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Abstract
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. INTRODUCTION

It is widely known that high spectral efficiencies are at@invhen multiple antennas are used at
both the transmitter and the receiver of a wireless comnatioic system. Indeed, consider the classical
transmission modey = Gx + z, wherey is the received signak is the vector of transmitted symbols,
z is a complex white Gaussian noise, a@dis the N x n Multiple Input Multiple Output (MIMO)
channel matrix withV antennas at the receiver’s site andantennas at the transmitter's. Due to the
mobility and to the presence of a large number of reflected suadtered signal paths, the elements
of the channel matrixG are often modeled as random variables. Assuming a randonelnfiod this
matrix, Telatar [1] and Foschini [2] realized in the mid-giies that Shannon’s mutual information of
such channels increases at the ratendfi(V, n) for a fixed transmission power [1]. The authors of [1]
and [2] assumed that the elements of the channel mé&iriare centered, independent and identically
distributed (i.i.d.) elements. In this context, a well-knmoresult in Random Matrix Theory (RMT) [3]
states that the eigenvalue distribution of the Gram ma#&* whereG* is the Hermitian adjoint ofc
converges to a deterministic probability distributionragoes to infinity andV/n converges to a constant
¢ > 0. Denote byI(p) = log det (gGG* + IN) the mutual information of chann&k for a Signal-to-
Noise Ratio at a receiver antenna equapfa. One consequence of [3] is that the mutual information
per transmit antenn&(p)/n, being an integral of &g function with respect to the empirical eigenvalue
distribution of GG*, converges to a constant. This fact already observed inudfhims the assertion of a
linear increase of mutual information with the number ofesumtas. In addition, this convergence proves
to be sufficiently fast. As a matter of fact, the asymptotisutes predicted by the RMT remain relevant
for systems with a moderate nhumber of antennas.

The next step was to apply this theory to channel models tidtide a correlation between paths
(or entries of G). One of the main purposes of this generalization is to beftelerstand the impact
of these correlations on Shannon’s mutual information. ustite in this context the contributions [4],
[5], [6], [7] and [8], all devoted to the study of the mutuafammation in the case where the elements
of channel’s matrix are centered and correlated randonabis. In [9], a deterministic equivalent is
computed under broad conditions for the mutual informabased on Rice channels modeled by non-
centered matrices with independent but not identicallyritisted random variables. The link between
matrices with correlated entries and matrices with inddpen entries and a variance profile is studied
in [10].
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One of the most popular correlated channel models used é&setimutual information evaluations is
the so-called Kronecker mod& = W W whereW is a N x n matrix with Gaussian centered i.i.d.
entries, andl and ¥ are N x N andn x n matrices that capture the path correlations at the recaiver
at the transmitter sides respectively [11], [12]. This nidues been studied by Chuah et al. in [5]. With
some assumptions on matricésand ¥, these authors showed thifp) /n converges to a deterministic
qguantity defined as the fixed point of an integral equatioriet.an, Tulino et al. [8] obtained the limit
of I(p)/n for a correlation model more general than the Kronecker mdgiteth these works rely on a
result of Girko describing the eigenvalue distribution loé tGram matrix associated with a matrix with
independent but not necessarily identically distributetfies, a close model as we shall see in a moment.

In [7], Moustakas et al. studied the mutual information toeg Kronecker model by using the so-called
replica method. They found an approximatioiip) of E [I(p)] accurate to the ordelr/n in the largen
regime. Using this same method, they also showed that thanear of I(p) — V(p) is of order one and
were able to derive this variance for large

Although the replica technique is powerful and has a widegeaof applications, the rigorous justi-
fication of some of its parts remains to be done. In this paperpropose a new method to study the
convergence oI (p) and the fluctuations of (p). Beside recovering the results in [7] and especially the
strikingly simple form of the variance, we establish the €a&nLimit Theorem (CLT) for(p) — V(p)

(for a related CLT in a non-Gaussian context, see [13]). Tratjral interest of such a result is of
importance since the CLT leads to an evaluation of the oupagkability, i.e. the probability thak(p)
lies beneath a given threshold, by means of the Gaussiamxpy@tion. Many other works have been
devoted to CLT for random matrices. Close to our presentlarére [14], [15], [16].

