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Abstract

This paper adresses the behaviour of the mutual informationof correlated MIMO Rayleigh channels

when the numbers of transmit and receive antennas converge to +∞ at the same rate. Using a new

and simple approach based on Poincaré-Nash inequality andon an integration by parts formula, it is

rigorously established that the mutual information when properly centered and rescaled converges to

a standard Gaussian random variable. Simple expressions for the centering and scaling parameters are

provided. These results confirm previous evaluations basedon the powerful but non rigorous replica

method. It is believed that the tools that are used in this paper are simple, robust, and of interest for the

communications engineering community.
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I. INTRODUCTION

It is widely known that high spectral efficiencies are attained when multiple antennas are used at

both the transmitter and the receiver of a wireless communication system. Indeed, consider the classical

transmission modely = Gx + z, wherey is the received signal,x is the vector of transmitted symbols,

z is a complex white Gaussian noise, andG is theN × n Multiple Input Multiple Output (MIMO)

channel matrix withN antennas at the receiver’s site andn antennas at the transmitter’s. Due to the

mobility and to the presence of a large number of reflected andscattered signal paths, the elements

of the channel matrixG are often modeled as random variables. Assuming a random model for this

matrix, Telatar [1] and Foschini [2] realized in the mid-nineties that Shannon’s mutual information of

such channels increases at the rate ofmin(N,n) for a fixed transmission power [1]. The authors of [1]

and [2] assumed that the elements of the channel matrixG are centered, independent and identically

distributed (i.i.d.) elements. In this context, a well-known result in Random Matrix Theory (RMT) [3]

states that the eigenvalue distribution of the Gram matrixGG∗ whereG∗ is the Hermitian adjoint ofG

converges to a deterministic probability distribution asn goes to infinity andN/n converges to a constant

c > 0. Denote byI(ρ) = log det
( ρ

nGG∗ + IN

)
the mutual information of channelG for a Signal-to-

Noise Ratio at a receiver antenna equal toρ/n. One consequence of [3] is that the mutual information

per transmit antennaI(ρ)/n, being an integral of alog function with respect to the empirical eigenvalue

distribution ofGG∗, converges to a constant. This fact already observed in [1] sustains the assertion of a

linear increase of mutual information with the number of antennas. In addition, this convergence proves

to be sufficiently fast. As a matter of fact, the asymptotic results predicted by the RMT remain relevant

for systems with a moderate number of antennas.

The next step was to apply this theory to channel models that include a correlation between paths

(or entries ofG). One of the main purposes of this generalization is to better understand the impact

of these correlations on Shannon’s mutual information. Letus cite in this context the contributions [4],

[5], [6], [7] and [8], all devoted to the study of the mutual information in the case where the elements

of channel’s matrix are centered and correlated random variables. In [9], a deterministic equivalent is

computed under broad conditions for the mutual informationbased on Rice channels modeled by non-

centered matrices with independent but not identically distributed random variables. The link between

matrices with correlated entries and matrices with independent entries and a variance profile is studied

in [10].
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One of the most popular correlated channel models used for these mutual information evaluations is

the so-called Kronecker modelG = ΨWΨ̃ whereW is aN × n matrix with Gaussian centered i.i.d.

entries, andΨ andΨ̃ areN×N andn×n matrices that capture the path correlations at the receiverand

at the transmitter sides respectively [11], [12]. This model has been studied by Chuah et al. in [5]. With

some assumptions on matricesΨ andΨ̃, these authors showed thatI(ρ)/n converges to a deterministic

quantity defined as the fixed point of an integral equation. Later on, Tulino et al. [8] obtained the limit

of I(ρ)/n for a correlation model more general than the Kronecker model. Both these works rely on a

result of Girko describing the eigenvalue distribution of the Gram matrix associated with a matrix with

independent but not necessarily identically distributed entries, a close model as we shall see in a moment.

In [7], Moustakas et al. studied the mutual information for the Kronecker model by using the so-called

replica method. They found an approximationV (ρ) of E [I(ρ)] accurate to the order1/n in the largen

regime. Using this same method, they also showed that the variance ofI(ρ)− V (ρ) is of order one and

were able to derive this variance for largen.

Although the replica technique is powerful and has a wide range of applications, the rigorous justi-

fication of some of its parts remains to be done. In this paper,we propose a new method to study the

convergence ofEI(ρ) and the fluctuations ofI(ρ). Beside recovering the results in [7] and especially the

strikingly simple form of the variance, we establish the Central Limit Theorem (CLT) forI(ρ) − V (ρ)

(for a related CLT in a non-Gaussian context, see [13]). The practical interest of such a result is of

importance since the CLT leads to an evaluation of the outageprobability, i.e. the probability thatI(ρ)

lies beneath a given threshold, by means of the Gaussian approximation. Many other works have been

devoted to CLT for random matrices. Close to our present article are [14], [15], [16].

In this article, we also would like to advocate the method used to establish both the approximation of

I(ρ) in the largen regime and the CLT. Due to the Gaussian natureare in an of the entries of MatrixG,

two simple ingredients are available. The first one is an Integration by parts formula (17) that provides an

expression for the expectation of certain functionals of Gaussian vectors. This formula has been widely

used in RMT [17]–[19]. The second ingredient is Poincaré-Nash inequality (18) that bounds the variance

of functionals of Gaussian vectors. Although well known [20], [21], its application to RMT is fairly recent

[22], [19] (see also [23] and [24] where general concentration inequalities are derived for functions of

random matrices). This inequality enables us to control thedecrease rate of the approximation errors

such as the order1/n error E [I(ρ)] − V (ρ) (note that the Gaussian structure enters in two places: First

the reduction to matrices with independent entries and varying variance and then integration by part and
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Poincaré-Nash bounds for the variance of relevant spectral characteristics1). We believe that these tools of

rigorous and explicit analysis might be of great interest for the communications engineering community

(see for instance the estimates obtained in [25] in the context of Ricean MIMO channels).

The paper is organized as follows. In Section II, we introduce the main notations; we also state the two

main results of the article. In Section III, we recall general matrix results and the two aforementioned

Gaussian tools. Section IV is devoted to the proof of the firstorder result, that is the approximation of

E[I(ρ)]. The CLT, also refered to as the second order result, is established in Section V. Proof details

are postponed to an appendix.

II. N OTATIONS AND STATEMENT OF THE MAIN RESULTS

A. From a Kronecker model to a separable variance model.

Consider a MIMO system represented by aN ×n matrix G wheren is the number of antennas at the

transmitter andN is the number of antennas at the receiver and whereN(n) is a sequence of integers

such that

0 < ℓ− = lim inf
n→∞

N(n)

n
≤ ℓ+ = lim sup

n→∞

N(n)

n
<∞ , (1)

a condition we shall refer to by writingn,N → ∞. Assuming the transmitted signal is a Gaussian

signal with a covariance matrix equal to1nIn (and thus, a total power equal to one), Shannon’s mutual

information of this channel isIn(ρ) = log det
( ρ

nGnG
∗
n + IN

)
, whereρ > 0 is the inverse of the additive

white Gaussian noise variance at each receive antenna. The general problem we address in this paper

concerns the behaviour of the mutual information for large values ofN and n in the case where the

channel matrixGn, assumed to be random, is described by the Kronecker modelGn = ΨnWnΨ̃n. In

this model,Ψn and Ψ̃n are respectivelyN × N andn × n deterministic matrices andWn is random

with independent entries distributed acccording to the complex circular Gaussian law with mean zero

and variance oneCN (0, 1).

It is well known that this model can be replaced with a simplerKronecker model involving a matrix with

Gaussian independent (but not necessarily identically distributed) entries. Indeed, letΨn = UnD
1

2
nV∗

n

(resp.Ψ̃n = ŨnD̃
1

2
nṼ∗

n) be a Singular Value Decomposition (SVD) ofΨn (resp.Ψ̃n), whereDn (resp.

D̃n) is the diagonal matrix of eigenvalues ofΨnΨ
∗
n (resp.Ψ̃nΨ̃

∗

n), thenIn(ρ) writes:

In(ρ) = log det
(ρ
n
YnY

∗
n + IN

)
,

1It is interesting to note that once the first reduction has been made, others techniques are available without assuming the

Gaussian character - see for instance [19].
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whereYn = D
1

2

nXnD̃
1

2

n is a N × n matrix, Dn and D̃n are respectivelyN × N andn × n diagonal

matrices, i.e.

Dn = diag
(
d
(n)
i , 1 ≤ i ≤ N

)
and D̃n = diag

(
d̃
(n)
j , 1 ≤ j ≤ n

)
,

and Xn = V∗
nWnŨn has i.i.d. entries with distributionCN (0, 1) sinceVn and Ũn are deterministic

unitary matrices. Since every individual entry ofYn has the formY (n)
ij =

√
d
(n)
i d̃

(n)
j Xij , we callYn a

random matrix with a separable variance profile.

B. Assumptions and Notations.

The centered random variableX − E[X] will be denoted by
◦

X. Element(i, j) of a matrixA will be

either denoted[A]ij or Aij. Elementi of vectora will be denotedai or [a]i. Columnj of matrix A will

be denotedaj . The transpose, the Hermitian adjoint (conjugate transpose) of A, and the matrix obtained

by conjugating its elements are denoted respectivelyAT , A∗, andA. The spectral norm of a matrixA

will be denoted‖A‖. If A is square,trA refers to its trace. Leti =
√
−1, then the operators∂/∂z and

∂/∂z wherez = x+ iy is a complex number are defined by∂∂z = 1
2

(
∂
∂x − i ∂

∂y

)
and ∂

∂z = 1
2

(
∂
∂x + i ∂

∂y

)

where ∂
∂x and ∂

∂y are the standard partial derivatives with respect tox andy.

Throughout the paper, notationK will denote a generic constant whose main feature isnot to depend

on n. In particular, the value ofK might change from a line to another as long as it never depends

uponn. ConstantK might depend ont ∈ R
+ and whenever needed, this dependence will be made more

explicit.

As usual, notationαn = O(βn) is a flexible shortcut for|αn| ≤ Kβn andαn = o(βn), for αn = εnβn

with εn → 0 asn,N → ∞ (in the sense of (1)).

