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We consider the problem of sampling clock synchronization and channel estimation for Orthogonal Frequency

Division Multiplex (OFDM) systems. In such systems, when the number of subcarriers is large, a sampling clock

frequency mismatch between the transmitter and the receiver dramatically degrades the performance. So far, the lit-

erature proposes ad-hoc estimation algorithms. However, acomplete performance analysis, especially the Cramér-

Rao Bound (CRB) derivation, remains to be done. Obviously, the channel impulse response is unknown at the

receiver and also needs to be estimated. Therefore we evaluate theoretically the Cramér-Rao Bound associated

with this joint estimation. When the number of subcarriers and the channel degree are large, very compact closed-

form expressions for the CRB are obtained. Furthermore, along with the ML estimator, we introduce sub-optimal

estimation algorithms and compare them with some existing approaches and with the CRB.
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I. INTRODUCTION

The detection of Orthogonal Frequency Division Multiplexing (OFDM) symbols cannot be done prop-

erly without a reliable clock synchronization. One synchronization step consists in estimating the OFDM

symbol timing, which is the delay between the transmitted and the received OFDM symbols. In a certain

number of applications where these symbols are short, estimating this delay is enough. However, as soon

as the number of samples per OFDM symbol (or equivalently, the number of subcarriers) becomes large,

the frequency offset between the transmitter’s sampling clock and the receiver’s sampling clock in its

free oscillation mode has to be considered too. Indeed this offset leads to a sampling delay that drifts

linearly in time over the OFDM symbol. Without any compensation, this drift hampers the receiver’s

performance as soon as the product of the relative clock frequency offset with the number of subcarriers

becomes non negligible in comparison with one ([1]). For instance, in Very high speed Digital Subscriber

Lines (VDSL) transmissions, these two quantities can respectively reach10−4 and4096 ([2]), making the

clock frequency offset compensation mandatory. As an otherexample, Power Line Transmissions (PLT)

in the band[1 MHz, 20 MHz] ([3]) show a similar behavior with respect to this phenomenon.

As it is well known, the part of the OFDM symbol that enters theFast Fourier Transform (FFT) device at

the receiver comes after a cyclic prefix. As the latter has a length comparable to the channel impulse re-

sponse length, it is precisely when the channel is long that along duration has to be chosen for the useful

part of the OFDM symbol, in order to reduce the impact of the cyclic prefix on the spectral efficiency. It

is therefore worth considering the problem of the joint estimation of the clock frequency offset and of the

channel impulse response, particularly in these situations where the observation window has to be rather

large.

The literature proposes several data-aided algorithms (inthe sense that one or several OFDM symbols are

devoted to training) to perform the estimation of the clock frequency offset ([4], [5], [6], [7], [8], [9]). In

some of these approaches, the channel is implicitly assumedperfectly known while in others, the knowl-

edge of the channel is not required to perform the frequency offset estimation. In this paper, in order to

better understand the interactions between these two estimations, we begin in section III by giving the

Cramér-Rao Bound (CRB) associated with this joint estimation problem. In section IV, we simplify the

closed-form expressions of the CRB when the observation window length grows large. It appears that

these expressions can be simplified further when the channeldegree is large. This is in particular the

case of VDSL or the PLT wireline channels, whose degree is often of the order100. Section V deals

with practical estimation algorithms. We begin by the Maximum-Likelihood (ML) estimator for which

SUBMITTED VERSION November 24, 2004



S. GAULT, W. HACHEM, AND P. CIBLAT 3

we propose a simplified version. Because the ML algorithm remains complicated even in its simplified

version, we study simple estimation algorithms that require OFDM training symbols having particular

structures. In section VI, the ML algorithm as well as sub-optimal algorithms are tested and compared to

the CRBs. Concluding remarks are drawn in Section VII.

In the sequel,E is the expectation operator andP is the probability measure.IP stands for theP ×P

identity matrix andFP,Q is theP ×Qmatrix which element at thepth row andqth column is 1√
P
e−

2iπ
P

pq

for p = 0, . . . , P − 1 andq = 0, . . . , Q− 1. The Kronecker product between matrices is denoted⊗. The

argument of a complex-valued scalar is denoted∠.

II. SYSTEM MODEL

Let us consider the reception of one standard OFDM block which has passed through a non-flat fading

channel. After removing the guard interval, the observation window size isT0 = NT whereN is the

number of subcarriers,T is the sampling period at the transmitter and1/T0 the spacing between two

adjacent subcarriers. Consequently the continuous-time received signaly(a)
N (t) writes as follows :

y
(a)
N (t) =

∑

k∈Z

dN,kg
(a)(t− kT ) + v(a)(t) (1)

where(dN,k)k=0,...,N−1 represents the output of theN fold Inverse FFT (IFFT) device of the transmitter.

This OFDM symbol is devoted to training and therefore, is assumed to be known at the receiver. As usual,

N is a power of2. The unknown impulse responseg(a)(t) represents the complete channel that includes

the transmit filter, the propagation channel, and the receiver low-pass filter. Finallyv(a)(t) is an additive

noise independent of the data.

Because of the oscillators’ imperfection, the transmitter’s and receiver’s clocks are not synchronized.

Thereforey(a)
N (t) is sampled at(1 + δ)T instead ofT , whereδ is an unknown offset lying in the known

interval [−δmax, δmax]. The parameterδmax is related to the precision of the oscillators used in the

transmission chain. The ASDL/VDSL norms [2], for instance,recommend thatδmax be equal to10−4.

