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Abstract
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antenna as well as spread spectrum transmission models.

The expression of the deterministic approximation of theRSin the large dimension regime is recalled
and the SINR fluctuations around this deterministic appnation are studied. These fluctuations are
shown to converge in distribution to the Gaussian law in #rgd dimension regime, and their variance

is shown to decrease as the inverse of the signal dimension.
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I. INTRODUCTION

Large Random Matrix Theory (LRMT) is a powerful mathematicall taged to study the performance
of multi-user and multi-access communication systems sschiultiple Input Multiple Output (MIMO)
digital wireless systems, antenna arrays for source deteand localization, spread spectrum commu-
nication systems as Code Division Multiple Access (CDMAX avulti-Carrier CDMA (MC-CDMA)
systems. In most of these communication systems Nhd@imensional received random vector CV
is described by the model

r=Xs+n Q)

wheres = [sq,s1,...,5k]T is the unknown random vector of transmitted symbols withe siz + 1
satisfyingEss* = I, the noisen is an independent Additive White Gaussian Noise (AWGN) with
covariance matriXEnn* = pIy whose variance > 0 is known, and matriX® represents the known
“channel” in the wide sense whose structure depends on ttieydar system under study. One typical
problem addressed by LRMT concerns the estimation perfacenby the receiver of a given transmitted
symbol, saysg.

In this paper we focus on one of the most popular estimatarsety the linear Wiener estimator, also
called LMMSE for Linear Minimum Mean Squared Error estimator: tIMMSE estimates, = g*r of
signal sy is the one for which theV x 1 vectorg minimizesE|3, — so|2. If we partition the channel
matrix asX = [y Y] wherey is the first column of¥ and where matriXY has dimensionsV x K,
then it is well known that vectog is given byg = (XX* + pIy) ' y. Usually, the performance of this
estimator is evaluated in terms of the Signal to Interfergriae Noise Ratio (SINR) at its output. Writing
the received vector asr = sgy + riy wheresgy is the relevant term and,, represents the so-called
interference plus noise term, the SINR is givenhy = |g*y|?/E|g*rin|?. Plugging the expression gf

given above into this expression, one can prove that the SINRs given by the well-known expression:
Bk =y (YY" +pIy) "y . 2)

In general, this expression does not provide a clear insigtihe impact of the channel model parameters
(such as the load factd N !, the power distribution of the transmission data streamthecorrelation
structure of the channel paths in the context of multi-améetransmissions) on the performance of the
LMMSE estimator.

An alternative approach, justified by the fluctuating naturethef channel paths in the context of

MIMO communications and by the pseudo-random nature of pheasling sequences in spread spectrum
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applications consists to model matr® as a random matrix (in this cas@i becomes a random
SINR). The simplest random matrix model &, corresponding to the most canonical MIMO or CDMA
transmission channels, corresponds to independent anticaky distributed (i.i.d.) entries with mean
zero and varianceV—L. In that case, LRMT shows that wheli — oo and the load factods N1
converges to a limiting load factar > 0, the SINR 3x converges almost surely (a.s.) to an explicit
deterministic quantity3(a, p) which simply depends on the limiting load facter and on the noise
variancep. As a result, the impact of these two parameters on the LMMSEbqmeance can be easily
evaluated [1], [2].

The LMMSE SINR large dimensional behavior for more sophistitatandom matrix models has also
been thoroughly studied (cf. [1], [3]-[9]) and it has beeavad that there exists a deterministic sequence
(Bk), generally defined as the solution of an implicit equatiorghsthat 35 — 3, — 0 almost surely
asK — oo and% remains bounded away from zero and from infinity.

Beyond the convergengéy, — 35 — 0, a natural question arises concerning the accuraqgyofor
finite values of K. A first answer to this question consists in evaluating the tM8quared Error (MSE)
of the SINRE|3 — B |* for large K. A further problem is the computation of outage probabilibat is
the probability forsx — 3 to be below a certain level. Both problems can be addressestaplishing
a Central Limit Theorem (CLT) foBx — . In this paper, we establish such a CLT (Theorem 3 below)
for a large class of random matric& We prove that there exists a sequei@g = O(1) such that
‘é—f(ﬁ;{ — B ) converges in distribution to the standard normal 1&#0, 1) in the asymptotic regime.
One can therefore infer that the MSE asymptotically beha’kes%% and that the outage probability can
be simply approximated by a Gaussian tail function.

The class of random matricés we consider in this paper is described by the following stiatl

model: Assume that

5o ()Mo (T Y 3
= (Bn) Lo = (Wt e (3)

where the complex random variabl®s,, are i.i.d. withEW,,;, = 0, EW?, = 0 andE|W,;|?> = 1 and

2
Tnk

where(agk; 1<n<N; 0<k<K)isan array of real numbers. Due to the fact th&¥,,;|*> = 2k

the array(agk) is referred to as a variance profile. An important particuksecis whemrik is separable
that is, writes:

where(dy, ..., dy) and(dp, ..., dx) are two vectors of real positive numbers.
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Applicative contexts.

Among the applicative contexts where the channel is desdrdppropriately by model (3) or by its

particular case (4), let us mention:

« Multiple antenna transmissions witli + 1 distant sources sending their signals toward an array of
N antennas. The corresponding transmission model4s=s + n whereE = V%HPI/Q, matrix
His aN x (K +1) random matrix with complex Gaussian elements represettigadio channel,

P = diag(po,...,pxr) is the (deterministic) matrix of the powers given to the eliént sources,
andn is the usual AWGN satisfyindEnn* = pIy. Write H = [hy --- hg], and assume that the
columnshy, are independent, which is realistic when the sources atandisne from another. L&t

be the covariance matri€;, = Eh;h; and letC;, = U, A, U;, be a spectral decomposition @fy,
where A, = diag(Ai; 1 < n < N) is the matrix of eigenvalues. Assume now that the eigenvecto
matricesUy, ..., Ux are all equal (to some matrid, for instance), a case considered in e.g., [10]
(note that sometimes they are all identified with the FouNex N matrix [11]). Let¥ = U*E.
Then matrix3 is described by the statistical model (3) where Wig, are standard Gaussian i.i.d.,
and o2, = \upe. If we partition E as E = [x X] similarly to the partitionX = [y Y] above,
then the SINRG at the output of the LMMSE estimator for the first element of veetan the

transmission modat = Zs +n is
B =x" (XX +ply) ' x = y* (YY" +pIy) 'y

due to the fact thall is a unitary matrix. Therefore, the problem of LMMSE SINR conesrce
for this MIMO model is a particular case of the general prablef convergence of the right-hand
member of (2) for model (3).

It is also worth to say a few words about the particular ca3en(4his context. If we assume that
Ay = --- = Ak and these matrices are equalAo= diag(\i,...,An), then the model foH is

the well-known Kronecker model with correlations at ret@p{12]. In this case,

1 1
> =U'E=—U'HPY?2 = —_A'/2wpP'/? 5
Vi Vi ©)

whereW is a random matrix with iid standard Gaussian elements. Thidemcoincides with the
separable variance profile model (4) with = A, andd, = py.
« CDMA transmissions on flat fading channels. Hé¥eis the spreading factofl + 1 is the number
of users, and
¥ = VP2 (6)
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whereV is the N x (K + 1) signature matrix assumed here to have random i.i.d. elemeith
mean zero and variand€ !, and whereP = diag(po, . . ., pr) is the users powers matrix. In this
case, the variance profile is separable with= 1 andd,, = %pk. Note that elements oV are not
Gaussian in general.

o Cellular MC-CDMA transmissions on frequency selective rofes. In the uplink direction, the
matrix X is written as:

¥ =[Hyvo --- Hxpiviga] , (7)

whereH;, = diag(hi(exp(2imr(n —1)/N); 1 <n < N) is the radio channel matrix of usér(: =
v/—1) in the discrete Fourier domain (heleis the number of frequency bins) aMi= [vy, - -+, v]
is the N x (K +1) signature matrix with i.i.d. elements as in the CDMA casevabdlodeling this
time the channel transfer functions as deterministic fionst we have;fl
1)/N)P.

In the downlink direction, we have

= %|hk(exp(2m(n —

> = HVP'/? (8)

whereH = diag(h(exp(2w(n — 1)/N); 1 < n < N) is the radio channel matrix in the discrete
Fourier domain, théV x (K + 1) signature matrixV is as above, an® = diag(po, ..., px) is the
matrix of the powers given to the different users. Model (8)ncides with the separable variance

profile model (4) withd,, = £ |h(exp(2ur(n — 1)/N))|* anddj, = py.

