited nature aP(f), the integration in (24), (25) and (26) may be done only ovaultzset

of [0; 1] having a Lebesgue measure less than one. Consequently ded-known results provided in
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[13], these matrices are rank-deficient as sooil #®comes large, that is to say that, they admit some
negligible eigenvalues which prevent a standard inverddgrinspecting (7), one notices that the limit of
the Fisher Information Matrix is also singular.
We shall neglect the eigenvalues@fless than a givea > 0. LetAgi) ={f €0,1], P(f)? > ¢} and
defineF.(z) asF.(z) = 0if z < e andF.(z) = 1/x if + > . With a small notation abuse, we denote
by U7 the “pseudo-inverse” matrixU# = F_(U) wheree is chosen small enough so as to retain only
the dominant eigenvalues &f.

Using results introduced in [14] related to the CRB with silag Fisher Information Matrices, our
CRB analysis remains valid by replacing the mafrix! with U# in the CRB expressions foh™, 5]T.

Then, (16) and (15) can be modified as follows

%E (L= %Qtr (utT) + 0 (%) . (28)
E[(SN—aﬂ > i - (29)
2N3gl (W — VHU#V) g

Using results introduced in [15] concerning the asymptbg&bavior of Toeplitz matrices, it can be

shown that, whetd tends to infinity, (28) and (29) reduce to

N

—E ||y — hy|?] = 0%1AF)] (30)

and
302

3m (5 o2
NE|Gx =] 2 o D

\Agi)] being the Lebesgue measure of the useful frequency supﬁdrandG(e%”f) =S qe %
In [16], using different mathematical derivations and agidomain approach, similar results were ob-
tained in the context of single-carrier transmissions.

Equations (30) and (31) call for some observations. Firstclear that the CRBs over the channel and
the clock frequency offset decreaseil/N) and inO(1/N?) respectively. Furthermore, the activation
of one subcarrier ovef) has no effect on the asymptotic CRBs. By inspecting (31), tdudne term
f? in the integral, it also appears that a frequency mask thabigonstraining in the high frequencies
region can be detrimental to the clock frequency offsetmetion. It can also be noticed that in the
asymptotic regime, the estimation &thas no effect on the CRB over the channel. Indeed,\ifere

'Let Q.diag([Xo,...,)z]).Q" be the eigenvalue decomposition dF then F.(U) is defined asF.(U) =
Q.diag([F-(No),---, F-(A\1)]).Q"
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perfectly known, then (16) would be replaced ]B){wa - hN||2] > o2tr (Uy'Tw) /N. Getting to
(28), we only need to remove the teff{1/L) in its right hand member if we want to suppress the effect
of the estimation ob. Now, if the channel were perfectly known, ther given by (13) would have to
be replaced by = g''W yg, resulting inN3E [(SN - 6)2} > 302/ <871'2 fol fQP(f)2|G(62”f)|2df)

in the asymptotic regime. Therefore, by comparing this esgion with (31), we notice that the absence
of knowledge of the channel impulse response leadstdB loss on the CRB over the clock frequency

offset.
V. ESTIMATION ALGORITHMS

A. ML like Algorithms

Getting back to the received signal model (6) in the frequatamain, the Log-Likelihood function
to be minimizedC () is

L) =Yy — FynyRn(0)g|?.

The minimization of£(0) leads to the following ML based estimatessaindh y (see [17],[10] for more

explanations) :

oy = argmax; YNTIN(0)Yy

A Lo\ .
gy = (R%((SN)RN@N)) R%(fsN)F%,NYN
le = ENgN

where

Iy (5) = Fy xR (6) (RE(ORN(5)  RE(OFY v

is the orthogonal projection matrix onto the subspacg&®bfspanned by the columns Bfy xR (6).

For estimating the sampling clock offset, each try of a valiérequires the inversion @1 (§)Ry (6).
The implementation of this algorithm is therefore impreati However, it can be simplified in the asymp-
totic regime described at the end of the previous sectiotthignregime II (§) can indeed be replaced
with

L

Iy (0) = N

Fn vRy (O UPRYN (6)FY y -

Notice thatU# is independent of and so this matrix is computed only once. Notice also thatabse
we are only able to consider the significant eigenvalud$,ofie can only estimaté'(e™/) for f € Aﬁﬁ).