The discrete-time received signalyN (n) = y
(a)
N (n(1 + δ)T ) is then written

yN(n) =
∑

m∈Z

dN,n−mg
(a)(mT + nδT ) + v(n) (2)

wherev(n) = v(a)(n(1 + δ)T ) is assumed white Gaussian circular with zero-mean and knownvariance

σ2 = E[|v(n)|2]. As usual,g(a)(t) is assumed time limited with the time support included in[0, LT )

whereL is a known integer. We thus writegl = g(a)(lT ) for l = 0, . . . , L − 1. The Fourier transform
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G(a)(f) of g(a)(t) is furthermore assumed to have an effective frequency support included in the interval

[0, 1/T ]. With these assumptions, it is possible to make the useful approximation

∀k ∈ {0, . . . , N − 1} ,
∑

m

g(a) ((m+ nδ)T ) e−
2iπ
N

mk = e
2iπ
N

knδ
L−1∑

l=0

gle
− 2iπ

N
lk (3)

that can be justified by the following argument:k being a chosen integer, letg(a)
k,nδ(t) = g(a)(t +

nδT )e−
2iπ
N

k t
T , a function which Fourier Transform isG(a)

(
f + k

NT

)
e2iπ(f+ k

NT
)nδT . Using Poisson

summation formula, we then have

∑

m

g
(a)
k,nδ(mT ) =

1

T

∑

l

G(a)

(
l

T
+

k

NT

)
e2iπ(l+ k

N
)nδ .

The left hand side of this equation is precisely the left handside of (3). Moreover, as the effective support

ofG(a)(f) belongs to[0, 1/T ], then the right hand side is1TG
(a)
(

k
NT

)
e

2iπ
N

knδ. By the sampling theorem,

this quantity coincides withe
2iπ
N

knδ∑
l gle

− 2iπ
N

lk, hence equation (3).

As resulting from an inverse FFT operation, the transmittedsamples(dN,k) write

dN,k =
1√
N

N−1∑

n′=0

DN,n′e
2iπ
N

kn′

where(DN,n′)n′=0,...,N−1 are the training symbols in the frequency domain, sometimesreferred to as the

pilot “subcarriers”. Plugging this equation and the approximation (3) into (2), the received signal writes

yN(n) =
1√
N

N−1∑

n′=0

L−1∑

l=0

DN,n′gle
2iπ
N

n′(n(1+δ)−l) + v(n) . (4)

Let the superscriptT be the transposition operator. PuttingyN = [yN (0), . . . , yN (N − 1)]T, vN =

[v(0), . . . , v(N − 1)]T andg = [g0, . . . , gL−1]
T, we can then write

yN = RN (δ)g + vN (5)

where the element(n, l) of the matrixRN (δ) is [RN (δ)]n,l = 1√
N

∑N−1
n′=0DN,n′e

2iπ
N

n′(n(1+δ)−l) for

n = 0, . . . , N − 1 andl = 0, . . . , L − 1. After removing the guard interval (which duration is assumed

greater thanLT ), the vector output of the FFT device at the receiver is then

YN = FN,NyN = FN,NRN (δ)g + FN,NvN (6)

In short, this equation describes the structure of the OFDM symbol collected at the output of the FFT

device during the training phase.
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This paper will focus on the estimation issue of the parameter δ and also of the channel. In practice we

do not need the knowledge of the channelg but rather the knowledge of its Fourier transform. Moreover,

during the training and data transmission modes, the OFDM symbols are often subjected to a certain fre-

quency mask constraint. Therefore only the knowledge of thefrequency response of the channelg at the

FFT frequencyn/N (with n = 0, . . . , N − 1) weighted by the mask is actually necessary at the receiver.

More precisely, let{PN,n}n=0,...,N−1 be the sequence of positive real numbers representing the mask

profile and letFN,L be the matrix extracted fromFN,N by keeping its firstL columns. Assuming that the

frequency clock offset is perfectly compensated for duringthe data phase, it is easy to check that the FFT

output vector for an OFDM symbol during the data phase writesY
(data)
N =

√
ND

(data)
N PNFN,Lg + vN

whereD
(data)
N is aN × N diagonal matrix that bears on its diagonal the random information symbols,

andPN = diag ([PN,0, . . . , PN,N−1]). Notice thatFN,Lg stands for the Fourier transform of vectorg.

Because the receiver will have to compensate for the channeldistorsions in the frequency domain during

the data transmission phase, an estimate of the vectorhN = PNFN,Lg should therefore be available

at its site. Our purpose is therefore to derive the Cramér-Rao Bound on the column vector
[
h̃T

N , δ
]T

whereh̃N =
[
Re
(
hT

N

)
,Im

(
hT

N

)]T
, and whereRe(.) andIm(.) denote the real and the imaginary

parts respectively.