About the literature.

The asymptotic approximatiof¥, (first order result) is connected with the asymptotic eigkreva
distribution of Gram matrice¥' Y* where elements o are described by the model (3), and can be
found in the mathematical LRMT literature in the work of Gif{a3] (see also [14] and [15]). Applications
in the field of wireless communications can be found in e.d.jrf@he separable case and in [8] in the
general variance profile case.

Concerning the CLT for3x — 3, (second order result), only some particular cases of thergén
model (3) have been considered in the literature among wthieh.i.d. cased?, = 1) is studied in [16]
(and based on a result of [17] pertaining to the asymptoti@abier of the eigenvectors &Y Y*). The
more general CDMA model (6) has been considered in [18],guaimesult of [19]. The model used in

this paper includes the models of [16] and [18] as particakses.
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Approximations of the distribution of the SINR at the LMMSE outphave been studied in [20].
The authors of [20] propose to approximate the SINR distrdoutvith Gamma and generalized Gamma
distributions by adjusting the asymptotic moments of thilFsI
In another line of thought, performance of nonlinear detechave been studied in the large dimensional
regime by using statistical mechanics techniques, as i [22].

Fluctuations of other performance indexes such as ShannanisatinformationE log det (% + IN>
have also been studied at length. Let us cite [23] where thei€EBtablished in the separable case and
[24] for a CLT in the general variance profile case. Similar lssooncerning the mutual information

are found in [25] and in [26].

Limiting expressions v& -dependent expressions.

As one may check in Theorems 2 and 3 below, we deliberately echosprovide deterministic
expression®, and©?% which remain bounded but do not necessarily convergl as oc. For instance,
Theorem 2 only states thaty — 3, — 0 almost surely. No conditions which would guarantee the
convergence offx are added. This approach has two advantagesuch expressions fof; and ©%
exist for very general variance profilés?, ) while limiting expressions may not, arJ they provide a
natural discretization which can easily be implemented.

The statements about these deterministic approximatioms/alid within the following asymptotic
regime:

K K
K — oo, liminfﬁ>0 and limsupﬁ<oo. 9

Note that% is not required to converge. In the remainder of the paperntitation ‘X’ — oo” will refer
to (9).

We note that in the particular case whe%e—» «a > 0 and the variance profile is obtained by a regular
sampling of a continuous functiofi i.e. o2, = f (%, KLH) it is possible to prove thaf, and ©%

converge towards limits that can be characterized by iategguations.

Principle of the approach.

The approach used here is simple and powerful. It is basedeaghroximation of3x by the sum
of a martingale difference sequence and on the use of the @LMmértingales [27]. We note that apart
from the LRMT context, such a technique has been used recenf8] to establish a CLT on general
guadratic forms of the type* Az where A is a deterministic matrix and is a random vector with i.i.d.

elements.
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Paper organization.

In Section I, first-order results, whose presentation ancetstdnding is compulsory to state the CLT,
are recalled. The CLT, which is the main contribution of théger, is provided in Section Ill. In Section
IV, simulations and numerical illustrations are providé@tie proof of the main theorem (Theorem 3) in

given in Section V while the Appendix gathers proofs of intediate results.

Notations.
Given a complexV x N matrix X = [xz-j]f-\fj:l, denote by||X|| its spectral norm, and b§X]|_, its
maximum row sum norm, i.e||X|, = maxj<;<n Z;VZI |z;;|. Denote by|| - || the Euclidean norm of

a vector and by|| - ||« its max (or £,) norm.

II. FIRSTORDERRESULTS. THE SINR DETERMINISTIC APPROXIMATION

In the sequel, we shall often show explicitly the dependemutes in the notations. Consider the

quadratic form (2):
Bk =y (YY" +pIy) "y,

where the sequence of matricB§ K) = [y(K) Y (K)] is given by

_ N,K B Unk(K) M
E(K) = Cu(K)),Zipm = ( VK W"k)n:17k20

Let us state the main assumptions:
Al: The complex random variabld$V,;; n > 1, k > 0) are i.i.d. withEWy, = 0, JEWIQO =0,
E|[Wio|? = 1 andE|W1p[® < co.

A2: There exists a real numbet,,, < oo such that

Is(uzpl glﬂagfv ‘O'nk(K” < Omax -

Let (am;1 < m < M) be complex numbers, thetiag(a,,;1 < m < M) refers to theM x M
diagonal matrix whose diagonal elements aredhgs. If A = (a;;) is a square matrix, thediag(A)
refers to the matrixdiag(a;;). Consider the following diagonal matrices based on theawae profile
along the columns and the rows Bf

Dy(K) = diag(ofy(K), - ,034(K)), 0<k<K

(10)
D,(K) = diag(o?,(K), -+ ,02(K)), 1<n<N.
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A3:. The variance profile satisfies

1
li f —trDi (K .
iminf min —trDy(K) >0

SinceE|Wyo|? = 1, one hasE|W;,[* > 1. The following is needed:
A4: At least one of the following conditions is satisfied:
1 K
E[Wi|*>1 or limKinf ﬁtr (DO(K) ZDk(K)> >0 .

k=1
Remark 1:If needed, one can attenuate the assumption on the eightremiamA1l. For instance,

one can adapt without difficulty the proofs in this paper to ¢hse wherek|Wiy|*t¢ < oo for ¢ > 0.
We assumedt|Wo|® < co because at some places we rely on results of [24] which atedsteith the
assumption on the eighth moment.

AssumptionA3 is technical. It has already appeared in [29].

AssumptionA4 is necessary to get a non-vanishing variagde in Theorem 3.

The following definitions will be of help in the sequel. A compl&inction ¢(z) belongs to class if
t(z) is analytical in the upper half plar@; = {z € C; im(z) > 0}, if t(z) € C4 for all z € C; and
if im(z)|t(z)| is bounded over the upper half plafis .

The Stieltjes Transforn{ST) f,, of a probability measurg is the complex function

fulz) = / t%u(dt) zeCy .

One can check that the ST of a probability measure belongsetalé#sssS.
Let {\1 x,..., ANk} be the set of eigenvalues of the Gram malYix/K)Y (K )*. The spectral measure

of this matrix is the random probability measytg defined as

1 N
= Z O, x
n=1

whered,, is the Dirac measure at. Denote byQ (z) andQx (z) the resolventsof Y (K)Y (K)* and
Y (K)*Y (K) respectively, that is, th&/ x N and K x K matrices defined by:

Qic(2) = (Y(K)Y(K)* —2In)™  and  Qu(z) = (Y(K)"Y(K) - 2Lx) " .

We have

itrQK Nz/\ /,UK dt) = fu.(2)

in other words, the normalized trace of the resolvent is theoSthe spectral measure & (K)Y (K)*.

nK — %
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A. The SINR Deterministic approximation

It is known [13], [29] that there exists a deterministic ddagl N x N matrix functionT(z) with
the following properties: First, the normalized tra%ﬁtrT(z) is the ST of a deterministic probability
measurerx. Second,T'(z) approximates the resolve@}(z) in the following sense: Given any diagonal
deterministic matrixS with bounded spectral norm, the quantitr S(Q(z) — T(z)) converges a.s. to
zero asK — oo. By this means (tak& = I and consider the Stieltjes Transforms), one can show that
Tk approximates the spectral measure of Y (K)Y (K)*.

It is also known that the approximatighy of the SINR 3 is simply related tdI'(z) (cf. Theorem 2).
As we shall see, matriff’(z) also plays a fundamental role in the second order result (Enea). In
the following theorem, we recall the definition and some of itieein properties ofl'(z).

Theorem 1:The following hold true:

1) [29, Theorem 2.4] Leto?,(K); 1 < n < N; 1 < k < K) be a sequence of arrays of real

numbers and consider the matricBg (k) and D,,(K) defined in (10). The system of + K

functional equations

thix(2) = 1<n<N

(11)
fk,K(Z) = 1<k<K

where

TK(Z) = diag(tLK(z), .. ,L‘N’K(Z)), TK(Z) = diag(fl,K(z), o ,fK,K(Z))

admits a unique solutiofiT, ’T) among the diagonal matrices for which thex’s and thefhK’s
belong to classS. Moreover, functions,, (2) and ¢ x(2) admit analytical continuations over
C — [0, 00) which are real and positive for € (—o0,0).