Nevertheless as the parameter of interediys values ofG(e?7/) out of this set are not needed, and
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therefore the estimafiey remains accurate. Here, the estimation algorithm becomes

oy = arg m?xY]%EN((S)YN (32)

1 o
hy = NENU#R%(5N)F%7NYN (33)

B. Sub-Optimal Algorithms

The complexity of the ML algorithm presented in the previsubsection prevents its implementation
in most practical situations even if one resorts to the diinption (32). It appears that the estimation
problem can be largely simplified by endowing the OFDM tmnagnsymbol with a particular structure. The
principle of the approach is the following. Neglecting tluelgive noise, let us assume that the received
sequencgyn(0),...,yn(N — 1)) consists of two identical parts of lengfi/2 each,i.e, yn(n) =
yn(n+N/2)forn =0,..., N/2—1. This comes down to setting tlié/2 symbols at the odd subcarriers
to zero in the transmitted OFDM symbol, or in other words, ttaéning sequencé€Dy o, ..., Dn,N—1)
in the frequency domain is asserted to satify o;41 = 0fori = 0,..., N/2 — 1. Atthe receiver side,
two consecutive FFTs with length/2 each are performed. éfwere equal t@), then the outputs of these
FFTs would be identical. Wheh+ 0, if we neglect the so-called Inter-Carrier Interferenc@l)Icreated
by this mis-synchronization, then the'® output of the second FFT is equal to thé" output of the first
FFT rotated by the anglgrmd. The delayd can thus be estimated from these rotations. With this new
model for the training sequence, the asymptotic analyséection IV remains obviously true as we have
simply choser@ = 2 (see (17)).

The idea of transmitting two identical signal halves andl@itipg this structure for synchronization is
not new. It appeared for the first time in [11] in the contextDadppler shift estimation. Notice that
when a Doppler shiffp,ppier/NT' €Xists, them™ output of the second FFT is equal to thé® output
of the first FFT rotated by a constant anglép.: (instead of2rmd in the Sampling Clock Offset
estimation context). Consequently the approach of [11}t&dée modified. This modification is reported

in subsection V-B.1.

In the context of sampling clock offset estimation, a clakai that consists in transmitting two whole
identical OFDM symbols, has already been exploited in [&] f8]. A brief description of these other

two algorithms will be given at the end of this section.
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B.1 An approach, based on a standard structured symbol

Assume thatV > 2L and letM = N/2, yn1(n) = yn(n) andyy2(n) = yn(n + M) forn =
0,...,M — 1. We have from (4)

| MLl 5
— N,2m Em(n(1+9)—1)
yni(n) = — gie™m +v(n)
M m=0 [=0 \/5
| MLl 5
_ N,2m m(n(1+9)—1) ,2immo
yn2(n) = —= gie M e +o(n+M). (34)
M m=0 [=0 \/5

Letyni = [yn(0),...,yn(M — 1)  andyno = [yn(M),...,yn(N — 1)]* be the vectors that repre-
sent the two OFDM symbols of size received successively before the FFT operation. Denol€ by
andY v the corresponding Fourier transformed vectors, ani let= [Y]TVJ,Y]TW]T. Let Wy, (9) be
the M x M matrix which elementk, m) is [¥ 1/ (0)]k.m = 53) (k—m(1+46))fork,m=0,...,M—1
wherey\” () is given by (20). Finally, le®,(5) = diag ([1,e%m, ... 2m(M=11]) From (34), we

get after some simple computations

Yy = VME,(5)©,,(6)Sy + Vi (35)
where
W (9) Iy
EM((S) = s @M(5) = >
W (0) O(0)
Sy = LD F
M = \/5 MEMLS

whereD ), = diag([Dn,0,Dn,2,-..,Dnm—2]), andV y represents the Gaussian additive noise term

after Fourier transformation. Becaude,;(0) = ©,,(0) = I,,, the vectorS;; would be the output of
any of the two FFT operations if we had no noise and if we fiad 0. Whené # 0, an Inter-Carrier
Interference term, accounted for by the non-diagonal texhtise matrix® ,,(¢6), appears at the outputs
of both FFT operations. Additionally, the second FFT opesain rotated versions of the elements of
S, elementn being rotated by the angerms.