In order to study a deterministic approximation ofIn(ρ) and its fluctuations, the following mild assump-

tions are required over the two triangular arrays
(
d
(n)
i , 1 ≤ i ≤ N, n ≥ 1

)
and

(
d̃
(n)
j , 1 ≤ j ≤ n, n ≥ 1

)
.

(A1) The real numbersd(n)
i and d̃(n)

j are nonnegative and the sequences
(
d
(n)
i

)
and

(
d̃
(n)
j

)
are

uniformly bounded, i.e. there exist constantsdmax and d̃max such that

sup
n

‖Dn‖ < dmax and sup
n

‖D̃n‖ < d̃max.

where‖Dn‖ and‖D̃n‖ are the spectral norms ofDn andD̃n.

(A2) The normalized traces ofDn andD̃n satisfy

inf
n

1

n
tr (Dn) > 0 and inf

n

1

n
tr
(
D̃n

)
> 0.

In the sequel, we shall frequently omit the subscriptn and the superscript(n).
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The resolvent associated with1nYnY
∗
n is theN × N matrix Hn(t) =

(
t
nYnY

∗
n + IN

)−1
. Of prime

importance is the random variableβ(t) = 1
ntrDnHn(t) and its expectationα(t) = 1

ntrDn EHn(t). We

furthermore introduce then× n deterministic matrix defined by

R̃n(t) =
(
I + tα(t)D̃n

)−1
,

= diag (r̃j(t), 1 ≤ j ≤ n) where r̃j(t) =
1

1 + tα(t)d̃j

,

and the related quantitỹα(t) = 1
ntrD̃nR̃n(t). In a symmetric fashion, theN×N matrix Rn(t) is defined

by

Rn(t) = (I + tα̃(t)Dn)−1 ,

= diag (ri(t), 1 ≤ i ≤ N) where ri(t) =
1

1 + tα̃(t)di
.

We finally introduce the solutions of a deterministic2 × 2 system.

Proposition 1: For everyn, the system of equations in(δ, δ̃)




δ = 1
ntrDn(I + tδ̃Dn)−1

δ̃ = 1
ntrD̃n(I + tδD̃n)−1

(2)

admits a unique solution
(
δn(t), δ̃n(t)

)
satisfyingδn(t) > 0, δ̃n(t) > 0. Moreover, there exist nonnegative

measuresµn and µ̃n over R
+ such that

δn(t) =

∫

R+

µn(dλ)

1 + tλ
and δ̃n(t) =

∫

R+

µ̃n(dλ)

1 + tλ
, (3)

whereµn(R+) = 1
ntrDn and µ̃n(R+) = 1

ntrD̃n.

Proof of Proposition 1 is postponed to Appendix A.

With δ and δ̃ properly defined, we introduce the followingN ×N andn× n diagonal matrices:

Tn = (IN + tδ̃Dn)−1 and T̃n = (In + tδD̃n)−1.

Notice in particular thatδ = 1
ntrDnTn and δ̃ = 1

ntr D̃nT̃n by (2). We finally introduce the following

quantities which are required to express the fluctuations ofIn(ρ):




γn(t) = 1
ntrD2

nT
2
n(t)

γ̃n(t) = 1
ntrD̃2

nT̃
2
n(t)

. (4)

Proposition 2: Assume that Assumptions(A1) and (A2) hold and denote by

σ2
n (t) = − log

(
1 − t2γn(t)γ̃n(t)

)
, t > 0 (5)
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whereγn(t) and γ̃n(t) are given by (4). Thenσ2
n(t) is well-defined, i.e.1− t2γn(t)γ̃n(t) > 0 for t > 0.

Moreover, there exist nonnegative real numbersmt andMt such that

0 < m2
t ≤ inf

n
σ2

n(t) ≤ sup
n
σ2

n(t) ≤M2
t <∞ for t > 0 . (6)

Finally, σ2
n(t) is upper-bounded uniformly inn and t for t ∈ [0, ρ], i.e. supt≤ρM

2
t <∞.

Proof of Proposition 2 is postponed to Appendix B.

Summary of the main notations.

In order to improve the readability of the paper, we gather all the notations in Table II-B. As expressed

there, there are three kinds of quantities:

1) Random quantities,

2) Deterministic quantities depending on the law ofYnY
∗
n via the expectationE with respect to the

entries ofYn,

3) Deterministic quantities which only depend on the matrices Dn and D̃n, sometimes viaδ and δ̃

(as defined in Proposition 1) which are easily computable.

The main goal of the forthcoming computations will be to approximate elements of the first and second

kind by elements of the third kind.

C. Statement of the main results.

We now state the main results. Theorem 1 describes the first order approximation of the mutual

informationIn(ρ) while Theorem 2 describes its fluctuations when centered with respect to its first order

approximation.

Theorem 1:Let Xn be aN×n matrix whose elementsXij are independent complex Gaussian variables

such that

E(Xij) = E(X2
ij) = 0, E(|Xij |2) = 1, 1 ≤ i ≤ N, 1 ≤ j ≤ n,

andYn = D
1

2
nXnD̃

1

2
n where the diagonal matricesDn andD̃n satisfy Assumptions(A1) and (A2). Let

In(ρ) = log det
( ρ

nYnY
∗
n + IN

)
. Then, we have

E[In(ρ)] = Vn(ρ) + O
(

1

n

)
(7)

asn,N → ∞ (in the sense of (1)), where

Vn(ρ) = log det
(
In + ρδn(ρ)D̃n

)
+ log det

(
IN + ρδ̃n(ρ)Dn

)
− nρδn(ρ)δ̃n(ρ) .
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Random quantities
Deterministic quantities

depending on the law ofYY
∗ via E only depending on the variance structure viaD and eD

H =
`

t

n
YY

∗ + I
´
−1

β = 1

n
trDH α = 1

n
trD(EH) δ = 1

n
trD(I + tδ̃D)−1 = 1

n
trDT

r̃j = (1 + tαd̃j)
−1

eR = (I + tα eD)−1 eT = (I + tδ eD)−1

α̃ = 1

n
tr eD eR = 1

n
tr eD(I + tα eD)−1 δ̃ = 1

n
tr eD(I + tδ eD)−1 = 1

n
tr eDeT

ri = (1 + tα̃di)
−1

R = (I + tα̃D)−1
T = (I + tδ̃D)−1

γ = 1

n
trT2

D
2, γ̃ = 1

n
treT2 eD2

σ2(t) = − log(1 − t2γ(t)γ̃(t))

TABLE I

SUMMARY OF THE MAIN NOTATIONS

and where(δn(t), δ̃n(t)) is the unique positive solution of the system




δ = 1
ntrDn(IN + tδ̃Dn)−1

δ̃ = 1
ntrD̃n(In + tδD̃n)−1

.

Theorem 2:Assume that the setting of Theorem 1 holds and let

σ2
n(ρ) = − log

(
1 − ρ2γn(ρ)γ̃n(ρ)

)
,

whereγn(ρ) and γ̃n(ρ) are defined in (4). Then the following convergence holds true:

In(ρ) − Vn(ρ)

σn(ρ)

L−−−→
n→∞

N (0, 1) ,

where
L−→ stands for the convergence in distribution.

III. M ATHEMATICAL TOOLS AND SOME USEFUL RESULTS

In this section, we present the tools we will use extensivelyall along the paper. In Section III-A, we

recall well-known matrix results; in Section III-B, we present two fundamental properties of Gaussian

models: The Integration by parts formula and Poincaré-Nash inequality for Gaussian vectors. Section III-C

is devoted to a cornerstone approximation result which roughly states thatR andR̃ can be replaced with
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T andT̃ up to some well-quantified error. In Section III-D, various variance estimates and approximation

rules are stated.

A. General results

1) Some matrix inequalities:Let A andB be twoN ×N matrices with complex elements. Then

|tr (AB)| ≤
√

tr (AA∗)
√

tr (BB∗) . (8)

AssumingA is Hermitian nonnegative, we have

|tr (AB)| ≤ ‖B‖ tr (A) , (9)

where‖.‖ is the spectral norm (see [26]).

2) The Resolvent:The Resolvent matrixHn(t) of matrixYnY
∗
n is defined asHn(t) =

(
t
nYnY

∗
n + IN

)−1
.

It is of constant use in this paper and we give here some of its properties. The following identity, also

known as theResolvent identity:

Hn(t) = IN − t

n
Hn(t)YY∗ (10)

follows from the mere definition ofHn. Furthermore, the spectral norm of the resolvent is readilybounded

by one:

‖Hn(t)‖ ≤ 1 for t ≥ 0 . (11)

3) Bounded character of the mean of some empirical moments:Let (Bn)n∈N = diag
([
b
(n)
1 , . . . , b

(n)
n

])
,

n ∈ N, be a sequence of deterministicn × n diagonal matrices. Assume(A1) and furthermore that

supn ‖Bn‖ <∞. Then, for every integerk, we have

1

n
E

[
tr

(
1

n
YnBnY

∗
n

)k
]
< Kk . (12)

Let us give a sketch of proof. Expanding the left hand side of (12) yields:

1

nk+1

∑

i1,i2,...,ik=1:N

j1,...,jk=1:n

bj1bj2 · · · bjk
E
[
Yi1j1Yi2j1Yi2j2Yi3j2 · · · Yikjk

Yi1jk

]
.

A close look at the argument of theE operator implies that, due to the independence of theYij, we only

havek + 1 degrees of freedom in the choice of the indicesip and jq. As all moments of the Gaussian

law exist and as‖Bn‖, ‖Dn‖, and‖D̃n‖ are bounded, this sum is of order1 asn,N → ∞.
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4) Differentiation formulas:Let A be aN × N complex matrix and letQ(A) = (IN + A)−1. Let

δA be a perturbation ofA. Then

Q(A + δA) = Q(A) − Q(A) δA Q(A) + o (‖δA‖) , (13)

whereo (‖δA‖) is negligible with respect to‖δA‖ in a neighborhood of0. Writing H(t) = [Hpq(t)]
N,N
p,q=1,

we need the expression of the partial derivative∂Hpq/∂Yij . Using (13), we have:

∂Hpq

∂Yij
= − t

n

[
H
∂YY∗

∂Yij
H

]

pq

= − t

n

[
H
[
δ(k − i)Yℓj

]N
k,ℓ=1

H

]

pq

= − t

n
Hpi [Y

∗H]jq = − t

n
Hpi[y

∗
jH]q , (14)

whereδ(·) is the Kronecker function, i.e.δ(0) = 1 otherwiseδ(ℓ) = 0. Similarly, we can establish

∂Hpq

∂Yij

= − t

n
[HY]pj Hiq = − t

n
[Hyj ]pHiq . (15)

The differential ofg(A) = log det(A) is given byg(A + δA) = g(A) + tr
(
A−1 δA

)
+ o (‖δA‖) .