2) [29, Theorem 2.4] There exist probability measurgsand 7 with support inR; = [0, c0) such

that
o (2) = %trT(z) and fi, (z) = %tr’i‘(z) |

3) [29, Theorem 2.5] Assume from now on that Assumptidrisand A2 hold true. Consider the

sequence of random matric®q K)Y (K)* whereY has dimensiongV x K and whose entries are

given by Y, = %Wnk. For every sequenc®x of N x N diagonal matrices and every sequence

Sk of K x K diagonal matrices with

sup max (|ISxll, [Sl) < oo,
K
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the following limits hold true almost surely:

1
hm gtr Sk (Qr(z) — Tk(z)) = 0, Vz e C—Ry,

N ~
lim Etr Sk (QK(Z)—TK(Z)> = 0, Vze C—R; .

K—oo

4) [29, Corollary 2.7] Denote by i andfix the spectral measures ¥f(K)Y (K)* andY (K)*Y (K)

respectively. Then for any bounded and continuous fungjioi®, — R,

/ ot e (dt) — / o(mrc(dt) —— 0 and | g(t)jisc(dr) — / o(t)rc(dt) —— 0

K—oo K—oo

almost surely.

The following lemma which reproduces [30, Lemma 2.7] will beedighroughout the paper. It
characterizes the asymptotic behavior of an importansadisjuadratic forms:

Lemma 1:Letx = [X1,..., Xy]T be aN x 1 vector where theX,, are centered i.i.d. complex random
variables with unit variance. Lek be a deterministicV x N complex matrix. Then, for any > 2, there
exists a constant’, depending orp only such that

e ((E|X “tr(AA))Y? + E| X, |Ptr ((AA )P/2)) . (12

‘X*AX— —tr(A)| < No

Noticing thattr(AA*) < N||A||? and thattr ((AA*)p/Q) < N||A||P, we obtain the simpler inequality

p

< Np/2

‘X*AX - —tr(A)

Al ( (12X + Elx ) (13)

which is useful in case one has bounds|ia].
Using Theorem 1 and Lemma 1, we are in position to charactdrezasymptotic behavior of the quadratic

form Gx given by (2). We begin by rewritingx as
1 1
B = ?wgDé/Q (YY" + pIy) ' DY 2wy = ?WSDé/QQ(—p)DéﬂWO (14)

where theN x 1 vectorwy is given bywq = [Wiy, ..., Wno|T and the diagonal matri®y is given by
(10). Recall thatw, and Q are independent and thgDo|| < o2, by A2. Furthermore, one can easily
notice that|Q(—p)[| = (YY" + pI)~'| < 1/.
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Denote byEq the conditional expectation with respect@ i.e. Eq = E( - ||Q). From Inequality
(13), there exists a consta@t > 0 for which
4 2
C (N
< () EIDoQI (EWl'Y + EWiof)

1
EEq |fx — 2trDoQ(~p) %

IA

C [N\? U?nax 4
(3 ()

- ofih)

By the Borel-Cantelli Lemma, we therefore have

1
Bk — Etr(DoQ(—p)) ——0 as

Using this result, simply apply Theorem 1—(3) wigh= D, (recall that|D¢| < ¢2,,,) to obtain:

_ 1 .
Theorem 2:Let 3, = ?tr(DU(K)TK(—p)) whereT g is given by Theorem 1—(1). Assur#el and
A2. Then

Ok — EK K—> 0 a.s.

B. The deterministic approximation in the separable case
In the separable case,,(K) = d,(K)d(K), matricesD;(K) andD,,(K) are written asD,(K) =
dp(K)D(K) andD,,(K) = d,,(K)D(K) whereD(K) andD(K) are the diagonal matrices

D(K) = diag(dy(K), ..., dy(K)), D(K) = diag(dy(K),...,dx(K)) . (15)

and one can check that the systemNoft K equations leading t&@ i and T simplifies into a system
of two equations, and Theorem 1 takes the following form:

Proposition 1: [29, Sec. 3.2]

1) Assumes?, (K) = d,(K)dy(K). Givenp > 0, the system of two equations
1 ~ -1
oic(p) = tr (D (p(Iy + k(o)D)
_ (16)
~ ~ 1
o(p) = xtr(D (P(IK + 5K(p)D))

whereD andD are given by (15) admits a unique solutiéf (p), dx (p)). Moreover, in this case

matricesT(—p) and ’T(—p) provided by Theorem 1—(1) coincide with

T(-p) = -0 +3(»D) and T(—p) = (I +5(»D)" (a7)
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2) Assume thatAl and A2 hold true. Let matricesSx and Sx be as in Theorem 1—(3). Then,

almost surelytr (Sk (Qi(~p) — Tr(~p))) — 0 and &t (Si (Qu(—p) = Tre(=p)) ) — 0
as K — oo.

With these equations we can adapt the result of Theorem 2 &etharable case. Notice tHa = dyD
and thatd(p) given by the system (16) coincides Wiglgtr(DT), hence
Proposition 2: Assume that?, (K) = d,,(K)dy(K), and thatA1 and A2 hold true. Then

B
CZO - (SK(p) E 0 a.s.

wheredx (p) is given by Proposition 1—(1).

Let us provide a more explicit expression &f which will be used in Section IV to illustrate the
SINR behavior for the MIMO Model (5) and for MC-CDMA downlink ttlel (8). By combining the

two equations in System (16), it turns out thiat dx (p) is the unique solution of the implicit equation

1 N-1 d.
T K 1 K :
K o Pt dn Y iy 1f;k5

Recall that in the case of the MIMO model (%), = A, andd; = p;, while in the case of the MC-

) (18)

CDMA downlink model (8),d,, = £|h(exp(2im(n — 1)/N)|? andd, = px again. Heredy = py is the
power of the user of interest (usey, and thereforeﬁ’K/Jo is the normalized SINR of this user. Notice
that dx (p) is almost the same for all users, hence the normalized SINRallfosers are close to each
other for largeK. Their common deterministic approximation is given by (18)ich is the discrete
analogue of the integral equation (16) in [6].

This example will be continued in Section Ill.

[1l. SECOND ORDER RESULTSTHE CENTRAL LIMIT THEOREM

The following theorem is the main result of this paper. Itsgbns postponed to Section V.

Theorem 3: 1) Assume that2, A3 and A4 hold true. LetA i and Ax be theK x K matrices
1 %tl‘DgDmT(—p)2

K
A = |— and (19)
[K (1+ étngT(—p))Qi tm=1

1 2
A = diag((l—i—KtngT(—p)) ;1§€§K> ,
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whereT is defined in Theorem 1-(1). Letx be theK x 1 vector

1 1 T
gx = | 7ztrDoD1T(=p)?, -+, Z-trDeDKT(=p)*
Then the sequence of real numbers
1 1A 1
0% = EgIT((IK —Ag) A gk + (E[Wio)! - 1)EtrD0(K)2TK(—p)2 (20)

is well defined and furthermore
0< limKinf@%( < lim;.up@%( <00 .

2) Assume in additiorA1. Then the sequengex = y*(YY* + pI) "'y satisfies

K _
é; (Bx — Br) E)N(O’ 1)

in distribution wheres,, = %tr DT is defined in the statement of Theorem 2.

Remark 2: (Comparison with other performance indexiss interesting to compare the “Mean
Squared Error’ (MSE) related to the SINRx: MSE(Bk) = E(Bkx — Bx)?, with the MSE related
to Shannon’s mutual information per transmit dimensioa % log det(pX3* +1) (studied in [24], [25]
for instance):

MSE(Bx) o 0(}?) while  MSE(I) o 0(&)

Remark 3: (On the achievability of the minimum of the variariRecall that the variance writes
1 1
Q% = EgT(IK —A) AT g+ (E[Wy|* — 1)tr D;T? .

As E|Wyo|? = 1, one clearly ha&|Wyo|* —1 > 0 with equality if and only if| W] = 1 with probability
one. Moreover, we shall prove in the sequel (Section V-B) thatinf x %DO(K)T% > 0. Therefore
(E[W1o[* — 1)%tr D3T? is nonnegative, and is zero if and only|if/o| = 1 with probability one. As
a consequenc&)? is minimum with respect to the distribution of th&,,;, if and only if these random
variables have their values on the unit circle. In the cantéXCDMA and MC-CDMA, this is the case
when the signature matrix elements are elements of a PSK datiste In multi-antenna systems, the
W,.r's are frequently considered as Gaussian which induces atgem the SINR asymptotic MSE with

respect to the unit norm case.