From (35), we notice that the noiseless part of the receii@uhts\?N belongs to the subspace Gf¥
generated by the columns of thé x M matrix ¥,,(5)©,,(d). It is therefore possible to look for the

estimate’ that maximizes the norm of the projection?ﬁ}v over this subspace, in other words,
A~ ~ _1 ~
0 = argmax Y W, (6)©,,(0) (O ()L (5)L(5)©()) Oy ()L ()Y -
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To gain in simplicity, we approximat@!’,(5) by a diagonal matrix such aB!, (§)¥,(8) = I,, thus

neglecting the ICI term. In this case, after some calcutatithe last equation reduces to

M-1
§ = arg max <Z Re <Y21 Y 2””)) (36)

where we have writtelY y 1 = [Y10,...,Y1.m-1]t andYy o = [Yap,. .., Yo rr—1]T. Notice that, in the
context of Doppler shift estimation, the previous equatgsimpler since=— 2% has to be replaced with
e~ "™poppler gs in [11]. In practice, denoting by(s) the term to be maximized in (36), its derivative with
respect ta) writes

M-1

d_X - Z 27l (Jm (Yg,lYffl cos 277[5) —NRe (Yg,lYffl sin 277[5))

dé

By cancelling out this derivative, and by using the apprationscos27ld =~ 1 etsin2nld =~ 27ld
which are valid for the most common valuesid® /2, we obtain
Silem (Yavy)
2n Yt e (Vo)

Let us now turn to the estimation of the chanhgl. Merging (35) and (17) leads to the following model

S

37)

WhereXM = diag([XNvo, XN,Q, . ,XNJV,Q]) andEM = BMFJW,L with BJM = diag([P(O), P(Z/N),
.., P((N —2)/N)]). The Least-Square (LS) estimate of the channel writes

2 . ) ) ) 1 . L
g=\17 <E%1§%1@%1(5)211\{4(5)2M(5)@M(5)XMEM) ElLxXLelldelLd)Yy. (39

The inversion operation in this equation increases dramaftithe implementation complexity. For this

reason the simpler estimate

A H/ 3
g—2\/—_ X3 @ (0)®"(6)Y

can be used instead. Notice that (40) refers to the standatdienple correlation estimator. We can

(40)

further simplify (40) by neglecting the ICI represented bg hon-diagonal terms and by the slight atten-

uation on the diagonal terms in the ma@w(ﬁ). This simplification results in

= el ozl (h)Y 41
g 2\/—__ m(0)En(0)Y N (41)
i i _1)2
whereE , (§) = I, @ Ey7(0) with Ep,(6) = diag([L,e =9, ..., =5 0)).
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Even if we work in the frequency domaing,, after the FFT), we do estimate first the temporal
impulse response of the chane(41) and not directly the frequency response of the chahpe{42).
Indeed a frequency estimation of the channel, subcarrisubgarrier, would not use the coherence band-
width of the channel and thus would not profit from the inducedrelation between adjacent subcarriers.
Moreover, if we plan to us2048 subcarriers (as done in VDSL), we would need to estimate teio
parameters instead of only abdp for the temporal impulse response.

Once this is done, the channel response which is neededjuneiney domain for further operations such

as equalization, can then be easily obtained through

A~

hy =PyFn 1§ . (42)

B.2 Other methods for the sampling clock offset estimation

Most of the algorithms met in the sampling clock offset estin literature are based on the phase
comparison between two known OFDM symbols. Neverthelegs, minor modifications, these algo-
rithms can be adapted to the situation where one transm@teldM symbol consists of two identical

halves. In this case, the received signal is described by (34

Liu’s algorithm [8]

Let
Oy (k) =2LYo, — LY ) = Z(Yz,kaik).

One can remark that

(I)N(k:) = 2wkd + vy (43)

wherev, refers to a noise which vanishes in absence of the additisen¢n) and when the ICI is
neglected. By applying on (43) a least square approach, amelstain, as done in [8], the following

estimate for
2 SN2 pan (k) 2 ople T R (VoY)

(w2t i) (s )

0= (44)

Speth'’s algorithm [9]

LetC; ={0,--- ,N/4 —1}andCy = {N/4,--- ,N/2 — 1}. Define¢; and¢, as

P12 = £( Z Yok Y7'y) -

kECl‘g
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It can be shown that, without additive noise and Ik equal to the quantit§(¢2 — ¢1) /7 N. Therefore,

[9] suggests the following estimate

o 2

= —(¢2 — . 4
b= (02— 1) (45)
VI. SIMULATIONS

We consider a powerline OFDM system operating within theddaMHz, 20 MHz|. The magnitude
of the channel transfer function used in this section isegg@nted on Fig.1. The corresponding channel
impulse response sampled28tMHz is made up oB0O complex coefficients. Via computer simulations,
we compare the performance of the sub-optimal methodsdinted in section V with existing methods
as well as with the Cramér-Rao Bounds.

In Fig. 2, Mean Squares Errors (MSE) of the estimate afidh are plotted versus the lengfti
of the known OFDM symbol. Her&' varies from256 to 4096, the Signal-to-Noise Ratio (SNR) is fixed
to 20dB, ands is equal to7.10~° (i.e., 70 ppm). The MSE are averaged ov#0 trials. At each trial, the
training sequence made of QPSK symbols is different.