We use this equation to derive the expression of∂I(t)/∂Yij also needed below:

∂I

∂Yij

=
t

n
tr

(
H
∂YY∗

∂Yij

)
=
t

n
tr

(
H
[
δ(ℓ− j)Ykj

]N
k,ℓ=1

)
=
t

n
[HY]ij =

t

n

[
Hyj

]
i
. (16)

B. Gaussian tools

1) An Integration by parts formula for Gaussian functionals: Let ξ = [ξ1, . . . , ξM ]T be a complex

Gaussian random vector whose law is determined byE[ξ] = 0, E[ξξT ] = 0, andE[ξξ∗] = Ξ. Let Γ =

Γ(ξ1, · · · , ξM , ξ1, · · · , ξM ) be aC1 complex function polynomially bounded together with its derivatives,

then:

E [ξpΓ(ξ)] =

M∑

m=1

[Ξ]pm E

[
∂Γ(ξ)

∂ξm

]
. (17)

This formula relies on an integration by parts and thus is referred to as the Integration by parts formula

for Gaussian vectors. It is widely used in Mathematical Physics [27] and has been used in Random Matrix

Theory in [17], [18].

2) Poincaŕe-Nash inequality:Let ξ andΓ be as previously and let∇zΓ = [∂Γ/∂z1, . . . , ∂Γ/∂zM ]T

and∇zΓ = [∂Γ/∂z1, . . . , ∂Γ/∂zM ]T . Then the following inequality holds true:

var (Γ(ξ)) ≤ E

[
∇zΓ(ξ)T Ξ ∇zΓ(ξ)

]
+ E [(∇zΓ(ξ))∗ Ξ ∇zΓ(ξ)] . (18)

A proof of this inequality is available in [19] in the real case; see also [22].
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When ξ is the vector of the stacked columns of matrixY, i.e. ξ = [Y11, . . . , YNn]T , formula (17)

becomes:

E [YijΓ(Y)] = did̃jE

[
∂Γ(Y)

∂Yij

]
, (19)

while inequality (18) writes:

var (Γ(Y)) ≤
N∑

i=1

n∑

j=1

did̃j E

[∣∣∣∣
∂Γ(Y)

∂Yi,j

∣∣∣∣
2

+

∣∣∣∣
∂Γ(Y)

∂Yi,j

∣∣∣∣
2
]
. (20)

Poincaré-Nash inequality turns out to be extremely usefulto deal with variances of various quantities

of interest related to random matrices. In order to give right away the flavour of such results, we state

and prove the following:

Proposition 3: Assume that the setting of Theorem 1 holds and letAn be aN × N real diagonal

matrix whose spectral norm is uniformly bounded inn. Then

var

(
1

n
trAnHn

)
= O

(
n−2

)
.

Proof: We apply inequality (20) to the functionΓ(Y) = 1
ntrAH. Using (14), we have

∂Γ

∂Yi,j
=

1

n

N∑

p=1

ap
∂Hpp

∂Yi,j
= − t

n2
[y∗

jHAH]i .

Therefore, denoting byA the upper boundA = supn ‖An‖ and noticing that|∂Γ/∂Yi,j | =
∣∣∂Γ/∂Yi,j

∣∣,

we have:

var Γ(Y) ≤ 2t2

n4

N∑

i=1

n∑

j=1

did̃jE

∣∣∣
[
y∗

jHAH
]
i

∣∣∣
2

=
2t2

n4

n∑

j=1

d̃jE
(
y∗

jHAHDHAHyj

)

=
2t2

n3
E tr

(
HAHDHAH

YD̃Y∗

n

)

(a)

≤ 2t2

n3
E

{
‖H‖4‖A‖2‖D‖ tr

(
YD̃Y∗

n

)}
(b)

≤ 2A2dmaxt
2

n3
E tr

(
YD̃Y∗

n

)
(c)

≤ K

n2
,

where inequality(a) follows from (9), (b) follows from (11) and from the boundedness of‖An‖ and

‖Dn‖, and(c) follows from (12).

C. Approximation rules

The following theorem is crucial in order to prove Theorems 1and 2. Roughly speaking it allows to

replace matricesRn andR̃n by Tn andT̃n up to a well-quantified small error.
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Theorem 3:Let (An) and (Bn) be two sequences of respectivelyN × N and n × n diagonal

deterministic matrices whose spectral norm are uniformly bounded inn, then the following hold true:

1

n
trAnRn =

1

n
trAnTn + O

(
1

n2

)
, (21)

1

n
trBnR̃n =

1

n
trBnT̃n + O

(
1

n2

)
. (22)

Proof of Theorem 3 is postponed to Appendix C.

D. More variance estimates and more approximation rules

We collect here a few results whose proofs rely on the Integration by parts formula (19), on Poincaré-

Nash inequality, and on Theorem 3. The proofs of these results, although systematic, are somewhat

lengthy and are therefore postponed to the Appendix. These results will be used extensively in Section

V.

Proposition 4: In the setting of Theorem 1, let(A) and(B) be two sequences of respectivelyN ×N
andn × n diagonal deterministic matrices whose spectral norm are uniformly bounded inn. Consider

the following functions:

Φ(Y) =
1

n
tr

(
AH

YBY∗

n

)
, Ψ(Y) =

1

n
tr

(
AHDH

YBY∗

n

)
.

Then,

1) The following inequalities hold true:

var (Φ(Y)) = O(n−2), var (Ψ(Y)) = O(n−2) .

2) The following approximations hold true:

E [Φ(Y)] =
1

n
tr
(
D̃T̃B

) 1

n
tr (ADT) + O

(
n−2

)
, (23)

E [Ψ (Y)] =
1

1 − t2γγ̃

(
1

n2
tr
(
D̃T̃B

)
tr
(
AD2T2

)
− tγ

n2
tr
(
D̃2T̃2B

)
tr (ADT)

)
+ O

(
1

n2

)
.(24)

The variance inequalities are proved in Appendix D; the approximation rules, in Appendix E.

IV. F IRST ORDER MOMENT APPROXIMATION: PROOF OFTHEOREM 1

This section is devoted to the proof of the following approximation:

E[In(ρ)] = Vn(ρ) + O
(
n−1

)
, (25)

March 2008 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, FINAL VERSION 13

where

Vn(ρ) = log det
(
In + ρδn(ρ)D̃n

)
+ log det

(
IN + ρδ̃n(ρ)Dn

)
− nρδn(ρ)δ̃n(ρ) . (26)

This result already appears in [7] and is proved under greater generality in [9]. The proof presented here

is new and relies on Gaussian tools.

Outline of the proof

The proof is divided into three steps. We first make some preliminary remarks. Notice that the mutual

information can be expressed asI(ρ) =
∫ ρ
0 tr

(
n−1H(t)YY∗

)
dt. In particular,

E [I(ρ)] =

∫ ρ

0
tr

(
E

[
H(t)

YY∗

n

])
dt . (27)

In order to study the asymptotic behaviour ofE [I(ρ)], it is thus enough to studytr
(
H(t)YY

∗

n

)
for

n→ +∞ up to an integration. The Resolvent identity (10) yields

trE

(
H(t)

YY∗

n

)
= trE

(
I −H(t)

t

)
.

We are therefore led to the study ofE [tr(H(t))]. We now describe the three steps of the proof.

A. In the first part of the proof, we expandEH(t) with the help of the Integration by parts formula

(19). This derivation will bring to the fore the deterministic diagonal matrixR, and Poincaré-Nash

inequality will then allow us to obtain the following approximation:

EtrAH = trAR + O
(
n−1

)
,

for every diagonal matrixA with a bounded spectral norm. Here are the main steps, gathered in

an informal way. Differentiating the termE
(
[Hyj]p Ypj

)
, we obtain:

E

(
[Hyj ]p Yp,j

)
= dpd̃jE [Hpp] − td̃jE

(
1

n
tr(DH) [Hyj]p Ypj

)
,

from which we will extractE[Hpp] later on. At this point, Poincaré-Nash inequality yields some

decorrelation up toO
(
n−1

)
and we obtain:

E

[
1

n
tr(DH) (Hyj)pYpj

]
≃ E

[
1

n
tr(DH)

]
E

[
[Hyj]p Ypj

]
= αE

[
[Hyj]p Ypj

]
.

This approximation allows us to isolateE
(
[Hyj ]p Ypj

)
:

(1 + td̃jα)E
(
[Hyj]p Yp,j

)
≃ dpd̃jE [Hpp] ⇔ E

(
[Hyj]p Yp,j

)
≃ dpd̃j r̃jE [Hpp] .
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Now summing overj and using the Resolvent identityEHpp = 1 − t
n

∑n
j=1 E [Hyj]p Ypj in the

previous equation yields:

1 − EHpp

t
≃ α̃dpEHpp, that is EHpp ≃ rp .

All the technical details are provided in Section IV-A.

B. The second step follows from the approximation rule (21) stated in Section III-C, which immediatly

yields

EtrAH = trAT + O
(
n−1

)
.

This in turn will imply that

Etr

(
H(t)

YY∗

n

)
= tr

(
I − EH

t

)
= tr

(
I − T

t

)
+ εn(t)

(a)
= nδ(t)δ̃(t) + εn(t).

where(a) follows from the fact thatI− T = tδ̃D(I + tδ̃D)−1.

C. In the third step, we integrate the previous equality:
∫ ρ

0
Etr

(
H(t)

YY∗

n

)
dt = n

∫ ρ

0
δ(t)δ̃(t)dt +

∫ ρ

0
εn(t)dt.

We identify n
∫ ρ
0 δ(t)δ̃(t)dt with Vn(ρ) as given by (26), and check that

∫ ρ
0 εn(t)dt = O(n−1).