In the separable cas®3 = d2Q3 whereQ? is given by the following corollary.

Corollary 1: Assume tha®\2 is satisfied and that?, = d,,d),. Assume moreover that

S| TP S
min (hn}(lnf ?tr(D(K)), thmf Ktr(D(K))) >0 (21)
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whereD andD are given by (15). Lety = - trD?T? and§ = LtrD>T2. Then the sequence
2 ~
5 = (T2 + Bl - 1)) @2)
— P Y
satisfies) < liminf g Qﬁ{ < limsupg 92 < oo. If, in addition, A1 holds true, then:
VK <5K >

— 0,1
ox \d N(0,1)

K—oo

in distribution.

Remark 4:Condition (21) is the counterpart of Assumpti&8 in the case of a separable variance
profile and suffices to establigh< liminfx (1 — p?v7) < limsupg (1 — p?v7) < 1 (see for instance
[23]), hence the fact that < lim inf x Q2. < limsupx Q% < co. The remainder of the proof of Corollary
1 is postponed to Appendix B.

Remark 5:As a direct application of Corollary 1 (to be used in Sectionbi®&ow), let us provide the
expressions ofy and 4 for the MIMO Model (5) or MC-CDMA downlink Model (8). From (15)17),

we get

N—1 N—-1 2
1 ( ) 1 dy, )
’)/ =
Z p+Pd 5 nz:() <P+ Fn 1 | THps
K 2
T kz<0+0pk5>

==

where we recall thatl,, = \,, for Model (5), d,, = £ |h(exp(2ir(n — 1)/N)|? for Model (8), ands is
the solution of (18).

In the context of Corollary 1, if we further assume tfat= I, then we recover the results of [18]
and [16] (the latter being specific to the case whBre- I in addition) :
Corollary 2: Assume the setting of Corollary 1 wi® = I. Then

03 _N / i (dt) + al (E|W10|4 -2) (/ FK(dt)>2 (23)

wheren g is the probability measure which ST ;%trT z) as shown in the statement of Theorem 1.

This corollary will be proven in Appendix C.
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V. SIMULATIONS
A. The general (non necessarily separable) case

In this section, the accuracy of the Gaussian approximasowerified by simulation. In order to
validate the results of Theorems 2 and 3 for practical valde& owe consider the example of a MC-
CDMA transmission in the uplink direction. We recall th&t is the number of interfering users in this
context. In the simulation, the discrete time channel impulesponse of usér is represented by the
vector with L = 5 coefficientsgy, = [g.0, - - - ,gk,L,l]T. In the simulations, these vectors are generated
pseudo-randomly according to the complex multivariate<S&n lawCA/ (0,1/LI;). Setting the number
of frequency bins taN, the channel matrix,; for userk in the frequency domain (see Eq. (7)) is
H; = diag(hg(exp(2emr(n — 1)/N);1 < n < N) wherehy(z) = % Zf:’ol gr12~", the norm||gg| is
the Euclidean norm of; and P is the power received from usér Concerning the distribution of the
user powersP;, we assume that these are arranged into five power clasdegpwvitersP, 2P, 4P, 8 P

and 16 P with relative frequencies given by Table I. The user of inter@ser0) is assumed to belong

TABLE |

POWER CLASSES AND RELATIVE FREQUENCIES

Class 1 2 3 4 5
Power P 2P | 4P | 8P | 16P
Relative frequency| 1/8 | 1/4 | 1/4 | 1/8 | 1/4

to Classl. Finally, we assume that the numb&r of interfering users is set t& = N/2.

In Table II, the Signal over Noise Ratio (SNB)/p for the user of interest is fixed t60 dB. The
evolution of KE(Bx — Bk)?/©% for this user (wheré(3x — Bx)? is measured numerically) is shown

with respect toK. We note that this quantity is close to one for valuegsofais small agf< = 8.

In Table III, K is set toK = 64, and the SINR normalized MSEE(8x — Bk )?/0% is plotted with
respect to the input SNIR/p. This figure also confirms the fact that the MSE asymptotic appration

is highly accurate.

Figure 1 shows the histogram &fK (8x — Bx)/©x for N = 16 and N = 64. This figure gives an
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TABLE I

SINRNORMALIZED MSE VS K (SNR = 10dB)

K 8 16 32 64 128 | 256
KE(Bx — Bx)?/O% | 0.9761| 0.9845| 1.0464 | 1.0187 | 1.0127 | 0.9919

TABLE Il

SINRNORMALIZED MSE VS SNR (K = 64)

SNR 0 5 10 15 20 25 30
KE(Bxk — By )?/0% | 1.0283 | 1.0294 | 1.0373 | 1.0358 | 1.0347 | 1.0348 | 1.0350

idea of the similarity between the distribution ofK (8 — fr)/©x and N (0,1).
More precisely, Figure 2 quantifies this similarity through aa@tile-Quantile plot.

B. The separable case

In order to test the results of Proposition 2 and Corollary & cansider the following multiple antenna

(MIMO) model with exponentially decaying correlation ategption:

1
> = yl/2wpl/?
VK

where ¥ = [am*”]%;f:o with 0 < a < 1 is the covariance matrix that accounts for the correlatains

the receiver sideP = diag(po, - - - ,px) is the matrix of the powers given to the different sources and
Wis aN x (K + 1) matrix with Gaussian standard iid elements. Bgt denote the vector containing
the powers of the interfering sources. We Bgt (up to a permutation of its elements) to:

[4P 5P] if K =2

Py=q [P P 2P 4P] if K=4

[P P 2P 2P 2P 4P 4P 4P 8P 16P 16P 16P | if K =12.
For K = 2P with 3 < p < 7, we assume that the powers of the interfering sources aamged into
5 classes as in Table I. We set the SN to 10 dB anda to 0.1. We investigate in this section
the accuracy of the Gaussian approximation in terms of thageuprobability. In Fig.3, we compare
the empiricall% outage SINR with the one predicted by the Central Limit Theoréfa.note that the

Gaussian approximation tends to under estimatel #heoutage SINR. We also note that it has a good
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histogram of \/K%) for N6 hi stogram of \/K”léikj“ for N=64
250 T T T 250 T T

Fig. 1. Histogram of/K (8x — Bx) for N = 16 and N = 64.

QQplot for N=16 QQplot for N=64

Normal Quantiles
o
:
.

Normal Quantiles
o
;

-4 i i i —4 i i i
-4 -2 0 2 4 -4 -2 0 2 4

Empirical Quantiles Empirical Quantiles

Fig. 2. Q-Q plot forv/K (B — Bx), N = 16 and N = 64; dash doted line is the 45 degree line.
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accuracy for small values ef and for enough large values &f (IV > 64).

N=16 N=32
8 T T T T T T 8 T T T T T T T T
Empirical =@ Empirical
Theoretical Theoretical
6 1 6L : : :
ak
ak
oL
o s}
° D ot
c £
x ° x
4 =
7] 5 °or
ol
ok
_al
6 4k
g L -6
01 02 03 04 05 06 07 08 0.1 02 03 04 05 06 07 08 09 1
o a
N=64 N=128
T T T T T T T T T T
—@— Empirical —8— Empirical
== Theoretical oL === Theoretical | |

7k 4

SINR in dB
SINR in dB

L L L L L L L L
01 0.2 03 0.4 0.5 0.6 07 08 0.9 1

Fig. 3. Theoretical and empiricdbb outage SINR

Observe that all these simulations confirm a fact announceRemark 2 above: compared with
functionals of the channel singular values such as Shannautsal information, larger signal dimensions
are needed to attain the asymptotic regime for quadratindauch as the SINR (see for instance outage
probability approximations for mutual information in [28hd in [26]). This observation holds for first

order as well as for second order results.

V. PROOF OFTHEOREM 3

This section is devoted to the proof of Theorem 3. We begin wigthematical preliminaries.