The figures show that the performance of the ML is very cloghe¢dCRB. Concerning the estimation
of 4, the estimator (37) offers good performance. Its perfoiceas even close to that of the ML estimator
until N = 2048. Recall that the estimator (37) does not take into account@h. Unfortunately, from
N = 2048, the ICI can not be neglected anymore, therefore the pediocaof the estimator (37) reaches
a floor. We also notice that this estimator provides a beteiopmance than each of the estimators (44)
introduced in [8] and (45) introduced in [9]. Concerning t@nnel estimation, the LS estimator given
by (42) and (39) provides a remarkable performance. On th&any, the correlator estimator given by
(42) and (41) shows bad performance as sooVds greater thars12. Thus the correlator estimator
is strongly sensitive to the presence of the ICI. Finally emark that the asymptotic CRB fits well the
exact CRB whatever is the value &f.

In Fig. 3, the MSE and asymptotic CRB are displayed veréufor two different values of (10 ppm
and70 ppm) and two different values of the SNR)(dB and20 dB). Recall that the asymptotic Cramér-
Rao Bounds do not depend én
We notice that, for small values adf, the estimator (37) shows a MSE that does not depend mucheon th
value ofd. However, whenV is greater tharR048, then the ICI effect becomes important and affects the
performance of this estimator. As for the channel estimatibe ICI effect occurs at smaller values of
N and dramatically affects the performance. Actually, thep@duces an effective noise that quickly

dominates the additive noise because its variance grovisNvind witho. For this reason, the MSE of
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the channel estimator at a SNR 2#f dB meets the MSE at0 dB as N grows. The value ofV where
these two MSEs become equal decreases dvith

The last figure (Fig. 4) shows the performance vs. the SNRging fixed to2048 andé to 70 ppm.
The estimator (37) aof shows a MSE close to the CRB in these conditions, and outpesfthe estimators
(44) and (45). The channel estimator given by (42) and (39)ss close to the CRB. Concerning the
channel estimator by correlation, as the SNR grows, the &kusoise becomes negligible in comparison

with the ICI, which results in a performance floor.

VIl. CONCLUSION

In this paper, we considered the issue of joint samplingkotdfset estimation and channel estimation
for OFDM modulation used in wireline transmissions. Theneation performance has been studied
through the CRB analysis. Simple expressions for the CRB baen obtained in the asymptotic regime,
i.e., when the number of subcarriers and the channel length aye. [dhe ML joint algorithm has been

derived. Sub-optimal approaches have also been proposerbarpared to the existing literature.

APPENDIX
I. PROOF OFLEMMA 1

For proving lemma 1, we show thEt[\gN\‘l] decreases rapidly enough so that almost sure conver-
gence is guaranteed by the Borel-Cantelli lemma. In thisfp@ designates a constant that can change
through the equations.

We have
4 C
Ele'] < % X002
k1,k2,k3,ka l1,l2,13,l4

1

— . (46
k1koksky (46)

E[|DN,1y DNty —ky DNy DNy — ko DN s DN s —ks DN DNy — k]

Because of the independence of the random variafdles,; } and the fact that they are zero mean, the
expectation term in the right hand side member of this inkityua zero if there exists in its argument at
least one term that appears only once. The situations whierg t&2erm appears at least twice are described
by a finite number of systems of four equations in the indicgs. . , k4,11, ...,l4. One such system is
forinstance = ls,l3 = l4, k1 = ko, k3 = k4. Let

C 1
Iv=pi2 2B 1DNaDN il | Dy Do '] 5772
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be the corresponding term in the RHS member of (46). We have

l[aN] N-1
C 1/2 1
Iy < e Z ZE [’DN,IDN,lfk‘ﬂ 2
k=1 1=k
2
laN| N—1
C 1/4 1/4 1
< | 2 S E[ol] R [Ivil] T
k=1 1=k
2
c ety
< el _
- N k2
k=1
C
é W

where the first two inequalities result from Cauchy-Schavaméquality and the third one is deduced from

condition (18). Similar results can be obtained for the pystems of equations in the indices, leading

finally to the inequalityE [|£N|4} < C/N?. Markov’s inequality implies that' e > 0, P (|¢x] > €) <

E(l¢n ")
64

= O(N~2). Therefore ) -%_, P (|¢n| > €) < oo and the result follows from the Borel-Cantelli

lemma.
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Fig. 1. Magnitude of the channel transfer function
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