In this article, we also would like to advocate the methodduseestablish both the approximation of
I(p) in the largen regime and the CLT. Due to the Gaussian natureare in an ofrtine® of Matrix G,
two simple ingredients are available. The first one is angiaitton by parts formula (17) that provides an
expression for the expectation of certain functionals oti€s&n vectors. This formula has been widely
used in RMT [17]-[19]. The second ingredient is PoincagsiNinequality (18) that bounds the variance
of functionals of Gaussian vectors. Although well known][2@1], its application to RMT is fairly recent
[22], [19] (see also [23] and [24] where general concerdrathequalities are derived for functions of
random matrices). This inequality enables us to controldeerease rate of the approximation errors
such as the order/n errorE [I(p)] — V(p) (note that the Gaussian structure enters in two places: Firs

the reduction to matrices with independent entries andingryariance and then integration by part and
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Poincaré-Nash bounds for the variance of relevant sgestteaacteristicy. We believe that these tools of
rigorous and explicit analysis might be of great interesttfee communications engineering community
(see for instance the estimates obtained in [25] in the gbmieRicean MIMO channels).

The paper is organized as follows. In Section I, we intragtiee main notations; we also state the two
main results of the article. In Section Ill, we recall getaratrix results and the two aforementioned
Gaussian tools. Section IV is devoted to the proof of the brser result, that is the approximation of
E[I(p)]. The CLT, also refered to as the second order result, is lested in Section V. Proof details

are postponed to an appendix.

[I. NOTATIONS AND STATEMENT OF THE MAIN RESULTS
A. From a Kronecker model to a separable variance model.

Consider a MIMO system represented byWax n matrix G wheren is the number of antennas at the
transmitter andV is the number of antennas at the receiver and whéfe) is a sequence of integers

such that
N(n)

N
0< ¢ = liminf (n) < ¢ = limsup

n—0o0 n Nn—00

< o0, Q)

a condition we shall refer to by writing, N — oco. Assuming the transmitted signal is a Gaussian
signal with a covariance matrix equal %in (and thus, a total power equal to one), Shannon’s mutual
information of this channel i$, (p) = log det (£G, G}, + L) , wherep > 0 is the inverse of the additive
white Gaussian noise variance at each receive antenna. drfexal problem we address in this paper
concerns the behaviour of the mutual information for largéugs of N andn in the case where the
channel matrixG,,, assumed to be random, is described by the Kronecker m@gdetk \Iann\f'n. In
this model,¥,, and \Tln are respectivelyV x N andn x n deterministic matrices andV,, is random
with independent entries distributed acccording to the mem circular Gaussian law with mean zero
and variance oné€N (0, 1).

It is well known that this model can be replaced with a simplesmnecker model involving a matrix with
Gaussian independent (but not necessarily identicalliriloiged) entries. Indeed, le¥,, = UnDEV;;
(resp.¥,, — U, D2 V*) be a Singular Value Decomposition (SVD) &, (resp.¥,.), whereD,, (resp.

D,,) is the diagonal matrix of eigenvalues ¥, ¥* (resp.¥, ¥, ), thenI,(p) writes:

I.,(p) = log det (%YnY;; + IN> )

It is interesting to note that once the first reduction hasnbmede, others techniques are available without assumimg th

Gaussian character - see for instance [19].
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whereY,, = D%an)% is a N x n matrix, D,, and ﬁn are respectivelyV x N andn x n diagonal

matrices, i.e.
D,, = diag (dg"), 1<i< N) and D, = diag (d§"), 1<5< n> ,

and X, = V,’;anjn has i.i.d. entries with distributio@ (0, 1) sinceV,, and ﬂ'n are deterministic
unitary matrices. Since every individual entry %f, has the formYz.g.”) = dE")cZE.”)Xij, we cally, a

random matrix with a separable variance profile.

B. Assumptions and Notations.

The centered random variablé — E[X] will be denoted by)%. Element(i, j) of a matrix A will be
either denotedA];; or A;;. Element; of vectora will be denotedu; or [a];. Columnj of matrix A will
be denotedh;. The transpose, the Hermitian adjoint (conjugate transpokA, and the matrix obtained
by conjugating its elements are denoted respectively A*, andA. The spectral norm of a matriA
will be denoted||A||. If A is squaretrA refers to its trace. Let = y/—1, then the operator8/9z and
/0% wherez = z + iy is a complex number are defined By = 1 (a% — i(%) andZ =1 (% + i%)
Wherea% and a% are the standard partial derivatives with respect @ndy.

Throughout the paper, notatidd will denote a generic constant whose main featureosto depend
on n. In particular, the value oK might change from a line to another as long as it never depends
uponn. ConstantX’ might depend ot € R™ and whenever needed, this dependence will be made more
explicit.