A. Development ofE (trAH(t)) and approximation bytrAR(t)

In order to studyE (trAH(t)), we first consider the diagonal entriesHpp(t) of H(t). For each index

j, we have

E

(
[Hyj ]p Yp,j

)
=

N∑

i=1

E
(
HpiYijYpj

)
.

We now apply the Integration by parts formula (19) to the summand of the right hand side for function

Γ defined asΓ(Y) = HpiYpj. This yields:

E
(
HpiYijYpj

)
= did̃jE [Hii] δ(i − p) − did̃j

t

n
E

(
[Hyj ]pHiiYpj

)
. (28)

Therefore,

E

(
[Hyj ]p Yp,j

)
= dpd̃jE [Hpp] − td̃jE

(
1

n
tr(DH) [Hyj]p Ypj

)
, (29)
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from which we extractE[Hpp] later on. Recall at this point thatvar
(
n−1trDH(t)

)
= O

(
n−2

)
by

Proposition 3. Recall also the following notations:β = n−1tr(DH), α = E [β] , and
◦

β = β − α.

Plugging the relationβ = α+
◦

β into (29), we get

E

[
[Hyj ]p Yp,j

]
= dpd̃jE[Hpp] − td̃jαE

[
[Hyj ]p Yp,j

]
− td̃jE

[
◦

β [Hyj ]pYpj

]
. (30)

Solving this equation w.r.t.E
[
[Hyj ]pYp,j

]
provides:

E
[
[Hyj]pYp,j

]
= dpd̃j r̃jE[Hpp]−td̃j r̃jE

[
◦

β [Hyj ]pYpj

]
where r̃j(t) =

1

1 + tα(t)d̃j

for 1 ≤ j ≤ n .

(31)

Summing (31) overj yields:

E

[
H

YY∗

n

]

pp

= α̃dpE[Hpp] − tE
◦

β

[
H

YD̃R̃Y∗

n

]

pp

, (32)

whereR̃ is the diagonal matrixdiag (r̃j(t)) =
(
I + αtD̃

)−1
and α̃ = 1

ntrD̃R̃. In order to obtain an

expression forE[Hpp], we plug the identity (32) into the Resolvent identity:

E[Hpp] = 1 − tE

[[
H

YY∗

n

]

pp

]

and obtain:

E [Hpp] = rp + t2rpE


◦

β

[
H

YD̃R̃Y∗

n

]

pp


 (33)

with rp(t) = (1 + tα̃dp)
−1 . Let A be aN×N diagonal matrix with bounded spectral norm. Multiplying

(33) by A’s components and summing overp yields:

Etr(AH) = tr(AR) + nt2E

[
◦

βΦ(Y)

]
,

whereΦ(Y) = 1
ntr(ARHY eDeRY∗

n ). As
◦

β is zero-mean,E[
◦

βΦ] = E[
◦

β
◦

Φ]. In particular, Cauchy-Schwarz

inequality yields:

|E
◦

β
◦

Φ| ≤
√

var(β)
√

var(Φ).

Recall thatvar(β) = O
(
n−2

)
by Prop. 3. Since‖R‖ and ‖D̃R̃‖ are both bounded by Assumption

(A1) and by the definitions ofR andR̃, one can directly apply the result of Proposition 4 toΦ in order

to getvar(Φ) = O
(
n−2

)
.

We have therefore proved the following:
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Proposition 5: In the setting of Theorem 1, letAn be a uniformly bounded diagonalN ×N matrix.

Then for everyt ∈ R
+,

E(trAnHn(t)) = trAnRn(t) + O
(
n−1

)
. (34)

B. The Deterministic ApproximationTn(t).

Proposition 5 provides a deterministic equivalent toE (trAnHn) since the matrixRn is deterministic;

however its elements still depend onα̃ = n−1tr(D̃nR̃n), which itself depends onα = E
(
n−1trDnHn

)
,

an unknown parameter. The next step is therefore to apply Theorem 3 to approximate the matrixRn by

Tn, which only depends onDn andD̃n and onδ and δ̃, the solutions of (2). Theorem 3 together with

Equation (34) imply that:

E(trAnHn) = tr(AnTn) + O
(
n−1

)
. (35)

SinceTn only depends onδ and δ̃, (35) provides a deterministic equivalent ofE(trAnHn) in terms of

δ and δ̃. Note that takingA = D yields in particularα = δ + O(n−2) while a direct application of

Theorem 3 forÃn = D̃n yields α̃ = δ̃ + O(n−2).

We are now in a position to describe the behaviour ofE tr
(
Hn(t)YnY∗

n

n

)
by using the Resolvent

identity. From (10) and (35), takingAn = In, we immediately obtain:

E tr

(
Hn(t)

YnY
∗
n

n

)
=

1

t
tr (In − Tn(t)) + O

(
n−1

)
.

As In − Tn(t) = (Tn(t)−1 − In)Tn(t) = tδ̃(t)DnTn(t), we eventually get that

E

[
tr

(
Hn(t)

YnY
∗
n

n

)]
= nδ(t)δ̃(t) + εn(t), (36)

where the errorεn(t) is aO(n−1) term.

C. Recovering the Deterministic ApproximationV (ρ) of E[I(ρ)].

As mentionned previously,εn(t) is a O(n−1) term, i.e.|εn(t)| ≤ Kt n
−1. One can easily keep track

of Kt in the derivations that lead to (36) and prove thatKt is bounded on the compact interval[0, ρ].

In particular,|εn(t)| < Kn−1 on the compact interval[0, ρ] for someK > 0. The proof of this fact is

omitted.

As nεn(t) is uniformly bounded on[0, ρ], we have
∣∣∫ ρ

0 εn(t)dt
∣∣ = O(n−1). Therefore,

E[I(ρ)] =

∫ ρ

0
nδ(t)δ̃(t) + O

(
n−1

)
.
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Consider now

V (ρ) = W
(
ρ, δ(ρ), δ̃(ρ)

)
,

where functionW (ρ, δ, δ̃) is defined by

W
(
ρ, δ, δ̃

)
= log det

(
In + ρδD̃n

)
+ log det

(
IN + ρδ̃Dn

)
− nρδδ̃ .

One can easily check that:

∂W

∂δ
= ρ

(
tr
(
D̃n(In + ρδD̃n)−1

)
− nδ̃

)
and

∂W

∂δ̃
= ρ

(
tr
(
Dn(IN + ρδ̃Dn)−1

)
− nδ

)
.

As the pair(δ(ρ), δ̃(ρ)) satisfies (2), the above partial derivatives evaluated at point (ρ, δ(ρ), δ̃(ρ)) are

zero. Therefore,
dV

dρ
=

(
∂W

∂ρ

)

(ρ,δ(ρ),δ̃(ρ))

= nδ(ρ)δ̃(ρ) (37)

which in turn implies (7). Theorem 1 is proved.

Remark 1 (On the deterministic approximationTn): The deterministic approximationTn can be used

to approximate functionals of the eigenvalues ofYnY
∗
n other that the mutual informationlog det(ρn−1YnY

∗
n+

IN ) (see for instance [9]). This relies on a specific representation of Tn: The spectral theorem for

Hermitian matrices yields the integral representation:

1

n
trHn(z) =

∫ ∞

0

Nn(dλ)

1 + λz
, z ∈ C \ R− ,

whereNn represents the empirical distribution of the eigenvalues of YnY
∗
n. It can be shown thatn−1trTn

admits a similar representation:

1

n
trTn(z) =

∫ ∞

0

πn(dλ)

1 + λz
, z ∈ C \ R− ,

where πn is a probability measure. Finally, one can prove that
∫∞

0 f(λ)Nn(dλ) −
∫∞

0 f(λ)πn(dλ)

converges to zero almost surely for every continuous bounded function (see [9] for details).

V. SECOND ORDERANALYSIS: PROOF OFTHEOREM 2

This section is devoted to the proof of the Central Limit Theorem:

σ−1
n (ρ) (In(ρ) − Vn(ρ))

L−−−−−→
n,N→∞

N (0, 1) . (38)

Denote byψn(u, ρ) = E
[
eiu(In(ρ)−Vn(ρ))

]
the characteristic function ofIn(ρ) − Vn(ρ). We first reduce

the problem in the following way:
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Proposition 6: Assume that for everyu ∈ R,

hn(u) = ψn(u, ρ) − e−u2σ2
n(ρ)/2 −−−−−→

n,N→∞
0 , (39)

then (38) holds true.

Proof: 2 We first prove that the sequenceσ−1
n (In − Vn) is tight (we drop the dependence inρ).

Recall from Proposition 2 that0 < m ≤ σ2
n ≤M <∞. Let ε > 0. For x > 0 small enough, we have:

1

x

∫ x

−x

(
1 − e−u2σ2

n/2
)
du ≤ 1

x

∫ x

−x

(
1 − e−u2M/2

)
du ≤ ε .

Moreover, sinceψn(u) − e−u2σ2
n → 0, the Dominated Convergence Theorem yields:

∣∣∣∣
1

x

∫ x

−x
(1 − ψn(u)) du− 1

x

∫ x

−x

(
1 − e−u2σ2

n

)
du

∣∣∣∣ ≤ ε

for n large enough. Now, given a real random variableX with characteristic functionϕ(u), the following

inequality holds true:

P

[
|X| ≥ 2

x

]
≤ 1

x

∫ x

−x
(1 − ϕ(u)) du

(see for instance Eq. (26.22) in [28, Th. 26.3]). Applying this inequality toIn − Vn, we obtain:

P [|In − Vn| ≥ 2/x] ≤ 2ε

for n large enough; in other words,In − Vn is tight. Tightness ofσ−1
n (In − Vn) follows from the fact

that σ2
n ≥ m > 0. We are now in position to conclude. Sinceσ−1

n (In − Vn) is tight, one can extract a

subsequence(n) such thatσ−1
(n)

(
I(n) − V(n)

)
converges. Now, sinceσ(n) belongs to a compact set, one

can extract a converging subsequence from(n), say(m), such thatσ2
(m) → a > 0. From (39), we have

I(m)−V(m)
L−→ N (0, a) or equivalentlyσ−1

(m)

(
I(m) − V(m)

) L−→ N (0, 1), and the limit ofσ−1
(n)

(
I(n) − V(n)

)

(which is the same as the one of the subsequenceσ−1
(m)

(
I(m) − V(m)

)
) is necessarilyN (0, 1).