A. Preliminaries

The following lemma gathers useful matrix results, whosefg@an be found in [31]:
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Lemma 2:AssumeX = [mij]%zl andY are complexN x N matrices. Then
1) For everyi,j < N, |z;;| < ||X]||. In particular, ||diag(X)|| < ||X]].
2) (XY < XY
3) Forp > 0, the resolven{XX* + pI)~! satisfies||(XX* + pI) 7! < p~ L.
4) If Y is Hermitian nonnegative, theiar(XY)| < ||X||tr(Y).

Let X = UAV* be a spectral decomposition & where A = diag(\,...,\,) is the matrix of
singular values oX. For a realp > 1, the Schatterf,-norm of X is defined ag/X||, = (>_ )\f)l/”. The
following bound over the Schattefy-norm of a triangular matrix will be of help (for a proof, se28],
[32, page 278]):

Lemma 3:Let X = [:cij]fj’jzl be aN x N complex matrix and leX = [xijlbj]ff’j:l be the strictly
lower triangular matrix extracted frolX. Then for everyp > 1, there exists a constant, depending
on p only such that

IXllp < ColXllp -

The following lemma lists some properties of the resolv@ntand the deterministic approximation
matrix T. Its proof is postponed to Appendix A.

Lemma 4:The following facts hold true:

1) AssumeA2. Consider matrice¥ i (—p) = diag(t1(—p),...,tn(—p)) defined by Theorem 1—(1).

Then for everyl <n < N,
1

P+ 0hax

2) Assume in additioA1 andA3. Let Qx(—p) = (YY" + pI)~! and let matriceS, be as in the

< ta(—p) < = (24)

RS

statement of Theorem 1—(3). Then

supE|tr Sx(Qx — Tr))? < ¢ . (25)
K

B. Proof of Theorem 3—(1)

We introduce the following notations. Assume tiatis a real matrix, byX = 0 we meanX;; > 0
for every elementX;;. For a vectorx, x = 0 is defined similarly. In the remainder of the paper,
C = C(p, 02, liminf %,sup %) < oo denotes a positive constant whose value may change from line

to line.
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The following lemma, which directly follows from [24, Lemma25and Proposition 5.5], states some
important properties of the matricesy defined in the statement of Theorem 3.

Lemma 5: AssumeA2 andA3. Consider matriced\ i defined by (19). Then the following facts hold
true:

1) Matrix I — A is invertible, andIx — Ax)~! = 0.

2) Element(k, k) of the inverse satisfie§Ix — AK)il]k,k >1foreveryl <k < K.

3) The maximum row sum norm of the inverse satisfiessupy ||(Ix — Ax) ™[] < oc.

Due to Lemma 5—(1)6)%{ is well defined. Let us prove thaim sup @?K < o0. The first term of the
right-hand side of (20) satisfies

1 1A 1A
ggT(IK—AK) "A7 g < lgllool|(Ix — Ag) ' A7 g0

< gl [0 = Ax) 7| o 1A gl < ligll3 | (I — A) 7|, (26)

due tof|A"|| < 1. Recall that|T|| < p~! by Lemma 4—(1). Therefore, any elementgbatisfies

N ot
< 2 Tmax 27
SK 2 (27)
by A2, hencesupy ||g]| < C. From Lemma 5—(3) and (26), we then obtain

1 N
—t1tDyD,. T? < = ||Dp||/|D:||||T2
7¢ ttDoDy _KH ol Dl | T|

1
limsup —g (Ix — Ag) tA g < C. (28)
r K

We can prove similarly that the second term in the right-haiag of (20) satisfiesup x ((E|Wig|* —
1)%trDET(—p)?) < C. Hencelim supy 0% < oco.
Let us prove thatim inf x ©% > 0. We have
1 (@ 1 _ _ _
?gT(IK — AK)_IA_lg > Egleag ((IK — Ag) 1) A lg
) 1 l
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where(a) follows from the fact thafI —Ax)~! = 0 (Lemma 5—(1), and the straightforward inequalities
A~!=0andg = 0), (b) follows from Lemma 5-(2) andA|| < (1 + %%)2, (c) follows from the
elementary inequalitys ™! >~ 2? > (n=! 3" 2;)?, and(d) is due to Lemma 4—(1). Similar derivations

yield:

1 EWplt—1 /1
(E|W10|4—1)?trD(2)T > |10|(

2
4
o (D) 2 CEMal

by A3. Therefore, ifA4 holds true, therdim inf g @12,{ > 0 and Theorem 3—(1) is proved.

C. Proof of Theorem 3—(2)

Recall that the SINRSk is given by Equation (14). The random varia%g(ﬁK — B) can therefore

be decomposed as

K —= 1 1
g;m ~Bi) = g (WiDy QDG "wo — 1r(Do@)) + = (1r(Do(Q — T)
= Uk +Usk - (29)

Thanks to Lemma 4—(2) and to the fact thian infx ©F > 0, we haveEUZ , < CK ™' which implies

that Ux 2 — 0 in probability asK — oo. Hence, in order to conclude that

\/j(ﬁx — Bg) — N(0,1) in distribution,

it is sufficient by Slutsky’s theorem to prove thit x — A(0, 1) in distribution. The remainder of the
section is devoted to this point.

Remark 6:Decomposition (29) and the convergence to zero (in proitgbdf U, x yield the following
interpretation: The fluctuations of K (55 — ) are mainly due to the fluctuations of vectwy. Indeed

the contribution of the fluctuatiohsf %trDOQ, due to the random nature &f, is negligible.

Denote byE, the conditional expectatioR,,[ - | = E[ - || Wy 0, Wp41,0,..., Wno, Y]. PUtEN [ - | =
E[ - || Y] and note thaEN+1(w§Dé/2QD(1)/2w0) = trDpQ. With these notations at hand, we have:
N 1/2 1/2 N
1 wiD/ QD *wy A 1
Uk ==—Y (BEn—E 00 0 =—> Znx . 30
1L,K @K n:1( n n+1) \/? @K n:1 n,K ( )

In fact, one may prove that the fluctuation #ftrDo(Q — T) are of orderk, i.e. trDo(Q — T) asymptotically behaves as
a Gaussian random variable. Such a speed of fluctuations alreadyraipg¢24], when studying the fluctuations of the mutual
information.
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Consider the increasing sequencesoffields
Fng =0Wno,Y), -, Frx=cWi - ,WnoY).

Then the random variablg,, x is integrable and measurable with respectAgx; moreover it readily
satisfiesE,, 1172, x = 0. In particular, the sequenc&n k., . . ., Z1 k) is a martingale difference sequence
with respect to(Fn k,---,Fi1,x). The following CLT for martingales is the key tool to study the

asymptotic behavior of/; k:

Theorem 4:Let Xy x, XN-1.K,.-.,X1 xk be a martingale difference sequence with respect to the
increasing filtrationGy k, - . ., G1 k. Assume that there exists a sequence of real positive nissBer
such that

ZE X G, k] e
Kn 1 %

in probability. Assume further that the Lyapunov conditioolds:

1 2
30 >0, S ZEanK\+aK—>0
K n=1

Thensy! fo:l X,k converges in distribution td/(0,1) as K — oo.

Remark 7:This theorem is proved in [27], gathering Theorem 35.12 (whéclxpressed under the
weaker Lindeberg condition) together with the arguments ofiGe 27 (where it is proved that Lyapunov’s

condition implies Lindeberg’s condition).

In order to prove that
Up i = B Z Znx —— N(0,1) in distribution, (31)

Zn, k and the filtration(F,, k). The proof is carried out

n=1

we shall apply Theorem 4 to the sugr Z
into four steps:

Step 1: We first establish Lyapunov’s condition. Due to the fact thatinfx ©% > 0, we only
need to show that

N
Ja>0, > E|Z,k[* ——0. (32)
n=1 e

Step 2: We prove thatlx = 30", En 122 ;. satisfies

Vi — (OE‘W“;MH (D§(diag(Q))?) + 1tr(D0QDOQ)> —— 0 in probability.  (33)
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Step 3: We first show that
L
K

1

uD3 (diag(Q))* — -

trDZT? ——0 in probability. (34)

In order to study the asymptotic behavioréftr(DoQDOQ), we introduce the random variablés =
%tr(DOQDZQ) for 0 < ¢ < K (the one of interest beinf,). We then prove that th&,’s satisfy the

following system of equations:
K 1
Uy = ;%Uk + EtngDgTQ +e, 0<(<K, (35)

where ,
1 _\2
e = L EIDDTCE g ek (36)
K (1+ LtrD,T(—p))

and the perturbationg satisfyE|ey| < CK~: where we recall tha€' is independent of.