III. E XACT CRAMÉR-RAO BOUND

Considering the general model (6), the vectorYN is circular Gaussian with the unknown meanµN =

FN,NRN (δ)g and the known covariance matrixσ2IN . Additionally, the complexN ×Lmatrix function

RN (δ) is differentiable. Consequently, according to [10], the Fisher Information Matrix (FIM) associated

with the parameter vectorθ =
[
g̃T, δ

]T
with g̃ =

[
Re
(
gT
)
,Im

(
gT
)]T

expresses as follows

JN =
2

σ2
Re

[
∂µH

N

∂θ
.
∂µN

∂θ

]

where the superscriptH stands for the transpose-conjugate and∂µN
∂θ

= [∂µN
∂θ0

, · · · , ∂µN
∂θ2(L+1)

]. More pre-

cisely, asµN = FN,NRN (δ)g andFH
N,NFN,N = IN , one can then easily show that

JN =
2

σ2




NRe(UN ) −NIm(UN ) N2
Re(VNg)

NIm(UN ) NRe(UN ) N2
Im(VNg)

N2
Re(gHVH

N ) −N2
Im(gHVH

N ) N3gHWNg


 (7)
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where

UN =
1

N
RH

N (δ)RN (δ)

VN =
1

N2
RH

N (δ)QN (δ)

WN =
1

N3
QH

N (δ)QN (δ)

andQN (δ) = dRN (δ)/dδ. The reason for introducing the factors1/N , 1/N2, and1/N3 will become

apparent later. By applying the well known formulas for the inversion of block partitioned matrices, we

obtain :

J−1
N =


 AN bN

bT
N cN


 (8)

where

AN =
σ2

2N




 Re(U−1

N ) −Im(U−1
N )

Im(U−1
N ) Re(U−1

N )


+

1

γN


 Re(βN )

Im(βN )



[

Re(βT
N ) Im(βT

N )
]

 (9)

bN = − σ2

2N2γN


 Re(βN )

Im(βN )


 (10)

cN =
σ2

2N3γN
(11)

with

βN = U−1
N VNg (12)

γN = gH
(
WN − VH

NU−1
N VN

)
g. (13)

As a consequence, we can find the following inequalities

E
[
‖ĝN − g‖2

]
≥ tr (AN ) =

σ2

2N

(
2tr
(
U−1

N

)
+

1

γN
‖βN‖2

)
(14)

and

E

[(
δ̂N − δ

)2
]
≥ cN =

σ2

2N3γN
(15)

whereĝN andδ̂N are estimates ofg andδ obtained from the observationYN .

As hN = PNFN,Lg, the CRB associated with the parameters of interest
[
h̃T

N , δ
]T

can be written as

follows 
 CRB

(h,h)
N CRB

(h,δ)
N

CRB
(δ,h)
N CRB

(δ,δ)
N


 =


 ẼNAN ẼT

N ẼNbN

bT
N ẼT

N cN



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whereẼN =


 Re (EN ) −Im (EN )

Im (EN ) Re (EN )


 andEN = PNFN,L. It yields that

E

[
‖ĥN − hN‖2

]
≥ σ2

2N

(
2tr
(
U−1

N TN

)
+

βH
NTNβN

γN

)
(16)

whereĥN is any unbiased estimate ofhN andTN = EH
NEN .

Expressions (15) and (16) provide the Cramér-Rao lower bound for the parameters of interest. Nev-

ertheless these expressions are difficult to interpret. To overcome this drawback and to obtain simpler

expressions, we will analyze the asymptotic behavior of these expressions. By “asymptotic”, we mean

that a large number of subcarriers, then a long channel impulse response are considered.

IV. A SYMPTOTIC CRAMÉR-RAO BOUND

By “asymptotic” one frequently means that the number of observed samples or equivalently the num-

berN of subcarriers in our context, grows towards infinity, the channel lengthL being held fixed. With

some assumptions, it will appear that in this regime, matricesUN , VN , andWN converge elementwise

to deterministic matricesU, V, andW respectively. This will be the first part of this section. However,

in our particular situation, it is interesting to go furtherand to assume in a second step thatL → ∞. As

said in the introduction, this assumption has a practical interest in wireline communications. Notice that

we assumeN → ∞ thenL→ ∞. In practice, our study will be relevant in situations whereN andL are

large butL� N .

As a first step, we thus focus on the asymptotic analysis of theCRB asN → ∞. Most of the training

sequence structures encountered in the literature ([8], [9], [11]) can be encompassed within an unique

framework by writing the elements of the training sequence(DN,0, . . . ,DN,N−1) as follows

DN,l = XN,lP (l/N) (17)

wheref 7→ P (f) is a bounded real function defined on the interval[0, 1] and integrable in the Riemann

sense. Note thatP (f) refers to the frequency mask constraint. LetQ be any integer. The variableXN,l

is a random variable of zero-mean and varianceE[|XN,l|2] = Q if Q divides l, andE[|XN,l|2] = 0

otherwise. The random variables(XN,l)l=0,...,N−1 are furthermore assumed to be independent and their

8th moments exist and are uniformly bounded,i.e., there exists a constantC such that

sup
N

max
l=0,...,N−1

E

[
|XN,l|8

]
< C . (18)
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With this definition ofXN,l, the energy consumed by the OFDM symbol associated with(DN,l)l=0,...,N−1

does not depend onQ.

The asymptotic behavior of the CRB is driven by the asymptotic behavior of the matricesUN , VN and

WN whenN → ∞, the channel lengthL being fixed. The following lemma will help us to do this

asymptotic study, since the elements of matricesUN , VN andWN can be decomposed according to the

expression ofξN .

Lemma 1: Letα > 0 and letφN : N → C be a function such that for every integerk with 1 ≤ |k| ≤
bαNc, |φN (k)| ≤ C

k whereC is a constant that does not depend onN . Then, for every real numberr,

ξN =
1

N

bαNc∑

k=1

N−1∑

l=k

DN,lD
∗
N,l−ke

− 2iπ
N

lrφN (k)

converges almost surely to0 asN → ∞.

Proof: See Appendix A.