We have proved that for every subsequence(n) such thatσ−1
(n)(ρ)

(
I(n)(ρ) − V(n)(ρ)

)
converges,

σ−1
(n)(ρ)

(
I(n)(ρ) − V(n)(ρ)

) L−→ N (0, 1). The result remains true for the whole sequenceσ−1
n (In − Vn)

by Corollary of [28, Th. 25.10]

2This proof simplifies an earlier proof by the authors and was suggested by one of the reviewers whom the authors would

like to thank.

March 2008 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, FINAL VERSION 19

Outline of the proof of(39).

The proof of the convergence ofhn(u) towards zero is divided into two steps.

A. We first differentiateψn(u, t) with respect tot in order to obtain a differential equation of the

form:
∂ψn(u, t)

∂t
= −u

2

2
ηn(t)ψn(u, t) + εn(u, t) . (40)

In order to obtain the differential equation (40), we first develop ∂ψ/∂t with the help of the

Integration by parts formula (19). We then use Poincaré-Nash inequality to prove that relevant

variances are of orderO(n−2). This will enable us to decorrelate various expectations, i.e. to express

them as products of expectations up to negligible terms. We shall then use the approximation rules

stated in Proposition 4 in Section III-D to deal with the obtained expectations.

B. The second step is devoted to identify the variance, that is to prove the identity
∫ ρ

0
ηn(t) dt = σ2

n(ρ),

whereσ2
n is given by (5), i.e.σ2

n(ρ) = − log(1 − ρ2γn(ρ)γ̃n(ρ)).

C. The third step is devoted to the integration of (40). Instead of directly integrating (40), we introduce

Kn(u, ρ) = ψn(u, ρ)e
u2

2
σ2

n(ρ) which satisfies the following differential equation:

∂Kn(u, t)

∂t
= εn(u, t)e

u2

2
σ2

n(t) . (41)

Taking into account the obvious facts thatψn(u, 0) = 1, σ2
n(0) = 0 and therefore thatKn(u, 0) = 1,

we shall obtain that

Kn(u, ρ) = 1 +

∫ ρ

0
εn(u, t)e

u2

2
σ2

n(t) dt ,

and prove that
∫ ρ
0 εn(u, t)e

u2

2
σ2

n(t) dt = O(n−1). This will yield in turn that:

ψn(u, ρ) =
(
1 + O(n−1)

)
e−

u2

2
σ2

n(ρ) (a)
= e−

u2

2
σ2

n(ρ) + O(n−1) .

where(a) follows from Proposition 2.

The theorem will then be proved.
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A. The differential equation∂tψn = −u2

2 ηnψn + εn

Recall thatψn(u, ρ) = ϕn(u, ρ)e−iuVn(ρ) whereϕ(u, t) = E
(
eiuI(t)

)
. As V ′

n(t) = nδ(t)δ̃(t) by (37),

we obtain:
∂ψ(u, t)

∂t
= e−iuV (t) ∂ϕ(u, t)

∂t
− iunδ(t)δ̃(t)ψ(u, t) . (42)

SinceI ′(t) = n−1trH(t)YY∗ by (27), we have:

∂ϕ(u, t)

∂t
= iu E

[
tr

(
H(t)

YY∗

n

)
eiuI(t)

]
=

iu

n

N∑

p,i=1

n∑

j=1

E

[
YijHpiYpje

iuI
]
. (43)

Applying the Integration by parts formula (19) toE
[
YijHpiYpje

iuI
]

(which can be writtenE (YijΓ(Y))

for Γ(Y) = HpiYpje
iuI ) and using the differentiation formulas (15) and (16) yields:

E

[
YijHpiYpje

iuI
]

= did̃jE

[
∂

∂Yij

(
HpiYpje

iuI
)]
,

= − t

n
did̃jE

[[
Hyj

]
p
HiiYpje

iuI
]

+ did̃jδ(i− p)E
[
Hpie

iuI
]

+
iut

n
did̃jE

[
HpiYpj

[
Hyj

]
i
eiuI

]
. (44)

We now sum over indexi and obtain:

E

[[
Hyj

]
p
Ypje

iuI
]

= − td̃jE

[
β
[
Hyj

]
p
Ypje

iuI
]

+ dpd̃jE

[
Hppe

iuI
]

+
iut

n
d̃jE

[[
HDHyj

]
p
Ypje

iuI
]
,

whereβ = n−1trDH. Writing β =
◦

β + α yields:

(1 + tαd̃j)E
[[

Hyj

]
p
Ypje

iuI
]

= − td̃jE

[
◦

β
[
Hyj

]
p
Ypje

iuI

]
+ dpd̃jE

[
Hppe

iuI
]

+
iut

n
d̃jE

[[
HDHyj

]
p
Ypje

iuI
]
. (45)

We now take into account that̃rj(t) = (1 + tαd̃j)
−1 and sum overj:

E

[
[HYY∗]pp e

iuI
]

= − tE

[
◦

β
[
HYD̃R̃Y∗

]

pp
eiuI

]
+ nα̃dpE

[
Hppe

iuI
]

+
iut

n
E

[[
HDHYD̃R̃Y∗

]
pp
eiuI

]
. (46)

By the Resolvent identity (10),E
[
Hppe

iuI
]

= E
[
eiuI

]
− t

nE

[
[HYY∗]pp e

iuI
]
. Replace now in (46),
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recall thatrp(t) = (1 + tα̃(t)dp)
−1 and sum overp to obtain:

E

[
tr

(
H

YY∗

n

)
eiuI

]
= tr (DR) α̃E

[
eiuI

]

+ iutE

[
1

n
tr

(
RHDH

YD̃R̃Y∗

n

)
eiuI

]

− t E

[
◦

β tr

(
RH

YD̃R̃Y∗

n

)
eiuI

]

△
= χ1 + χ2 + χ3 . (47)

Thanks to Theorem 3,

χ1 = tr (DR) α̃E

[
eiuI

]
= tr (DT) α̃E

[
eiuI

]
+ O(n−1) = nδδ̃E

[
eiuI

]
+ O(n−1). (48)

In order to deal withχ2, we apply the results of Proposition 4 related toΨ(Y) in the particular case

whereA = R and B = D̃R̃. In this case,χ2 writes χ2 = iutE
(
Ψ(Y)eiuI

)
, and Cauchy-Schwarz

inequality yields:

∣∣∣E
(
ΨeiuI

)
− E

(
eiuI

)
E (Ψ)

∣∣∣ =

∣∣∣∣E[eiuI
◦

Ψ]

∣∣∣∣ ≤

√√√√E

[∣∣∣∣
◦

Ψ(Y)

∣∣∣∣
2
]

= O(n−1) .

Therefore,

E

(
ΨeiuI

)
= E

(
eiuI

)
E (Ψ) + O(n−1) .

We now use the approximation forEΨ(Y) given in Proposition 4. By Theorem 3, we can replaceR̃

(resp.R̃ by T̃ (resp.T̃) in the obtained expression. We therefore obtain:

E

(
Ψ(Y)eiuI

)
= EΨ(Y)E

[
eiuI

]
+ O

(
n−1

)

=
1

1 − t2γγ̃

(
γ̃

1

n
tr
(
D2T3

)
− tγ

1

n
tr
(
D̃3T̃3

) 1

n
tr
(
DT2

))
E

[
eiuI

]
+ O

(
n−1

)
.(49)

The termχ3 can be handled similarly: We apply the results of Proposition 4 related toΦ(Y) in the

particular case whereA = R andB = D̃R̃. In this case,χ3 writes χ2 = −tnE

(
◦

βΦ(Y)eiuI

)
, and

Cauchy-Schwarz inequality yields:
∣∣∣∣E
(

◦

βΦeiuI

)
− E

(
◦

βeiuI

)
E (Φ)

∣∣∣∣ =
∣∣∣∣E[

◦

β eiuI
◦

Φ]

∣∣∣∣ ≤
√

E

[
◦

β
2
]√

E

[
◦

Φ
2
]

= O(n−2) .

We therefore obtain

E

[
◦

β tr

(
RH

YD̃R̃Y∗

n

)
eiuI

]
= E

[
◦

β eiuI

]
tr
(
D̃2T̃R̃

) 1

n
tr (DTR) + O

(
n−1

)

(a)
= E

[
◦

β eiuI

]
γ̃ tr

(
DT2

)
+ O

(
n−1

)
, (50)
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where(a) follows from Theorem 3. It remains to deal with the termE

[
◦

β eiuI

]
. To this end, we shall

rely on (46) and develop the termE
[
Hppe

iuI
]
. The Resolvent identity yields:

E

[
[HYY∗]pp e

iuI
]

=
n

t
E

[
eiuI

]
− n

t
E

[
Hppe

iuI
]
.

Plugging this equality into (46) and usingrp = (1 + tα̃dp)
−1, we obtain after some computations

E

[
◦

β eiuI

]
= t2E

[
◦

β eiuI 1

n
tr

(
RDH

YD̃R̃Y∗

n

)]

− iut2

n
E

[
1

n
tr

(
RDHDH

YD̃R̃Y∗

n

)
eiuI

]
+

1

n
tr (D (R − E [H])) E

[
eiuI

]

(a)
= t2γγ̃E

[
◦

β eiuI

]
− 1

n

iut2

(1 − t2γγ̃)

(
γ̃

1

n
tr
(
D3T3

)
− tγ2 1

n
tr
(
D̃3T̃3

))
ϕ+ O(n−2)(51)

where(a) follows from Theorem 3, Proposition 4 and Proposition 5. We therefore obtain:

E

[
◦

β eiuI

]
= − 1

n

iut2

(1 − t2γγ̃)2

(
γ̃

1

n
tr
(
D3T3

)
− tγ2 1

n
tr
(
D̃3T̃3

))
ϕ+ O

(
1

n2

)
.

Plugging (51) into (50), and the result together with (48) and (49) into (47), and getting back to (43)

and (42), we obtain:
∂ψn(u, t)

∂t
= −u2ηn(t)ψn(u, t) + O(n−1) ,

where

ηn(t) =
1

1 − t2γγ̃


−

t2γ 1
ntr
(
D̃3T̃3

)
1
ntr
(
DT2

)

1 − t2γγ̃
+ tγ̃

1

n
tr
(
D2T3

)
+
t3γ̃2 1

ntr
(
D3T3

)
1
ntr
(
DT2

)

1 − t2γγ̃


 .