Step 4: We prove that/y = %trDOQDOQ satisfies

1 1
= EtrD%TZ + EgT I-A) 1A lg+e (37)

with Ele] < CK~2. This equation combined with (33) and (34) yiel§3, En1Z; i —©% — 01in

Uy

probability. Aslim inf ©F > 0, this implies g— ", En1127 ;- — 1 in probability, which proves (31)

and thus ends the proof of Theorem 3.

Write B = [b;]N._, = D(l)/QQDé/2 and recall from (30) that,, x = —=(E,, — E,11)w;Bwo. We

ij= VK
have

n—1 N

E,wiBwo = > bu+ > Wi Weobee, -

/=1 l1,0o=n

Hence N N
1 * *
Zn,K = ﬁ <(|Wn0|2 - 1) bnn + Wno Z Wﬁobné + WnO Z W£0b€n> . (38)
f=n+1 l=n—+1

Step 1: Validation of the Lyapunov conditioifhe following inequality will be of help to check
Lyapunov’s condition.
Lemma 6 (Burkholder’s inequality)Let X; be a complex martingale difference sequence with respect

to the increasing sequence @ffields 7. Then forp > 2, there exists a constaqt, for which

P p/2
d Xk <G |E (ZE [|Xk|2||fk—1]> +E> Xl
P ! !

E
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Recall AssumptiorAl. Eq. (38) yields:

4
1 [ |Waol2+1 al
Znk|' < 2 <|n§|2+2 Who Z Wiobne
PO max l=n+1
4
23 [ (|Wo2+1\* al
< | (Fpp) 2w 3 wan (39)
max t=n+1

where we use the fact thil,,,,| < (po2,..)~! (cf. Lemma 2—(1)) and the convexity af— x*. Due to

max

AssumptionAl, we have:
E ([Waol? +1)" < 2% (E[Wno[® +1) < 00 . (40)

Considering the second term at the right-hand side of (38)wwite

4 4

N N
EWao > Wobne| = E[Wul'E| > Waobne|
{=n+1 {=n+1
(@) N 2 N
< C E(Z (E|Wz0|2)|bnz|2> + > (EIWal)(Elbnel*) |
{=n-+1 {=n+1
) N 2 N
< C{E( D [bae®) + D Elbnel®|
{=n+1 l=n+1
where (a) follows from Lemma 6 (Burkholder's inequality), the filtratidoeing Fiy i, . . ., Frt1,x and

(b) follows from the boundb,|* < |bnel? max |bue|? < [bel®(02.0~1)? (cf. Lemma 2—(1)). Now,
notice that
N N 0_4
1/2 1/2 1/2 1/2 max
D Il < 3 Ibudl® = [Dg*QDUQDY| < D" QDoQD | < P
l=n+1 (=1

This yieldsE|W,, Zé\’:nﬂ Wiobne|* < C. Gathering this result with (40), getting back to (39), taki

the expectation and summing up finally yields:
N
C
E|Z, k|* < =
2Bzl < i 0

which establishes Lyapunov’s condition (32) with= 2.
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Step 2: Proof of(33). Eqg. (38) yields:

N N 2
1 * *
En+lZ72L,K = K ((E|W10|4 — 1) o+ Ent1 (Wnoe E—H Weobne + Who g E-H Wgobgn>
=n =n

N N
+2bpn (E W5 Wiol®) > Waobne + 2bnn (EWio|Wiol?) Wg‘obg,> .

f=n+1 l=n+1
Note that the second term of the right-hand side writes:

N N 2 N
Ent1 (Wﬁko > Wiobne + W Y We*obzn> =2 > WooWobne,beyn -
{=n-+1 l=n+1 l1,0o=n+1

Therefore,Vx = SN

n=1

E, 117} i writes:

E[Wio|* — 1)
Vi = ( | 10| Zb + = Z Z ngowgzobnélbbn
n 141,0,=n+1

N N
2 *
+ o <(EW10W10\2) D b Y mene) :

n=1 l=n+1

wheret denotes the real part of a complex number. We introduce tf@niog notations:
| N N
N N
R = (sz)zj 1= (bZ]11>j)Zj 1 and I'x = F7e ann Z Wiobne -
n=1 l=n—+1

Note in particular thaR is the strictly lower triangular matrix extracted froD(l)/ 2QD[1)/ ?. We can now
rewrite Vi as:

(E[Wio|* — 1)
K

We now prove that the third term of the right-hand side vagssiand find an asymptotic equivalent for

2
—wiRR*wq + 2R (DkEW,|[Wio|?) . (41)

Vi = I%e

tr (D3(diag(Q))?) +

the second one. Using Lemma 2, we have:

N N
1 . 1 . I
Il“—_1:'N—&—1|FK"2 = K2 g bnnbmm E bnﬁbmf]-€>n]-f>m = K2 tr (dlag(B)R Rdlag(B))
n,m=1 /=1

1
- ﬁtr( 1/2d1ag(Q)Dé/QR*RDé/Qdiag(Q)D(I)/2>

. 1 1
< SIDPIQPERTR) < S IDoPIQI(BY) < Dol Q@)

1 104
< D 2 4 < max .
< wlIDollFlQI" < ot o O
In particular,E|T'x|?> — 0 and
R ((EW[W1ol*) 'c) —— 0 in probability . (42)
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Consider now the second term of the right-hand side of Eq. (&) prove that:

?WORR wo — ?tr(RR ) P 0 in probability. (43)

By Lemma 1 (Ineg. (12)), we have

E (KWORR w( — ?tr(RR )) < ﬁ(E|W10|4)tr(RR RR") .
Notice thattr(RR*RR*) = |R||3 where||R||4 is the Schatteri;-norm of R. Using Lemma 3, we have:
Cmax

1/2 1/2 1/2 1/2
IRJI{ < ClIDy*QDY | < NOIDy QDY < N7

Therefore,

K K? K—oo
which implies (43). Now, due to the fact thBt = B*, we have

9 9 N N
—rRR" = }Z > bl

1 1 2 N
E <w3RR*w0 _ Ktr(RR*)) <OC— ——0

n=1/¢=n+1
1 & 1 &
= E Z |bng| - Ez ’bnn’
nd=1 n=1
1 1 2/ 1. 2
= rDyQDQ — —-tr Dij(diag(Q)) (44)

Gathering (41-44), we obtain (33). Step 2 is proved.

Step 3: Proof of(34) and (35): We begin with some identities. Writ€(z) = [qij(z)]fj’jzl and
Q(2) = [cjij(z)]{fj:l. Denote byy; the column numbek of Y and by¢, the row numbem of Y.
Denote byY”* the matrix that remains after deleting colurafrom Y and byY,, the matrix that remains
after deleting rown from Y. Finally, write Q;,(z) = (Y*Y*" — 2I)~! and Q,(z) = (Y} Y, — 2I)"L.
The following formulas can be established easily (see faam=e [31,50.7.3. and0.7.4]):

1 1

nn\— = ~ ) Jkk(—p) = s 45

L IS W S e e oy (45)
o _ QreyryiQk

Q=Qx T+ y:Quys (46)

Lemma 7:The following hold true:

1) (Rank one perturbation inequaljtylhe resolveniQy(—p) satisfies|trA(Q — Q)| < ||A||/p for
any N x N matrix A.

2) Let AssumptionsA1-A3 hold. Then,

max E(qun(—p) — tn(—p))? < (47)

%
1<n<N K
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The same conclusion holds truegif, andt, are replaced witlg,;, andt; respectively.

We are now in position to prove (34). First, notice that:

E ’qgm - t?@} = E ’C.Inn - tn| (an + tn)
2
é \/E(QTm - tn)z\/E(QTm + tn)Q S ; E(an - tn)Q . (48)
Now,
N
1 _ 1 ot N
%E |tr D§(diag(Q)* — T?)| < T nzlag,nE |gny —th] < 7““;{ ér?l%XNE G —
208 N 5
pK 1?1na<XNE(q"" ~tn) K—o00 0,

where the last inequality follows from (48) together with L 7—(2). Convergence (34) is established.