As usual, notationy,, = O(f3,) is a flexible shortcut fofa,,| < K3, anda,, = o(5,), for a,, = €, 6,
with e, — 0 asn, N — oo (in the sense of (1)).

In order to study a deterministic approximationigf p) and its fluctuations, the following mild assump-
tions are required over the two triangular arr{yié"), 1<i< N, n> 1) and (cig."), 1<j<n, n> 1>.

(A1) The real numberslﬁ") and dy‘) are nonnegative and the sequen(dé")> and (cig.")) are

uniformly bounded, i.e. there exist constafifs,, and dmax SUCh that
sup |Dy|| < dmax and  sup ||I~)n\| < dyax.-
n n

where||D,,|| and||D,,|| are the spectral norms @,, andD,,.

(A2) The normalized traces dd,, and D,, satisfy
1 1 ~
inf —tr (D) >0 and inf —tr (Dn) > 0.
n n n n

In the sequel, we shall frequently omit the subscripand the superscrigtn).
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The resolvent associated withY, Y is the N x N matrix H,,(t) = (LY, Y} + IN)_I. Of prime
importance is the random variablt) = 1trD, H,,(¢) and its expectation(t) = 1trD,, EH,(t). We

furthermore introduce the x n deterministic matrix defined by
~ ~ —1
R,(t) = (T+ta()Dy,) |

1
= diag(7;(t), 1<j7<n) where 7;(t) = ———,
g (7(1), 1<) <n) O = e
and the related quantity(t) = LtrD, R, (t). In a symmetric fashion, th& x N' matrix R,, () is defined

by

R,(t) = (I+ta(t)D,) ",
1

= di i(t), 1<i<N) where r(t)=———.
We finally introduce the solutions of a determinis?ick 2 system.

Proposition 1: For everyn, the system of equations i, 5)

§ = luD,(I+tD,)™"

L= _ 2)
5 = LluD,(I+t6D,)

admits a unique solutioéén(t), Sn(t)) satisfyingd, (t) > 0, d,(t) > 0. Moreover, there exist nonnegative
measures.,, and i, over Rt such that
Lin (dX) . / fin(dN)
on(t) = and on(t) = , 3
®) /W 1L +tA ®) R+ 1+1EA ®)
wherep,(R1) = LtrD,, and i, (R1) = L1trD,,.

T n T n

Proof of Proposition 1 is postponed to Appendix A.

With § and$ properly defined, we introduce the followin§ x N andn x n diagonal matrices:
T, = (Ixy +t0D,)"" and T, = (I, +tD,)"".

Notice in particular that = %tr D, T, andd = %tr D, T, by (2). We finally introduce the following

quantities which are required to express the fluctuations, gf):

T (t) = 1 trDiTi(t)

“n

o (4)
ﬁn(t) = %trD?’LT?’L(t)
Proposition 2: Assume that Assumption®1) and(A2) hold and denote by
op (t) = —log (1 — Py ()n(t)), t>0 (5)
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where~,,(t) and¥,(t) are given by (4). Then2(t) is well-defined, i.el — t2v,,(¢)7,(¢) > 0 for t > 0.

Moreover, there exist nonnegative real numbeysand M; such that
0 <m? <info2(t) <supo2(t) < M <oo for t>0. (6)
n n

Finally, o2 (t) is upper-bounded uniformly in andt for ¢ € [0, p], i.e. Sup;<, M} < 0.

Proof of Proposition 2 is postponed to Appendix B.

Summary of the main notations.

In order to improve the readability of the paper, we gathkthal notations in Table II-B. As expressed
there, there are three kinds of quantities:
1) Random quantities,
2) Deterministic quantities depending on the lawYofY via the expectatiofi with respect to the
entries ofY,,
3) Deterministic quantities which only depend on the maesib,, and D,,, sometimes via and$
(as defined in Proposition 1) which are easily computable.
The main goal of the forthcoming computations will be to apmate elements of the first and second

kind by elements of the third kind.

C. Statement of the main results.

We now state the main results. Theorem 1 describes the fidgtr @approximation of the mutual
information ,,(p) while Theorem 2 describes its fluctuations when centereld repect to its first order
approximation.