(52)

Equation (40) is established, and the first step of the proof is completed.

B. Identification of the variance

In order to finish the proof, it remains to prove that:

ηn(t) =
1

2

dσ2
n(t)

dt
where σ2

n(t) = − log (1 − tγn(t)γ̃n(t)) . (53)

To this end, we first begin by computing the derivatives ofγn(t) and γ̃n(t). We shall prove that

dγ̃

dt
= −2

1
ntr
(
D̃3T̃3

)
1
ntr
(
DT2

)

1 − t2γγ̃
and

dγ

dt
= −2

1
ntr
(
D3T3

)
1
ntr
(
D̃T̃2

)

1 − t2γγ̃
. (54)

We only derivedγ̃
dt , the computations being similar in the other case. We first expand the expression of

γ̃, and obtain:

dγ̃

dt
=

1

n

n∑

j=1

d̃2
j

d

dt
T̃ 2

jj =
1

n

n∑

j=1

d̃2
j

d

dt

(
1

1 + tδ(t)d̃j

)2

= −2
d

dt
(tδ(t))

1

n
tr
(
D̃3T̃3

)
. (55)
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Let us now computeδ′(t):

δ′(t) =
1

n

N∑

i=1

di

(
1

1 + tδ̃(t)di

)′

= −γδ̃(t) − γtδ̃′(t) . (56)

A similar computation yields̃δ′(t) = −γ̃δ(t) − γ̃tδ′(t). Combining both equations yields:

δ′ =
tγγ̃δ − γδ̃

1 − t2γγ̃
.

We now plug this into (55) and obtain:

dγ̃

dt
= −2

1
ntr
(
D̃3T̃3

)(
δ − tγδ̃

)

1 − t2γγ̃
. (57)

Recall now that the mere definition ofT, T̃, δ and δ̃ yields



tδD̃T̃ = I − T̃

tδ̃DT = I − T
. (58)

Using (58), we obtain:

n−1tr
(
DT2

)
= n−1tr

(
DT

(
I − tδ̃DT

))
= δ − tδ̃γ , (59)

n−1tr
(
D̃T̃2

)
= n−1tr

(
D̃T̃

(
I − tδD̃T̃

))
= δ̃ − tδγ̃ . (60)

It remains to plug (59) in (57) to conclude the proof of (54).

We are now in position to prove (53). The main idea in the following computations is to express (52)

as a symmetric quantity with respect toδ andT on the one hand and̃δ and T̃ on the other hand. To

this end, we splitηn(t) in (52) asηn(t) = 1
1−t2γγ̃

(
η(1) + η(2) + η(3)

)
. We first work onη(3):

η(3) (a)
=

t3δγ̃2 1
ntr
(
D3T3

)

1 − t2γγ̃
− t4δ̃γ̃2γ 1

ntr
(
D3T3

)

1 − t2γγ̃
,

(b)
=

−t2γ̃ 1
ntr
(
D3T3

)
1
ntr
(
D̃T̃2

)

1 − t2γγ̃
+ t2γ̃δ̃

1

n
tr
(
D3T3

)
.

where(a) follows from (59), and(b) from (60). We now look atη(2):

η(2) + t2γ̃δ̃
1

n
tr
(
D3T3

)
= tγ̃

(
1

n
tr

(
D2T3 +

1

n
tr
(
D2T2

(
tδ̃DT

))))
= tγγ̃

where the last equality follows (58) again. We therefore have

ηn(t) =
1

1 − t2γγ̃


−

t2γ 1
ntr
(
D̃3T̃3

)
1
ntr
(
DT2

)

1 − t2γγ̃
−
t2γ̃ 1

ntr
(
D3T3

)
1
ntr
(
D̃T̃2

)

1 − t2γγ̃
+ tγγ̃


 ,

(a)
=

1

2

t2γγ̃′ + t2γ′γ̃ + 2tγγ̃

1 − t2γγ̃
,

= −1

2

d

dt
log
(
1 − t2γγ̃

)
,

where(a) follows from (54). This concludes the identification of the variance.
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C. Integration of the differential equation(40)

Let us introduceKn(u, ρ) = ψn(u, ρ)e
u2

2
σ2

n(ρ). Due to (40),Kn(u, ρ) readily satisfies the following

differential equation:
∂Kn(u, t)

∂t
= εn(u, t)e

u2

2
σ2

n(t) . (61)

As in Section IV-C, one can easily prove that|εn(t)| ≤ K
n for everyt ∈ [0, ρ]. As Kn(u, 0) = 1, we get

Kn(u, ρ) = 1 +

∫ ρ

0
εn(u, t)e

u2

2
σ2

n(t) dt .

Due to Proposition 5,σ2
n(t) is bounded from above uniformly inn and t ∈ [0, ρ]. This fact, together

with |εn(t)| ≤ K
n implies that:

Kn(u, ρ) = 1 + O
(

1

n

)
.

This in turn yields

Ψn(u, ρ) =
(
1 + O

(
n−1

))
e−

u2

2
σ2

n(ρ)

= e−
u2

2
σ2

n(ρ) + O(n−1) ,

where the last equality follows from the fact thatσ2
n(ρ) is uniformly bounded byn by Proposition 2.

APPENDIX

A. Proof of Proposition 1

Let us first establish the existence and uniqueness of the solution of (2). To this end, we plug the

expression of̃δ in (2). The system of two equations reduces to the single equation δ = f(t, δ) where

f(t, δ) is defined by

f(t, δ) =
1

n
tr

(
Dn

(
IN +

t

n
tr

(
D̃n

(
In + tδD̃n

)−1
)

Dn

)−1
)

(62)

which is itself equivalent tog(δ, t) = 1 where

g(t, δ) =
f(t, δ)

δ
=

1

n
tr

(
Dn

(
δIN +

t

n
tr

(
δD̃n

(
In + tδD̃n

)−1
)

Dn

)−1
)

.

The functionδ 7→ g(t, δ) is continuous, decreasing and satisfiesg(t, 0) = +∞ and g(t,+∞) = 0.

Therefore, the equationg(t, δ) = 1 has a unique solutionδ(t) > 0.

The integral representation (3) ofδ and δ̃ is related to the Stieltjes representation of a class of analytic

functions. We refer to [9, Section 3.2] where a more general result is proven and skip the details. Be aware

however thatδ in this paper andδ in [9] slightly differ (but are related byδIEEE(z) = z−1δAAP(−z−1)),

so do theδ̃’s.

March 2008 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, FINAL VERSION 25

B. Proof of Proposition 2

In order to prove Proposition 2, it is sufficient to first provethat 1− t2γγ̃ is bounded away from zero

and then to prove that the same quantity is strictly lower than 1, uniformly inn. We shall proceed into

four steps.

1) A priori estimates forδ, δ̃, γ and γ̃: The mere definition ofδ and δ̃ yields:

δ =
1

n

N∑

i=1

di

1 + tdiδ̃
≤ Ndmax

n
and δ̃ =

1

n

n∑

j=1

d̃j

1 + td̃jδ
≤ d̃max . (63)

Using these upper estimates, one gets the following lower estimates:

δ ≥
1
ntrDn

1 + tdmaxd̃max

and δ̃ ≥
1
ntr D̃n

1 + N
n tdmaxd̃max

. (64)

One can notice that due to Assumption(A2), these lower bounds are uniformly bounded inn away from

zero. Finally a straightforward application of Jensen’s inequality yields:

δ2 =

(
1

n

N∑

i=1

diTii

)2

≤ Nγ

n
i.e.

n

N
δ2 ≤ γ , Similarly δ̃2 ≤ γ̃ . (65)

2) An estimate overdδ̃
dt : The following equalities are straightforward (see for instance (56)):

δ′(t) = −γδ̃(t) − γtδ̃′(t) and δ̃′(t) = −γ̃δ(t) − γ̃tδ′(t) . (66)

In particular, |δ̃′(0)| = γ̃(0)δ(0) ≤ Nn−1d̃2
maxdmax which is eventually bounded. Recall thatδ̃ admits

the following representation:

δ̃(t) =

∫ ∞

0

µ̃(dλ)

1 + tλ
,

whereµ̃ is a nonnegative mesure satisfyingµ̃(R+) = 1
ntr D̃n. In particular, one obtains:

0 < −δ̃′(t) =

∫ ∞

0

λµ̃(dλ)

(1 + tλ)2
≤ −δ̃′(0) ≤ Nn−1d̃2

maxdmax . (67)

3) The quantity1 − t2γγ̃ is bounded away from zero, uniformly inn and for t ∈ [0, ρ]: Eliminating

δ′ between the two equations in (66) yields:

dδ̃

dt
(1 − t2γγ̃) = γ̃(tδ̃γ − δ) =

γ̃

n
trDnTn

(
tδ̃DnTn − IN

)
= − γ̃

n
trDnT

2
n ,

where the last equality follows from the identityTn = (IN + tδ̃Dn)−1 which yields(tδ̃DnTn − IN ) =

−Tn. Otherwise stated:

1 − t2γγ̃ =
γ̃trDnT

2
n

n(−δ̃′(t))
.
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This immediatly implies that1 − t2γγ̃ is positive. In order to check that it is bounded away from zero

uniformly in n, notice first thatn−1trDnT
2
n ≥ d−1

maxγ. Collecting now the previous estimates (65) and

(67), we obtain:

1 − t2γγ̃ ≥ n2

N2

δ2δ̃2

d2
maxd̃

2
max

.

Using (64) and Assumption(A1), we obtain that1 − t2γγ̃ is bounded away from zero, uniformly inn

and for t ∈ [0, ρ].

4) The quantity1 − t2γγ̃ is strictly bounded above from 1, uniformly inn: The inequalities (65)

together with (64) yield:

sup
n

(
1 − t2γγ̃

)
≤ sup

n

(
1 − t2

n

N
δ2δ̃2

)
< 1 .

This completes the proof of Proposition 2.

C. Proof of Theorem 3

We first give a sketch of the proof to emphasize the main ideas over the technical aspects of the proof.