We now establish the system of equations (35). Our startgigt is the identity
Q=T+T(T'-QHQ=T+ %T diag(trD1 T, ..., ttDNT)Q - TYY*Q .
Using this identity, we develop, = %tI‘DoQDgQ as

Us

. 1
—trDoQDgT —|— trDOQDZleag(trDl .L,trDNT)Q — EtrDOQDKTYY*Q

1>

X1+ X9 — X3 . (49)
Lemma 4—(2) withS = DyD,T yields:

1
X, = EtrDngT2 + e (50)

whereEle;| < /Eef < C/K. Consider now the ternk; = % Zszl trDoQD,Tyy; Q. Using (45)

and (46), we have
Vi Qyk

— = ) v Qr = PGk Y Qu -
1+y;:ka> g "

Y. Q= (1—
Hence

K
PN o
X3 = K};QkkkakDOQDETYk

K K
= % kaYZQkDOQDETYk + % Z Gek — 1)y QDo QD Ty,
k=1 k=1
é Xé + €2 . (51)
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By Cauchy-Schwartz inequality,

K
P ~ g *
Eles| < 7d ; \/ E(Gkk — tk)Q\/E(kakDOQDZTYk)2 :

We haveE (y;QrDoQD(Tyy)? < o5 ..p °Ellyx||* < C. Using in addition Lemma 7—(2), we obtain

C
Eleo| < — .
lea] < TR
ConsiderX;. From (45) and (46), we hav® = Qi — pgr: Qryry: Q. Hence, we can develof; as

K ) K
Xy = % >y QiDoQrD Ty}, — % > iy Qe DoQryry; QrD Tyy
k=1 k=1

ConsiderX,. Notice thaty, and Q, are independent. Therefore, by Lemma 1, we obtain
% 1 1
Y QiDoQrD¢Ty) = EterQkDOQkDéT +e3= gtTDkQDoQDeT +e3+ €

whereEe} < CK~! by Ineq. (13). Applying twice Lemma 7—(1) to, = +(trD;Q;DoQ;D,T —
trD,QDQD,T) yields |e;] < CK~L. Note in addition thay" ;D) = diag(trD,T, ..., trDyT).

Thus, we obtain

K2
= Xo+es, (53)

K
X, = L (kaDk> QDoQD,T + ¢;
k=1

wherees = €3 + €4, which yieldsE|es| < CK 2.

We now turn toXs. First introduce the following random variable:
i * * T~ 1 1
€6 = tkedrkYr QrDoQrYrYr QD Ty — trqrk (KterQkDOka> <KterQszT>

Then

1, . 1
les| < Eyk;QkDOQk:Yk viQiD¢ Ty, — ?tTDkaDzT

1], . 1 1
+ 7 Vi QrDoQryy — ?terQkDUQk gtTDkaDzT

and one can prove thélt|es| < CK ™= with help of Lemma 1, together with Cauchy-Schwarz inequality

In addition, we can prove with the help of Lemma 7 that:

. 1 1 1 1
LrQk (KtTDkaDOQk> (KterkaDeT> = £ (KtTDkQDOQ> <KterQDeT> +er

1 1
t% (KterQD0Q> <KterDgT2> + €7 + €3

July 6, 2009 DRAFT



A CENTRAL LIMIT THEOREM FOR THE SINR AT THE LMMSE ESTIMATOR OUPUT 29

where e; and eg are random variables satisfyirig|e;| < CK™ > by Lemma 7, andmaxy ¢ Eleg| <
maxy, o /Eles]2 < CK ™3 by Lemma 4—(2). Using the fact that#? = (1 + +trD,T)~2, we end up
with
= o f: <tFDkQDoQ> <1terDeT2> +e9=— EK: copUy + €9 (54)
K K

k=1
wherec;, is given by (36), and wherE|eg| < CK 2
Plugging Eq. (50)—(54) into (49), we end up with = Zszl corUr + %trDngT2 + e with E|e| <
CK™ . Step 3 is established.
Step 4 : Proof of(37). We rely on results of Section V-B, in particular on Lemma 5.

Define the following(K + 1) x 1 vectors:

1 K
u= [Uk}szo, d= [KtrDoDkTQ} , €= [Ek:]kK:o ,
k=0

where theUy’s and ¢;’s are defined in (35). Recall the definition of thg,’'s for 0 < ¢ < K and
1 <k <K, definecyy =0 for 0 < ¢ < K and consider th¢ X + 1) x (K + 1) matrix C = [Cﬂk]fk:o-

With these notations, System (35) writes
(Ik41—Clu=d+e. (55)
Let o = +tr D2T? and 3 = (1 + £trDT)% We have in particular

« 0 LgTA™!
d= , C= k&
g 0 AT
(recall thatA, A andg are defined in the statement of Theorem 3).
Consider a square matriX which first column is equal td1,0,...,0]T, and partitionX as X =
1 T

X
! |. Recall that the inverse & exists if and only ifX ! exists, and in this case the first row

0 Xy
[X~ 1]y of X~ is given by
X p=[1 —xu X7

(see for instance [31]). We now apply these results to theesy$b5). Due to (55)[/; can be expressed
as

Up=[I-C) 'o(d+e) .
By Lemma 5—(1),(Ix — AT)~! exists hencdI — C)~! exists,

_ 1 _ _
(Ig.1 —C) 1}02 [1 ?gTA YIg — AT
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and

1 - 1 _
Uh=a+—g AT I-AT) 'g+e+—g"A ! (T-AT) ¢
K K
with € = [e,...,ex]T. Gathering the estimates of Section V-B together with the flaat |Eel|,, <

CK™ 3, we get (37). Step 4 is established, so is Theorem 3.

APPENDIX

A. Proof of Lemma 4

Let us establish (24). The lower bound immediately followsrfrthe representation
a) 1

1
tn: 2 2
1 K 2 2
p"‘?Zk:llJrégk p+amax

N 2
=1 %ute

—~

where(a) follows from A2 andt,(—p) > 0. The upper bound requires an extra argument: As proved in

[29, Theorem 2.4], the,’s are Stieltjes transforms of probability measures suggbhty R, i.e. there

exists a probability measuye, over R, such thatt,(z) = % Thus
© pn(dt) 1
tn(—p)—/ M( )§77
o t+p T p

and (24) is proved.

We now briefly justify (25). We havé& [tr S(Q — T)|> = E [trS(Q — EQ)|? + [trS(EQ — T)|%. In
[24, Lemma 6.3] it is stated thatupy E[trS(Q — EQ)|> < oo. Furthermore, in the proof of [24,
Theorem 3.3] it is shown thatup, K||EQ — T|| < oo, hence|trS(EQ — T)| < K||S(EQ — T)| <
K|EQ — T||||S|| < co by Lemma 2—(2). The result follows.

B. Proof of Corollary 1

Recall that in the separable cad®, = d;D andD,, = d,,D. Letd be theK x 1 vectord = [di]/_,.

In the separable case, Eq. (20) is written

o2 1
— = —glI-A) A g+ ~(EW[* - 1), 56
7 Kd%g ( ) g +v(E[Wiol* - 1) (56)
where~ is defined in statement of the corollary. Here, vegioind matrixA are given by
- 1 LuDD,T? | N
g= ’Yd(]d and A = ? K 2 3 = ?A_ dd" .
(1+ %trD,T) f =
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By the matrix inversion lemma [31], we have

2 e —1 -
T1-A)'a-lg = %dT (A - %ddT) d

=8
Kd3
’Yz 5T 1, 7 1 1337 1) 3
= —d'({at+ L —— A tdd'A T |d.
K TKRI- LdTA'd
Noticing that
K 7 K
1~ -1 d? P2 o -
dfa-ld=— k =N @ = p?5,
K K= (1+ +uD,T)” K;“

we obtain

Plugging this equation into (56), we obtain (22).

C. Proof of Corollary 2

Expression (22) can be rewritten

03 = <1 —ZQ'W + v (E[Wio|* - 2)>

As D =1, we have

1

and from Eq. (17) we hav@(—p) = <p(1 + 5(p))> I. It results that

1 K /1 2 K
1= =y <Ktr1> ~°

hencevy (1E|W10|4 — 2) coincides with the second term at the right hand side of Eqg). (28 now turn
to the termy /(1 — p?v7). By Eq. (17) we have

5y B L~
=T TR <p<1+cik5<p>>>
5 & a2 1-

= — — —_— 716., == _75 - 5/~ 58
K= p?( 1+d5 Kkzlp(l—}-dké)Q p ’ (8)

Symmetrically, we haveé’ = —%6 — pb'~. Replacingd’ by its value in Eq. (58), we obtain
(1—p*y9)8 = —/1)5 +90 . (59)

Now we havedT = (5/(p(1 + 5))) I=p'TI-T. Hence
- 1 ~ 1 1 1
78 = —tr (T(aT)) — —tr (T <p1 - T>> = 57
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Plugging into Eq. (59) and using (57) , we end up with

v , N/ 1
== mg(dt
1— p*yy &) @

where the second equality is due to Eq. (57). Equation (23)dsepr.