Let us begin with the evaluation ofUN . The(p, q) element of this matrix for{p, q} ∈ {0, . . . , L−1}
writes

[UN ]p,q =
1

N

N−1∑

l1,l2=0

DN,l2D
∗
N,l1e

− 2iπ
N

(ql2−pl1)ψ
(0)
N ((l1 − l2)(1 + δ)) (19)

where

ψ
(0)
N (x) =

1

N

N−1∑

n=0

e−
2iπ
N

nx =





e−iπ N−1
N

x 1
N

sinπx
sin πx

N
if x 6= 0

1 if x = 0
(20)

Equation (19) can be rewritten

[UN ]p,q = UN,0 + UN,1 + UN,2

where

UN,0 =
1

N

N−1∑

l=0

|DN,l|2e−
2iπ
N

(q−p)l

UN,1 =
1

N

N−1∑

k=1

N−1∑

l=k

DN,lD
∗
N,l−ke

− 2iπ
N

(q−p)le−
2iπ
N

pkψ
(0)
N (k(1 + δ))

UN,2 =
1

N

N−1∑

k=1

N−1−k∑

l=0

DN,lD
∗
N,l+ke

− 2iπ
N

(q−p)le
2iπ
N

pkψ
(0)
N (−k(1 + δ)) .

Let us prove thatUN,1 converges to0 almost surely. The proof of the convergence ofUN,2 towards0 can

be done similarly.UN,1 can be written

UN,1 = UN,1,1 + UN,1,2 + UN,1,3
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where

UN,1,1 =
1

N

b(N
2
−1) 1

1+δ
c∑

k=1

Sk , UN,1,2 =
1

N

bN−1
1+δ

c∑

b(N
2
−1) 1

1+δ
c+1

Sk and UN,1,3 =
1

N

N−1∑

bN−1
1+δ

c+1

Sk

and Sk is the inner sum in the expression ofUN,1. It is easy to check that|ψ(0)
N (x) | ≤ 1

2|x| for

|x| ≤ N/2. Lemma 1 can therefore be used after identifying the function φN (k) in its statement with

e−
2iπ
N

pkψ
(0)
N (k(1 + δ)), the numberr with q − p andα with 1

2(1+δ) . By consequence,UN,1,1 → 0

a.s. whenN → ∞. The termsUN,1,2 andUN,1,3 can be treated similarly after noticing that
∣∣∣ψ(0)

N (x)
∣∣∣ is

periodic with periodN .

It leads to

[UN ]p,q −
1

N

N−1∑

l=0

|DN,l|2e−
2iπ
N

(q−p)l → 0 a.s. (21)

According to the definition of the sequence(DN,l)l=0,...,N−1 introduced in (17), and by using tools similar

to those of the proof of lemma 1, it can be seen that

1

N

N−1∑

l=0

|DN,l|2e−
2iπ
N

(q−p)l − Q

N

N
Q
−1∑

l=0

P

(
lQ

N

)2

e−
2iπQ

N
(q−p)l → 0 a.s. (22)

Moreover, asf 7→ P (f) is assumed Riemann-integrable, we get

lim
N→∞

Q

N

N
Q
−1∑

l=0

P

(
lQ

N

)2

e−
2iπQ

N
(q−p)l =

∫ 1

0
P (f)2dL(e2iπf )dH

L(e2iπf )df (23)

wheredL(e2iπf ) = [1, · · · , e2iπf(L−1)]T.

From (21), (22), and (23), we deduce that the matrixUN converges elementwise almost surely towards

U =

∫ 1

0
P (f)2dL(e2iπf )dH

L(e2iπf )df . (24)

One notices thatU coincides with the covariance matrix of a stationary process havingP (f)2 as a spectral

density.

Let us now consider the asymptotic behavior ofVN . The element(p, q) of this matrix writes

[VN ]p,q =
2iπ

N2

N−1∑

l1,l2=0

DN,l2D
∗
N,l1e

− 2iπ
N

(ql2−pl1)l2ψ
(1)
N ((l1 − l2)(1 + δ))

where [12]

ψ
(1)
N (x) =

1

N2

N−1∑

n=0

ne−
2iπ
N

nx =





(N−1)e−2iπx(N+1)/N−Ne−2iπx+e−2iπx/N

N2(e−2iπx/N−1)2
if x 6= 0

(N − 1)/2N if x = 0
.
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Once again, it is possible to verify that|ψ(1)
N (k)| < C/k for 1 ≤ |k| ≤ N/2. After some computations

similar to those of[UN ]p,q that lead to (21), we obtain

[VN ]p,q − iπ
1

N

N−1∑

l=0

l

N
|DN,l|2e−

2iπ
N

(q−p)l → 0 a.s.

Therefore the almost sure limitV of VN expresses as

V = iπ

∫ 1

0
fP (f)2dL(e2iπf )dH

L(e2iπf )df . (25)

Similar derivations lead to the almost sure limitW of WN which expresses as follows

W =
4

3
π2

∫ 1

0
f2P (f)2dL(e2iπf )dH

L(e2iπf )df . (26)

In order to analyze the right hand side of (16) in the asymptotic regime, we also need to study the

asymptotic behavior ofTN asN → ∞. In parallel with the model (17) relative to the training sequence

symbols, we will assume that diagonal elements ofPN (which represent the frequency mask for the

data transmission phase) satisfyPN,l = P (l/N) for l = 0, . . . , N − 1. The element(p, q) of TN for

p, q = 0, . . . , L− 1 writes then

[TN ]p,q =
1

N

N−1∑

l=0

P

(
l

N

)2

e−
2iπ
N

(q−p)l .