1) We first prove that the asymptotic behaviour ofn−1tr (An (Rn − Tn)) is directly related to the

behaviour ofα(t) − δ(t). Similarly, n−1trÃn

(
R̃n − T̃n

)
is related toα̃(t) − δ̃(t).

2) We extend the definition ofα from t ∈ R
+ to z ∈ C \R− and establish an integral representation:

α(t) =

∫

R+

ν(dλ)

1 + λt
.

As a consequence of the integral representations forδ, δ̃ and α, we prove thatδ, δ̃ and α are

bounded analytic functions on every compact subset ofC \ R−.

3) As a consequence of this detour in the complex plane, we prove the following weaker result. For

every uniformly bounded diagonal matrixAn, the following holds true:




n−1tr(AnRn) = n−1tr(AnTn) + o(1)

n−1tr(ÃnR̃n) = n−1tr(ÃnT̃n) + o(1)
.

4) We then refine the previous result in order the get the sharper rate of convergenceO(n−2) instead

of o(1).

The theorem will then be proved.
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1) The asymptotic behaviour ofn−1tr (An (Rn − Tn)) and its relation withα(t)−δ(t): The standard

matrix identity

Rn −Tn = Rn(T−1
n − R−1

n )Tn

immediatly yields

n−1tr (An(Rn − Tn)) = t(δ̃(t) − α̃(t))
1

n
tr (AnRnDnTn) and

n−1tr
(
D̃n(T̃n − R̃n)

)
= δ̃(t) − α̃(t) = t(α(t) − δ(t))

1

n
tr
(
D̃nR̃nD̃nT̃n

)
.

Therefore,

n−1tr (An(Rn − Tn)) = t2(α(t) − δ(t))
1

n
tr
(
D̃nR̃nD̃nT̃n

) 1

n
tr (AnRnDnTn) . (68)

2) An integral representation forα, and bounds overα, δ and δ̃: Recall thatα(t) = E[n−1tr(Dn(IN +

tn−1YnY
∗
n)−1)]. This function readily extends fromt ∈ R

+ to z ∈ C \ R
−. Moreover, the following

representation holds true:

α(z) =

∫ +∞

0

ν(dλ)

1 + λz
, (69)

where ν is a uniquely defined positive measure onR
+ such thatν(R+) = 1

ntrDn. To prove this,

we introduce the eigenvalue/eigenvector decomposition ofmatrix n−1YnY
∗
n =

∑N
i=1 λiuiu

∗
i where

(λi, 1 ≤ i ≤ N) and (ui, 1 ≤ i ≤ N) represent its eigenvalues and eigenvectors respectively.The

random variableβ(z) = 1
ntrDn(I + zYnY∗

n

n )−1 can be written as

β(z) =
1

n

N∑

i=1

u∗
i Dnui

λi − z
=

∫ +∞

0

ω(dλ)

1 + λz
,

whereω is the nonnegative random measure defined by

ω =
1

n

N∑

i=1

u∗
i Dnuiδ(λ − λi) .

Consider now the measureν defined byν = E[ω], that isν(B) = E[ω(B)] for every Borel setB ⊂ R
+.

It is clear thatα(z) = E[β(z)] is given by (69), and thatν(R+) = E[ω(R+)] is given by

ν(R+) = E

[
1

n

N∑

i=1

u∗
i Dnui

]
= E

[
1

n
trDn(

∑

i

uiu
∗
i )

]
.

As
∑

i uiu
∗
i = IN , ν(R+) = 1

ntrDn as expected and representation (69) implies thatα(z) is analytic

over C \ R
−.
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Let dist(w,R+) stand for the distance from elementw ∈ C to R
+. Then the following holds true for

everyz ∈ C \ R
−:

|α(z)| ≤ 1

n
tr(Dn)

1

|z|
1

dist(−1
z ,R

+)
≤ N

n
dmax

1

|z|
1

dist(−1
z ,R

+)
. (70)

Similarly, (3) yields that

|δ(z)| ≤ Ndmax

n|z|
1

dist(−1
z ,R

+)
. (71)

A similar result holds forδ̃(z). These upper bounds imply in particular thatα(z), δ(z) and δ̃(z) are

uniformly bounded on each compact subset ofC \ R−.

3) A weaker result as a consequence of Montel’s theorem:We first establish that for every diagonal

matrix An uniformly bounded,




n−1tr(AnRn) = n−1tr(AnTn) + o(1)

n−1tr(ÃnR̃n) = n−1tr(ÃnT̃n) + o(1)
. (72)

We take (68) as a starting point. MatricesRn, R̃n,Tn, and T̃n have their spectral norms bounded by

one for t ∈ R
+ and matricesAn,Dn, and D̃n are also uniformly bounded by assumption. Therefore,

the termsn−1tr
(
ÃnR̃nD̃nT̃n

)
andn−1tr (AnRnDnTn) are also bounded. In order to prove (72), it

is sufficient to prove thatα(t) − δ(t) = o(1). To this end, we make use of Proposition 5 and write

α(t) − δ(t) as

α(t) − δ(t) =
1

n
tr (Dn(Rn − Tn)) + εn(t) ,

whereεn(t) = O(n−2) . Using relation (68) forAn = Dn, we immediately get that:

α(t) − δ(t) = (α(t) − δ(t))t2
1

n
tr
(
D̃nR̃nD̃nT̃n

) 1

n
tr (DnRnDnTn) + εn(t) . (73)

As supn

(
‖Rn‖, ‖R̃n‖, ‖Tn‖, ‖T̃n‖

)
≤ 1, we have:

1

n
tr
(
D̃nR̃nD̃nT̃n

) 1

n
tr (DnRnDnTn) ≤ N

n
d2
maxd̃

2
max ≤ 2cd2

maxd̃
2
max

as soon asNn ≤ 2ℓ+, whereℓ+ is defined in (1). Therefore, ift < t0 := (2dmaxd̃max

√
ℓ+)−1, then

t2
1

n
tr
(
D̃nR̃nD̃nT̃n

) 1

n
tr (DnRnDnTn) <

1

2

for n large enough. Eq. (73) thus implies that

|αn(t) − δn(t)| < 2|εn(t)|, i.e. α(t) − δ(t) = O(n−2) for t < t0 . (74)
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This in particular implies thatαn(t) − δn(t) = o(1) for t < t0; however, it remains to establish this

convergence fort ≥ t0. To this end, observe thatαn(z) − δn(z) is analytic inC \ R− and bounded on

each compact subset ofC \ R−. Montel’s theorem asserts that the sequence of functionsαn(z) − δn(z)

is compact and therefore that there exists a converging subsequence which converges towards an analytic

function. Since this limiting function is zero on[0, t0[ by (74), it must be zero everywhere due to the

analycity. Therefore from every subsequence, one can extract a subsequence that converges toward zero.

Necessarily,αn(z) − δn(z) converges to zero for everyz ∈ C \ R
− and in particular fort ≥ 0. This

establishes (72).

Even if the convergence rate ofαn(t) − δn(t) is O(n−2) for t < t0, Montel’s theorem does not imply

that the convergence rate ofαn(z) − δn(z) remainsO(n−2) elsewhere. Therefore, there remains some

work to be done in order to prove thatαn(t) − δn(t) = O(n−2) for eacht > 0.

4) End of the proof:We take (73) as a starting point. Equations (72) imply that for eacht ≥ 0,




n−1tr (DnRn(t)DnTn(t)) − γ(t) = o(1)

n−1tr
(
D̃nR̃n(t)D̃nT̃n(t)

)
− γ̃(t) = o(1)

. (75)

whereγn = n−1trD2
nT

2
n and γ̃n = n−1trD̃2

nT̃
2
n. Thanks to Proposition 6, (75) implies that

inf
n

(
1 − t2

1

n
tr (DnRn(t)DnTn(t))

1

n
tr
(
D̃nR̃n(t)D̃nT̃n(t)

))
> 0 .

Equation (73) thus clearly implies thatα(t) − δ(t) is of the same order of magnitude asεn(t), i.e. that

α(t) − δ(t) = O(n−2). Theorem 3 is proved.

D. Proof of Proposition 4-(1) - Variance controls

Consider firstΦ(Y) = 1
ntr
(
AHYBY

∗

n

)
. We use Poincaré-Nash inequality (20) to control the variance

of Φ. It writes

E

[
◦

Φ(Y)2
]
≤

N∑

i=1

n∑

j=1

did̃jE

[∣∣∣∣
∂Φ

∂Yi,j

∣∣∣∣
2
]

+
N∑

i=1

n∑

j=1

did̃jE

[∣∣∣∣
∂Φ

∂Yi,j

∣∣∣∣
2
]
. (76)

We haveΦ(Y) = (1/n2)
∑N

p,r=1

∑n
q=1 apbqHprYrqYpq. From the differentiation formula (14) we have

∂

∂Yij

(
HprYrqYpq

)
= − t

n
Hpi[y

∗
jH]rYrqYpq +HprYpqδ(r − i)δ(q − j) .

Therefore, after a straightforward computation we obtain∂Φ/∂Yij = φ
(1)
ij + φ

(2)
ij with

φ
(1)
ij = − t

n3

[
y∗

jHYBY∗AH
]
i

and φ
(2)
ij =

1

n2
bj
[
y∗

jAH
]
i
.
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The first term of the right hand side of inequality (76) can be treated as follows:

N∑

i=1

n∑

j=1

did̃jE

[∣∣∣∣
∂Φ

∂Yi,j

∣∣∣∣
2
]

≤ 2
N∑

i=1

n∑

j=1

did̃j

(
E

[∣∣∣φ(1)
ij

∣∣∣
2
]

+ E

[∣∣∣φ(2)
ij

∣∣∣
2
])

=
2t2

n6
E

[
tr
(
HYBY∗AHDHAYBY∗HYD̃Y∗

)]

+
2

n4
E

[
tr
(
AHDHAYB2D̃Y∗

)]
. (77)

Let A = sup ‖A‖. Using inequalities (8), (9), (11) and Cauchy-Schwarz inequality, we have

2t2

n6
E

[
tr
(
H YBY∗ AHDHA YBY∗ H YD̃Y∗

)]

≤ 2t2

n6
E

[√
tr
(
(HYBY∗AHDHAYBY∗H)2

)√
tr

((
YD̃Y∗

)2
)]

≤ 2t2

n6
E

[
‖H‖4‖A‖2‖D‖

√
tr
(
(YBY∗)4

)√
tr

((
YD̃Y∗

)2
)]

≤ 2dmaxA
2t2

n2

√√√√ 1

n
E

[
tr

((
YBY∗

n

)4
)]√√√√√ 1

n
E


tr



(

YD̃Y∗

n

)2





<
K

n2
, (78)

where the last inequality is due to (12). Turning to the second term of the right hand side of (77), we

have
2

n4
E

[
tr
(
AHDHAYB2D̃Y∗

)]
≤ 2A2dmax

n2
E

[
1

n
tr

(
1

n
YB2D̃Y∗

)]
<
K

n2
. (79)

The second term of the right hand side of Inequality (76) is treated similarly. This proves thatvar(Φ) =

O(n−2).