D. Proof of Lemma 7

The proof of Part 1 can be found in [24, Proof of Lemma 6.3] (see Hdg, Lemma 2.6]). Let us
prove Part 2. We have from Equations (11) and (45)
1
p(1+ 20D, T)(1 +€,Quér)

~ 1 ~ ~
£nQn§:—KtanT’ :

|an(_p) - tn(_p)’ =

~ 1 ~ ~
£, Qnt; - KtanT‘

1
P
Hence,

= Q

2 ~ 1.~ \? 2 N2
E(an—tn)2 < ;E <§nQn§n—KtanQ> +WE (tan(Q—T)) <

by Lemma 1 and Lemma 4—(2), which proves (47).

REFERENCES

[1] D.N.C Tse and S. Hanly, “Linear multi-user receiver: Effectimterference, effective bandwidth and user capacigyEE
Trans. on Information Theorwol. 45, no. 2, pp. 641-657, Mar. 1999.

[2] S. Verds and Sh. Shamai, “Spectral efficiency of CDMA with random spregditi§EE Trans. on Information Theaoyry
vol. 45, no. 2, pp. 622-640, Mar. 1999.

[3] J. Evans and D.N.C Tse, “Large system performance of linealtiuser receivers in multipath fading channel$EEE
Trans. on Information Theoryol. 46, no. 6, pp. 2059-2078, Sept. 2000.

[4] E.Biglieri, G. Caire, and G. Taricco, “CDMA system design througiraptotic analysis,TEEE Trans. on Communications
vol. 48, no. 11, pp. 1882-1896, Nov. 2000.

[5] W. Phoel and M.L. Honig, “Performance of coded DS-CDMA witlopassisted channel estimation and linear interference
suppression,’EEE Trans. on Communicationsgol. 50, no. 5, pp. 822-832, May 2002.

[6] J.-M. Chaufray, W. Hachem, and Ph. Loubaton, “Asymptotic lixsia of Optimum and Sub-Optimum CDMA Downlink
MMSE Receivers,”IEEE Trans. on Information Theoryol. 50, no. 11, pp. 2620-2638, Nov. 2004.

[7] L. Li, A.M. Tulino, and S. Verd, “Design of Reduced-Rank MMSE Multiuser Detectors Using Randormi¥ilethods,”
IEEE Trans. on Information Theoryol. 50, no. 6, pp. 986-1008, June 2004.

[8] A.M. Tulino, L. Li, and S. Verdi, “Spectral Efficiency of Multicarrier CDMA,"IEEE Trans. on Information Theoyryol.
51, no. 2, pp. 479-505, Feb. 2005.

[9] M.J.M. Peacock, I.B. Collings, and M.L. Honig, “Asymptotic spet efficiency of multiuser multisignature CDMA in
frequency-selective channeldEEE Trans. on Information Theoyryol. 52, no. 3, pp. 1113-1129, Mar. 2006.

July 6, 2009 DRAFT



A CENTRAL LIMIT THEOREM FOR THE SINR AT THE LMMSE ESTIMATOR OUPUT 33

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
(28]

[29]

J.H. Kotecha and A.M. Sayeed, “Transmit signal design fainogl estimation of correlated MIMO channels/EEE
Trans. on Signal Processingol. 52, no. 2, pp. 546-557, Feb. 2004.

A.M. Sayeed, “Deconstructing multiantenna fading channelEEE Trans. on Signal Processingol. 50, no. 10, pp.
2563-2579, Oct. 2002.

Shiu D.-S., G.J. Foschini, M.J. Gans, and J.M. Kahn, “Fadiogelation and its effect on the capacity of multielement
antenna systemsJEEE Trans. on Communicationsol. 48, no. 3, pp. 502-513, Mar. 2000.

V. L. Girko, Theory of Random Determinantgol. 45 of Mathematics and its Applications (Soviet Serie®jluwer
Academic Publishers Group, Dordrecht, 1990.

J.W. Silverstein and Z.D. Bai, “On the empirical distribution of eigdnes of a class of large dimensional random
matrices,” J. Multivariate Anal, vol. 54, no. 2, pp. 175-192, 1995.

D. Shlyakhtenko, “Random Gaussian band matrices and freeméls amalgamation,internat. Math. Res. Notices no.
20, pp. 1013-1025, 1996.

D.N.C. Tse and O. Zeitouni, “Linear multiuser receivers in randenvironments,”IEEE Trans. on Information Theory
vol. 46, no. 1, pp. 171-188, Jan. 2000.

J.W. Silverstein, “Weak convergence of random functions defihy the eigenvectors of sample covariance matrices,”
Ann. Probah. vol. 18, no. 3, pp. 1174-1194, 1990.

G.-M. Pan, M.-H Guo, and W. Zhou, “Asymptotic distributions of tBignal-to-Interference Ratios of LMMSE detection
in multiuser communications,Ann. Appl. Probah.vol. 17, no. 1, pp. 181-206, 2007.

F. Gotze and A. Tikhomirov, “Asymptotic distributions of quadratic forms apglecations,” J. Theoret. Probab.vol. 15,
pp. 424-475, 2002.

P. Li, D. Paul, R. Narasimhan, and J. Cioffi, “On the distribution B4/ for the MMSE MIMO receiver and performance
analysis,”|IEEE Trans. on Information Theoyyol. 52, no. 1, pp. 271-286, Jan. 2006.

T. Tanaka, “A statistical mechanics approach to large-systerysisaf CDMA multiuser detectors,’|EEE Trans. on
Information Theoryvol. 48, no. 11, pp. 2888-2910, Nov. 2002.

D. Guo, “Performance of multicarrier CDMA in frequency-séiee fading via statistical physics,”IEEE Trans. on
Information Theoryvol. 52, no. 4, pp. 1765-1774, Apr. 2006.

W. Hachem, O. Khorunzhiy, P. Loubaton, J. Najim, and L. Pastirnew approach for mutual information analysis of
large dimensional multi-antenna chennel€EE Trans. Inform. Theorywol. 54, no. 9, pp. 3987-4004, 2008.

W. Hachem, P. Loubaton, and J. Najim, “A CLT for informationdhetic statistics of gram random matrices with a given
variance profile,”Ann. Appl. Probah.vol. 18, no. 6, pp. 2071-2130, 2008.

A.L. Moustakas, S.H. Simon, and A.M. Sengupta, “MIMO cdpacthrough correlated channels in the presence of
correlated interferers and noise: A (not so) large N analydiSEE Trans. on Information Theorywol. 49, no. 10, pp.
2545-2561, Oct. 2003.

A.L. Moustakas and S.H. Simon, “On the outage capacity of tatd multiple-path MIMO channels/EEE Trans. on
Information Theoryvol. 53, no. 11, pp. 3887-3903, Nov. 2007.

P. Billingsley, Probability and MeasureJohn Wiley, 3rd edition, 1995.

R.J. Bhansali, L. Giraitis, and P.S. Kokoszka, “Convergerfaguadratic forms with nonvanishing diagona§tat. Probab.
Letters vol. 77, pp. 726—734, 2007.

W. Hachem, P. Loubaton, and J. Najim, “Deterministic equivalestértain functionals of large random matriceAyin.
Appl. Probab. vol. 17, no. 3, pp. 875-930, 2007.

July 6, 2009 DRAFT



A CENTRAL LIMIT THEOREM FOR THE SINR AT THE LMMSE ESTIMATOR OUPUT 34

[30] z.D. Bai and J.W. Silverstein, “No eigenvalues outside the suggdhe limiting spectral distribution of large dimensional
sample covariance matricesfnnals of Probability vol. 26, no. 1, pp. 316-345, 1998.
[31] R. Horn and C. JohnsorMatrix Analysis Cambridge Univ. Press, 1994,

[32] N.K. Nikolski, Operators, Functions and Systems: An Easy Reading. Vol. 2: Modalb@ps and System$lathematical
Surveys and Monographs. AMS, 2002.

July 6, 2009 DRAFT