Therefore, this matrix clearly converges to the Toeplitz matrix T defined as

T = lim
N→∞

EH
NEN =

∫ 1

0
P (f)2dL(e2iπf )dH

L(e2iπf )df = U . (27)

In order to obtain more compact CRB expressions, we put into profit the Toeplitz structure of matrices

U, V andW obtained above and study the asymptotic regime where the channel lengthL is large (i.e.,

L → ∞). The rest of the study will be practically relevant in the situations whereN andL are large but

L� N .

In practice the mask profileP (f) is band limited. Indeed, some frequencies are forbidden in order

to mitigate the interference with systems operating at adjacent frequencies or with systems using narrow

frequency bands within our band of interest. A typical example of such system is the radio amateur

system which is known to use frequencies that lie in the interval used by VDSL or PLT systems. Because

of this band-limited nature ofP (f), the integration in (24), (25) and (26) may be done only over asubset

of [0; 1] having a Lebesgue measure less than one. Consequently, due to well-known results provided in
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[13], these matrices are rank-deficient as soon asL becomes large, that is to say that, they admit some

negligible eigenvalues which prevent a standard inversion. By inspecting (7), one notices that the limit of

the Fisher Information Matrix is also singular.

We shall neglect the eigenvalues ofU less than a givenε > 0. Let ∆(ε)
P = {f ∈ [0, 1], P (f)2 ≥ ε} and

defineFε(x) asFε(x) = 0 if x < ε andFε(x) = 1/x if x ≥ ε. With a small notation abuse, we denote

by U# the “pseudo-inverse” matrix1 U# = Fε(U) whereε is chosen small enough so as to retain only

the dominant eigenvalues ofU.

Using results introduced in [14] related to the CRB with singular Fisher Information Matrices, our

CRB analysis remains valid by replacing the matrixU−1 with U# in the CRB expressions for[h̃T, δ]T.

Then, (16) and (15) can be modified as follows

N

L
E

[
‖ĥN − hN‖2

]
≥ σ2

L
tr
(
U#T

)
+ O

(
1

L

)
. (28)

E

[(
δ̂N − δ

)2
]
≥ σ2

2N3gH (W − VHU#V)g
(29)

Using results introduced in [15] concerning the asymptoticbehavior of Toeplitz matrices, it can be

shown that, whenL tends to infinity, (28) and (29) reduce to

N

L
E

[
‖ĥN − hN‖2

]
≥ σ2|∆(ε)

P | (30)

and

N3
E

[
(δ̂N − δ)2

]
≥ 3σ2

2π2
∫ 1
0 f

2P (f)2|G(e2iπf )|2df
, (31)

|∆(ε)
P | being the Lebesgue measure of the useful frequency support∆

(ε)
P andG(e2iπf ) =

∑L−1
l=0 gle

−2iπlf .

In [16], using different mathematical derivations and a time domain approach, similar results were ob-

tained in the context of single-carrier transmissions.

Equations (30) and (31) call for some observations. First, it is clear that the CRBs over the channel and

the clock frequency offset decrease inO(1/N) and inO(1/N3) respectively. Furthermore, the activation

of one subcarrier overQ has no effect on the asymptotic CRBs. By inspecting (31), dueto the term

f2 in the integral, it also appears that a frequency mask that istoo constraining in the high frequencies

region can be detrimental to the clock frequency offset estimation. It can also be noticed that in the

asymptotic regime, the estimation ofδ has no effect on the CRB over the channel. Indeed, ifδ were

1Let Q.diag([λ0, . . . , λL]).QH be the eigenvalue decomposition ofU then Fε(U) is defined asFε(U) =

Q.diag([Fε(λ0), . . . , Fε(λL)]).QH
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perfectly known, then (16) would be replaced byE

[
‖ĥN − hN‖2

]
≥ σ2tr

(
U−1

N TN

)
/N . Getting to

(28), we only need to remove the termO(1/L) in its right hand member if we want to suppress the effect

of the estimation ofδ. Now, if the channel were perfectly known, thenγN given by (13) would have to

be replaced byγN = gHWNg, resulting inN3
E

[
(δ̂N − δ)2

]
≥ 3σ2/

(
8π2

∫ 1
0 f

2P (f)2|G(e2iπf )|2df
)

in the asymptotic regime. Therefore, by comparing this expression with (31), we notice that the absence

of knowledge of the channel impulse response leads to a6 dB loss on the CRB over the clock frequency

offset.

V. ESTIMATION ALGORITHMS

A. ML like Algorithms

Getting back to the received signal model (6) in the frequency domain, the Log-Likelihood function

to be minimizedL(θ) is

L(θ) = ‖YN − FN,NRN (δ)g‖2 .

The minimization ofL(θ) leads to the following ML based estimates ofδ andhN (see [17],[10] for more

explanations) :




δ̂N = arg maxδ YH
NΠN (δ)YN

ĝN =
(
RH

N (δ̂N )RN (δ̂N )
)−1

RH
N (δ̂N )FH

N,NYN

ĥN = EN ĝN

where

ΠN (δ) = FN,NRN (δ)
(
RH

N (δ)RN (δ)
)−1

RH
N (δ)FH

N,N

is the orthogonal projection matrix onto the subspace ofC
N spanned by the columns ofFN,NRN (δ).

For estimating the sampling clock offset, each try of a valueof δ requires the inversion ofRH
N (δ)RN (δ).