Consider nowΨ(Y) = 1
ntr
(
AHDHYBY∗

n

)
. The proof being quite similar to the previous one, we just

give its main steps. By (20) we haveE[
◦

Ψ(Y)2] ≤∑N
i=1

∑n
j=1 did̃j

(
E[|∂Ψ/∂Yi,j |2] + E[|∂Ψ/∂Yi,j |2]

)
.

A computation similar to above yields∂Ψ/∂Yij = ψ
(1)
ij + ψ

(2)
ij + ψ

(3)
ij where

ψ
(1)
ij = − t

n3

[
y∗

jHDHYBY∗AH
]
i
,

ψ
(2)
ij = − t

n3

[
y∗

jHYBY∗AHDH
]
i
,

ψ
(3)
ij =

1

n2
bj
[
y∗

jAHDH
]
i
.
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We have
N∑

i=1

n∑

j=1

did̃jE

[∣∣∣∣
∂Ψ

∂Yi,j

∣∣∣∣
2
]

≤ 3

N∑

i=1

n∑

j=1

did̃j

(
E

[∣∣∣ψ(1)
ij

∣∣∣
2
]

+ E

[∣∣∣ψ(2)
ij

∣∣∣
2
]

+ E

[∣∣∣ψ(3)
ij

∣∣∣
2
])

=
3t2

n6
E

[
tr
(
HDH YBY∗ AHDHA YBY∗ HDH YD̃Y∗

)]

+
3t2

n6
E

[
tr
(
H YBY∗ A (HD)3 HA YBY∗ H YD̃Y∗

)]

+
3

n4
E

[
tr
(
A (HD)3 HA YB2D̃Y∗

)]
.

The first two terms of the right hand side can be bounded by a series of inequalities similar to inequalities

(78). The third term can be bounded as in (79). This ends the proofs of the variance controls in Proposition

4.

E. Proof of Proposition 4-(2) - Approximation rules

Consider firstΦ(Y ) = 1
ntr
(
AHYBY∗

n

)
. we write Φ(Y) = n−2

∑N
p,i=1

∑n
j=1 apbjE

[
YijHpiYpj

]
and

apply the Integration by parts formula (19) to the summand. Using identity (15), we have

E
[
YijHpiYpj

]
= did̃jE

[
∂

∂Yij

(
HpiYpj

)]
= − t

n
did̃jE

[[
Hyj

]
p
HiiYpj

]
+ did̃jδ(i − p)E [Hpi] .

By taking the sum over the indexi, we obtainE

[[
Hyj

]
p
Ypj

]
= −td̃jE

[
β
[
Hyj

]
p
Ypj

]
+ dpd̃jE [Hpp].

Writing now β =
◦

β + α and then grouping together the terms withE

[[
Hyj

]
p
Ypj

]
, we obtain:

E

[[
Hyj

]
p
Ypj

]
= −td̃j r̃jE

[
◦

β
[
Hyj

]
p
Ypj

]
+ dpd̃j r̃jE [Hpp] .

We now sum overj andp, and obtain:

E

[
1

n
tr

(
AH

YBY∗

n

)]
=

1

n
tr
(
D̃R̃B

) 1

n
tr (AD E [H]) + ε ,

with

ε = −t E

[
◦

β
1

n
tr

(
AH

YD̃R̃BY∗

n

)]
= −t E




◦

β
1

n

◦︷ ︸︸ ︷

tr

(
AH

YD̃R̃BY∗

n

)

 .

Applying Cauchy-Schwarz inequality, Proposition 3 and thevariance controls in Proposition 4, we get

|ε| = O(n−2).

By Theorem 3,n−1tr
(
D̃R̃B

)
= n−1tr

(
D̃T̃B

)
+ O(n−2). By Theorem 3 and Proposition 5, we

obtainn−1tr (AD E [H]) = n−1tr (ADT) + O(n−2). This ends the proof of (23).
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Consider nowΨ(Y) = 1
ntr
(
AHDHYBY

∗

n

)
. In order to computeEΨ(Y), we shall need the following

intermediate result:

Lemma 1: In the setting of Theorem 1, letΥ(Y) = 1
ntr (DHDH). Then

1) The following estimate holds true:

var [Υ(Y)] = O
(

1

n2

)
,

2) moreover,

E [Υ(Y)] =
γ

1 − t2γγ̃
+ O

(
1

n2

)
.

Proof: In order to prove Lemma 1-(1), we use the Resolvent identity (10) and write:

DHDH = DHD − tn−1DHDHYY∗ .

Sincevar(X + Y ) ≤ 2var(X) + 2var(Y ), we only need to deal with each term of the right handside.

By Proposition 3,var(n−1trDHD) = O(n−2) and by Proposition 4-(1),var(tn−2trDHDHYY∗) =

O(n−2) and the proof of Lemma 1-(1) is completed.

Let us now prove Lemma 1-(2). The Resolvent identity (10) yields:

E

[
[HDH]pp

]
= dpE [Hpp] − tE

[[
HDH

YY∗

n

]

pp

]
. (80)

We then writeE

[[
HDHYY

∗

n

]
pp

]
= n−1

∑N
k,i=1

∑n
j=1 dkHpkHkiYijYpj, and apply the differentiation

formula (14) to the summand. After derivations similar to (44–45), we obtain:

1

n
E

[[
HDHyj

]
p
Ypj

]
= − t

n
d̃j r̃jE

[[
Hyj

]
p
Ypj

1

n
tr (DHDH)

]

− t

n
d̃j r̃jE

[
◦

β
[
HDHyj

]
p
Ypj

]

+
1

n
dpd̃j r̃jE

[
[HDH]pp

]
. (81)

Taking the sum overj and combining with (80) yields:

E

[
[HDH]pp

]
= t2rpE



[
H

YD̃R̃Y∗

n

]

pp

1

n
tr (DHDH)




+t2rpE


◦

β

[
HDH

YD̃R̃Y∗

n

]

pp




+rpdpE [Hpp] . (82)
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Taking now the sum overp, we obtain:

E

[
1

n
tr (DHDH)

]
=

1

n

N∑

p=1

dpE

[
[HDH]pp

]
= χ1 + χ2 + χ3 , (83)

where

χ1 = t2 E

[
1

n
tr

(
DRH

YD̃R̃Y∗

n

)
1

n
tr (DHDH)

]
,

χ2 = t2 E

[
◦

β
1

n
tr

(
DRHDH

YD̃R̃Y∗

n

)]
,

χ3 =
1

n
tr
(
D2RE [H]

)
.

Let us first deal with the termsχ2 andχ3. Cauchy-Schwarz inequality together with Proposition 3 and

Proposition 4-(1) yieldχ2 = O(n−2). Proposition 5 together with Theorem 3 yieldχ3 = γ + O(n−2).

We now look atχ1. Due to Proposition 4-(1) and to Lemma 1-(1), we have:

χ1 = t2 E

[
1

n
tr

(
DRH

YD̃R̃Y∗

n

)]
E

[
1

n
tr (DHDH)

]
+ O

(
1

n2

)
,

(a)
= t2γγ̃E

[
1

n
tr (DHDH)

]
+ O

(
1

n2

)
,

where(a) follows from (23) in Proposition 4. It remains to plug the values obtained forχ1, χ2 andχ3

into (83) to obtain:

(1 − t2γγ̃)E

[
1

n
tr (DHDH)

]
= γ + O(n−2) .

Recalling Proposition 2, we can divide by(1 − t2γγ̃) and obtain the desired result.

We can now go back to the computation ofEΨ(Y). Let us give the main steps of the derivation.

ExpandingEΨ(Y) yields:

E

[
1

n
tr

(
AHDH

YBY∗

n

)]
=

1

n2

N∑

p=1

n∑

j=1

apbjE
[[

HDHyj

]
p
Ypj

]
.

We replace the summandn−1
E

[[
HDHyj

]
p
Ypj

]
by the expression given by (81). We then replace the

term E

[
[HDH]pp

]
in (81) by the expression given by (82). We sum overp andj and notice afterwards

that the terms where
◦

β is involved are of orderO(n−2). We therefore end up with:

E

[
1

n
tr

(
AHDH

YBY∗

n

)]
= −t E

[
1

n
tr (DHDH)

1

n
tr

(
AH

YD̃R̃BY∗

n

)]

+
t2

n
tr
(
D̃R̃B

)
E

[
1

n
tr (DHDH)

1

n
tr

(
ARDH

YD̃R̃Y∗

n

)]

+
1

n
tr
(
D̃R̃B

) 1

n
tr
(
AD2REH

)
+ O

(
1

n2

)
.
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We first decorrelate by using the variance estimates in Proposition 4-(1) and Lemma 1-(1) and obtain:

E

[
1

n
tr

(
AHDH

YBY∗

n

)]
= −t E

[
1

n
tr (DHDH)

]
E

[
1

n
tr

(
AH

YD̃R̃BY∗

n

)]

+t2
1

n
tr
(
D̃R̃B

)
E

[
1

n
tr (DHDH)

]
E

[
1

n
tr

(
ARDH

YD̃R̃Y∗

n

)]

+
1

n
tr
(
D̃R̃B

) 1

n
tr
(
AD2REH

)
+ O

(
1

n2

)
.

It remains to apply Theorem 3, Proposition 4 and Lemma 1-(2) to the terms in the right hand side of

the previous equality to conclude.
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