The implementation of this algorithm is therefore impractical. However, it can be simplified in the asymp-

totic regime described at the end of the previous section. Inthis regime,ΠN (δ) can indeed be replaced

with

ΠN (δ) =
1

N
FN,NRN (δ)U#RH

N (δ)FH
N,N .

Notice thatU# is independent ofδ and so this matrix is computed only once. Notice also that, because

we are only able to consider the significant eigenvalues ofU, we can only estimateG(e2iπf ) for f ∈ ∆
(ε)
P .

Nevertheless as the parameter of interest ishN , values ofG(e2iπf ) out of this set are not needed, and
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therefore the estimatêhN remains accurate. Here, the estimation algorithm becomes

δ̂N = arg max
δ

YH
NΠN (δ)YN (32)

ĥN =
1

N
ENU#RH

N (δ̂N )FH
N,NYN (33)

B. Sub-Optimal Algorithms

The complexity of the ML algorithm presented in the previoussubsection prevents its implementation

in most practical situations even if one resorts to the simplification (32). It appears that the estimation

problem can be largely simplified by endowing the OFDM training symbol with a particular structure. The

principle of the approach is the following. Neglecting the additive noise, let us assume that the received

sequence(yN (0), . . . , yN (N − 1)) consists of two identical parts of lengthN/2 each,i.e., yN (n) =

yN (n+N/2) for n = 0, . . . , N/2−1. This comes down to setting theN/2 symbols at the odd subcarriers

to zero in the transmitted OFDM symbol, or in other words, thetraining sequence(DN,0, . . . ,DN,N−1)

in the frequency domain is asserted to satisfyDN,2l+1 = 0 for l = 0, . . . , N/2 − 1. At the receiver side,

two consecutive FFTs with lengthN/2 each are performed. Ifδ were equal to0, then the outputs of these

FFTs would be identical. Whenδ 6= 0, if we neglect the so-called Inter-Carrier Interference (ICI) created

by this mis-synchronization, then themth output of the second FFT is equal to themth output of the first

FFT rotated by the angle2πmδ. The delayδ can thus be estimated from these rotations. With this new

model for the training sequence, the asymptotic analysis ofsection IV remains obviously true as we have

simply chosenQ = 2 (see (17)).

The idea of transmitting two identical signal halves and exploiting this structure for synchronization is

not new. It appeared for the first time in [11] in the context ofDoppler shift estimation. Notice that

when a Doppler shiftδDoppler/NT exists, themth output of the second FFT is equal to themth output

of the first FFT rotated by a constant angleπδDoppler (instead of2πmδ in the Sampling Clock Offset

estimation context). Consequently the approach of [11] hasto be modified. This modification is reported

in subsection V-B.1.

In the context of sampling clock offset estimation, a close idea, that consists in transmitting two whole

identical OFDM symbols, has already been exploited in [8] and [9]. A brief description of these other

two algorithms will be given at the end of this section.
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B.1 An approach, based on a standard structured symbol

Assume thatN ≥ 2L and letM = N/2, yN,1(n) = yN (n) andyN,2(n) = yN (n + M) for n =

0, . . . ,M − 1. We have from (4)

yN,1(n) =
1√
M

M−1∑

m=0

L−1∑

l=0

DN,2m√
2

gle
2iπ
M

m(n(1+δ)−l) + v(n)

yN,2(n) =
1√
M

M−1∑

m=0

L−1∑

l=0

DN,2m√
2

gle
2iπ
M

m(n(1+δ)−l)e2iπmδ + v(n +M) . (34)

Let yN,1 = [yN (0), . . . , yN (M − 1)]T andyN,2 = [yN (M), . . . , yN (N − 1)]T be the vectors that repre-

sent the two OFDM symbols of sizeM received successively before the FFT operation. Denote byYN,1

andYN,2 the corresponding Fourier transformed vectors, and letỸN =
[
YT

N,1,Y
T
N,2

]T
. LetΨM (δ) be

theM×M matrix which element(k,m) is [ΨM (δ)]k,m = ψ
(0)
M (k −m(1 + δ)) for k,m = 0, . . . ,M−1

whereψ(0)
M (x) is given by (20). Finally, letΘM (δ) = diag

([
1, e2iπδ , . . . , e2iπδ(M−1)

])
. From (34), we

get after some simple computations

ỸN =
√
MΨM (δ)ΘM (δ)SM + VN (35)

where

ΨM (δ) =


 ΨM (δ)

ΨM (δ)


 , ΘM (δ) =


 IM

ΘM (δ)


 ,

SM =
1√
2
DMFM,Lg

whereDM = diag([DN,0,DN,2, . . . ,DN,M−2]), andVN represents the Gaussian additive noise term

after Fourier transformation. BecauseΨM (0) = ΘM (0) = IM , the vectorSM would be the output of

any of the two FFT operations if we had no noise and if we hadδ = 0. Whenδ 6= 0, an Inter-Carrier

Interference term, accounted for by the non-diagonal termsof the matrixΨM (δ), appears at the outputs

of both FFT operations. Additionally, the second FFT operates on rotated versions of the elements of

SM , elementm being rotated by the angle2πmδ.

From (35), we notice that the noiseless part of the received signal ỸN belongs to the subspace ofC
N

generated by the columns of theN ×M matrix ΨM (δ)ΘM (δ). It is therefore possible to look for the

estimatêδ that maximizes the norm of the projection ofỸN over this subspace, in other words,

δ̂ = arg max
δ

ỸH
NΨM (δ)ΘM (δ)

(
ΘH

M (δ)ΨH
M (δ)Ψ(δ)Θ(δ)

)−1
ΘH

M (δ)ΨH
M (δ)ỸN .
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To gain in simplicity, we approximateΨH
M (δ) by a diagonal matrix such asΨH

M (δ)ΨM (δ) = IM , thus

neglecting the ICI term. In this case, after some calculations, the last equation reduces to

δ̂ = arg max
δ

(
M−1∑

l=0

Re

(
Y2,lY

∗
1,le

−2iπlδ
))

(36)

where we have writtenYN,1 = [Y1,0, . . . , Y1,M−1]
T andYN,2 = [Y2,0, . . . , Y2,M−1]

T. Notice that, in the

context of Doppler shift estimation, the previous equationis simpler sincee−2iπlδ has to be replaced with

e−iπδDoppler as in [11]. In practice, denoting byχ(δ) the term to be maximized in (36), its derivative with

respect toδ writes

dχ

dδ
=

M−1∑

l=0

2πl
(
Im
(
Y2,lY

∗
1,l cos 2πlδ

)
− Re

(
Y2,lY

∗
1,l sin 2πlδ

))

By cancelling out this derivative, and by using the approximationscos 2πlδ ≈ 1 et sin 2πlδ ≈ 2πlδ

which are valid for the most common values ofMδ/2, we obtain

δ̂ =

∑M−1
l=0 lIm

(
Y2,lY

∗
1,l

)

2π
∑M−1

l=0 l2Re

(
Y2,lY

∗
1,l

) . (37)

Let us now turn to the estimation of the channelhN . Merging (35) and (17) leads to the following model

ỸN =

√
M

2
ΨM (δ)ΘM (δ)XMEMg + VN (38)

whereXM = diag([XN,0,XN,2, . . . ,XN,N−2]) andEM = PMFM,L with PM = diag([P (0), P (2/N),

. . . , P ((N − 2)/N)]). The Least-Square (LS) estimate of the channel writes

ĝ =

√
2

M

(
EH

MXH
MΘH

M (δ̂)ΨH
M (δ̂)ΨM (δ̂)ΘM (δ̂)XMEM

)−1
EH

MXH
MΘH

M (δ̂)ΨH
M (δ̂)ỸN . (39)

The inversion operation in this equation increases dramatically the implementation complexity. For this

reason the simpler estimate

ĝ =
1

2
√

2M
EH

MXH
MΘH

M (δ̂)ΨH(δ̂)ỸN (40)

can be used instead. Notice that (40) refers to the standard and simple correlation estimator. We can

further simplify (40) by neglecting the ICI represented by the non-diagonal terms and by the slight atten-

uation on the diagonal terms in the matrixΨM (δ̂). This simplification results in

ĝ =
1

2
√

2M
EH

MXH
MΘH

M (δ̂)ΞH
M (δ̂)ỸN (41)

whereΞM (δ) = I2 ⊗ΞM (δ) with ΞM (δ) = diag([1, e
iπ(M−1)

M
δ, · · · , e

iπ(M−1)2

M
δ]).
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Even if we work in the frequency domain (i.e., after the FFT), we do estimate first the temporal

impulse response of the channelg (41) and not directly the frequency response of the channelhN (42).

Indeed a frequency estimation of the channel, subcarrier bysubcarrier, would not use the coherence band-

width of the channel and thus would not profit from the inducedcorrelation between adjacent subcarriers.

Moreover, if we plan to use2048 subcarriers (as done in VDSL), we would need to estimate about 2000

parameters instead of only about100 for the temporal impulse response.

Once this is done, the channel response which is needed in frequency domain for further operations such

as equalization, can then be easily obtained through

ĥN = PNFN,Lĝ . (42)

B.2 Other methods for the sampling clock offset estimation

Most of the algorithms met in the sampling clock offset estimation literature are based on the phase

comparison between two known OFDM symbols. Nevertheless, with minor modifications, these algo-

rithms can be adapted to the situation where one transmittedOFDM symbol consists of two identical

halves. In this case, the received signal is described by (34).

Liu’s algorithm [8]

Let

ΦN (k) = ∠Y2,k − ∠Y1,k = ∠(Y2,kY
∗
1,k).

One can remark that

ΦN (k) = 2πkδ + νk (43)

whereνk refers to a noise which vanishes in absence of the additive noise v(n) and when the ICI is

neglected. By applying on (43) a least square approach, one can obtain, as done in [8], the following

estimate forδ

δ̂ =
2π
∑N/2−1

k=0 kΦN (k)(
4π2

∑N/2−1
k=0 k2

) =
2π
∑N/2−1

k=0 k∠(Y2,kY
∗
1,k)(

4π2
∑N/2−1

k=0 k2
) (44)

Speth’s algorithm [9]

Let C1 = {0, · · · , N/4 − 1} andC2 = {N/4, · · · , N/2 − 1}. Defineφ1 andφ2 as

φ1|2 = ∠(
∑

k∈C1|2

Y2,kY
∗
1,k) .
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It can be shown that, without additive noise and ICI,δ is equal to the quantity2(φ2−φ1)/πN . Therefore,

[9] suggests the following estimate

δ̂ =
2

πN
(φ2 − φ1) . (45)

VI. SIMULATIONS

We consider a powerline OFDM system operating within the band [1 MHz, 20 MHz]. The magnitude

of the channel transfer function used in this section is represented on Fig.1. The corresponding channel

impulse response sampled at20 MHz is made up of80 complex coefficients. Via computer simulations,

we compare the performance of the sub-optimal methods introduced in section V with existing methods

as well as with the Cramér-Rao Bounds.

In Fig. 2, Mean Squares Errors (MSE) of the estimates ofδ andhN are plotted versus the lengthN

of the known OFDM symbol. HereN varies from256 to 4096, the Signal-to-Noise Ratio (SNR) is fixed

to 20dB, andδ is equal to7.10−5 (i.e., 70 ppm). The MSE are averaged over500 trials. At each trial, the

training sequence made of QPSK symbols is different.

The figures show that the performance of the ML is very close tothe CRB. Concerning the estimation

of δ, the estimator (37) offers good performance. Its performance is even close to that of the ML estimator

until N = 2048. Recall that the estimator (37) does not take into account the ICI. Unfortunately, from

N = 2048, the ICI can not be neglected anymore, therefore the performance of the estimator (37) reaches

a floor. We also notice that this estimator provides a better performance than each of the estimators (44)

introduced in [8] and (45) introduced in [9]. Concerning thechannel estimation, the LS estimator given

by (42) and (39) provides a remarkable performance. On the contrary, the correlator estimator given by

(42) and (41) shows bad performance as soon asN is greater than512. Thus the correlator estimator

is strongly sensitive to the presence of the ICI. Finally we remark that the asymptotic CRB fits well the

exact CRB whatever is the value ofN .

In Fig. 3, the MSE and asymptotic CRB are displayed versusN , for two different values ofδ (10 ppm

and70 ppm) and two different values of the SNR (10 dB and20 dB). Recall that the asymptotic Cramér-

Rao Bounds do not depend onδ.

We notice that, for small values ofN , the estimator (37) shows a MSE that does not depend much on the

value ofδ. However, whenN is greater than2048, then the ICI effect becomes important and affects the

performance of this estimator. As for the channel estimation, the ICI effect occurs at smaller values of

N and dramatically affects the performance. Actually, the ICI produces an effective noise that quickly

dominates the additive noise because its variance grows withN and withδ. For this reason, the MSE of
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the channel estimator at a SNR of20 dB meets the MSE at10 dB asN grows. The value ofN where

these two MSEs become equal decreases withδ.

The last figure (Fig. 4) shows the performance vs. the SNR,N being fixed to2048 andδ to 70 ppm.

The estimator (37) ofδ shows a MSE close to the CRB in these conditions, and outperforms the estimators

(44) and (45). The channel estimator given by (42) and (39) isalso close to the CRB. Concerning the

channel estimator by correlation, as the SNR grows, the Gaussian noise becomes negligible in comparison

with the ICI, which results in a performance floor.

VII. C ONCLUSION

In this paper, we considered the issue of joint sampling clock offset estimation and channel estimation

for OFDM modulation used in wireline transmissions. The estimation performance has been studied

through the CRB analysis. Simple expressions for the CRB have been obtained in the asymptotic regime,

i.e., when the number of subcarriers and the channel length are large. The ML joint algorithm has been

derived. Sub-optimal approaches have also been proposed and compared to the existing literature.

APPENDIX

I. PROOF OFLEMMA 1

For proving lemma 1, we show thatE

[
|ξN |4

]
decreases rapidly enough so that almost sure conver-

gence is guaranteed by the Borel-Cantelli lemma. In this proof, C designates a constant that can change

through the equations.

We have

E

[
|ξN |4

]
≤ C

N4

∑

k1,k2,k3,k4

∑

l1,l2,l3,l4

E [|DN,l1DN,l1−k1DN,l2DN,l2−k2DN,l3DN,l3−k3DN,l4DN,l4−k4 |]
1

k1k2k3k4
. (46)

Because of the independence of the random variables{DN,l} and the fact that they are zero mean, the

expectation term in the right hand side member of this inequality is zero if there exists in its argument at

least one term that appears only once. The situations where every term appears at least twice are described

by a finite number of systems of four equations in the indicesk1, . . . , k4, l1, . . . , l4. One such system is

for instancel1 = l2, l3 = l4, k1 = k2, k3 = k4. Let

IN =
C

N4

∑

k,k′

∑

l,l′

E

[
|DN,lDN,l−k|2

∣∣DN,l′DN,l′−k′

∣∣2
] 1

k2

1

k′2
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be the corresponding term in the RHS member of (46). We have

IN ≤


 C

N2

bαNc∑

k=1

N−1∑

l=k

E

[
|DN,lDN,l−k|4

]1/2 1

k2




2

≤


 C

N2

bαNc∑

k=1

N−1∑

l=k

E

[
|DN,l|8

]1/4
E

[
|DN,l−k|8

]1/4 1

k2




2

≤


C

N

bαNc∑

k=1

1

k2




2

≤ C

N2

where the first two inequalities result from Cauchy-Schwartz inequality and the third one is deduced from

condition (18). Similar results can be obtained for the other systems of equations in the indices, leading

finally to the inequalityE
[
|ξN |4

]
≤ C/N2. Markov’s inequality implies that∀ ε > 0, P (|ξN | > ε) ≤

E(|ξN |4)
ε4

= O(N−2). Therefore,
∑∞

N=1 P (|ξN | > ε) <∞ and the result follows from the Borel-Cantelli

lemma.
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Fig. 1. Magnitude of the channel transfer function
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Fig. 2. MSE and CRB forδ (top) andhN (bottom) vs.N (δ = 7.10−5)
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Fig. 3. MSE and CRB vs.N for different values ofδ and SNR
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Fig. 4. MSE and CRB vs. SNR (δ = 7.10−5)
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