Theorem 1:LetX,, be alNV xn matrix whose element;; are independent complex Gaussian variables
such that

E(X;) =E(X7) =0, E(X;°)=1, 1<i<N,1<j<n,

andY, = D2X,DZ where the diagonal matricd3,, and D,, satisfy AssumptiongAl) and (A2). Let
In(p) =logdet (2£Y,Y; 4+ Iy). Then, we have

Bi1,(0) = Va(p) + O (1) @

asn, N — oo (in the sense of (1)), where

Va(p) = log det (In + pén(p)f)n) + log det (IN + pgn(p)Dn> —npdn(p)on(p) .
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= Deterministic quantities
Random quantities

depending on the law oY Y™ via E | only depending on the variance structure Daand D

1

H= (1YY" +1)"
3= luDH a = LtrD(EH) §=trD(I+tD)"! = LuDT
7 = (1+tad;)™"
R = (I + taD)™" T = (I+t6D)"!

a= %trﬁf{ = %trf)(l +taD)"! | 5= %trf)(l +t6D) "t = %trf);f
ri = (1 4+ tad;) ™!
R = (I+taD)™! T = (I+tD)""

v = %trTQDQ7 ¥ = %tr’f2]52

o?(t) = —log(1 — t*y(t)7(t))

TABLE |

SUMMARY OF THE MAIN NOTATIONS

and where(é,,(t),0,,(t)) is the unique positive solution of the system
§ = luD,(Iy+tD,)"!
5 = trD,(I, +t6D,)"!
Theorem 2:Assume that the setting of Theorem 1 holds and let

op(p) = —log (1 = P> (p)n(p))

where~, (p) and4,(p) are defined in (4). Then the following convergence holds:true

In(p) B Vn(p) L N(O, 1) ’

on(p) n—oo

where £ stands for the convergence in distribution.

I1l. M ATHEMATICAL TOOLS AND SOME USEFUL RESULTS

In this section, we present the tools we will use extensiadllyalong the paper. In Section IlI-A, we
recall well-known matrix results; in Section 1lI-B, we pesg two fundamental properties of Gaussian
models: The Integration by parts formula and PoincaréhNizsquality for Gaussian vectors. Section IlI-C

is devoted to a cornerstone approximation result which mustates thaR andR can be replaced with
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T andT up to some well-quantified error. In Section llI-D, variowiance estimates and approximation

rules are stated.

A. General results

1) Some matrix inequalitiestet A andB be two N x N matrices with complex elements. Then

ltr (AB)| < /tr (AA¥)\/tr (BB*) . (8)
AssumingA is Hermitian nonnegative, we have
tr (AB)| < ||BJ| tr (A) , 9)

where||.|| is the spectral norm (see [26]).

2) The ResolventThe Resolvent matrifl,, (¢) of matrix Y, Y7, is defined ad,,(t) = (LY, Y} + IN)_l.
It is of constant use in this paper and we give here some ofripgties. The following identity, also
known as theResolvent identity
H,(f) = Ty — %Hn(t)YY* (10)

follows from the mere definition df,,. Furthermore, the spectral norm of the resolvent is redmtiiynded
by one:

IH,(t)| <1 for ¢t>0. (11)

3) Bounded character of the mean of some empirical moméetyB,, ) ,,cn = diag ([bﬁ”), ce b%”)] )
n € N, be a sequence of deterministicx n diagonal matrices. Assum@1l) and furthermore that

sup,, || Br|| < co. Then, for every integek, we have
1 1 AP
—E |tr [ -Y,B, Y] | < K, . (12)
n n

Let us give a sketch of proof. Expanding the left hand sidel@) ields:

1 _
W Z bjl bj2 e bjkE [Y;'ljl Y;'zjl }/7;2]'2}/7;3]'2 T Y;'kjkY;'ljk .

i1,09,..,ip=1:N

A close look at the argument of tiie operator implies that, due to the independence oftfhewe only
havek + 1 degrees of freedom in the choice of the indiégsand j,. As all moments of the Gaussian

law exist and ag§B,,|, |D,|, and||D,|| are bounded, this sum is of ordermsn, N — co.
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4) Differentiation formulas:Let A be aN x N complex matrix and leQ(A) = (Iy + A)"!. Let
dA be a perturbation oAA. Then

QA +6A)=Q(A) —Q(A) A Q(A) +o([0A]), (13)

whereo (||6A]|) is negligible with respect thdd A || in a neighborhood od. Writing H(¢) = [Hpq(t)];v’q]il,

we need the expression of the partial derivaiié,,/0Y;;. Using (13), we have:

9 vy " OYY™ B t ) N
oYy, n [H oY H} oon [H {5(1{: ) Zj]k,fﬂ Lq
t . t 1
=~ Hp [Y'H];, = ——HylyjH], -

whered(-) is the Kronecker function, i.e3(0) = 1 otherwised(¢) = 0. Similarly, we can establish

OH,,  t
“r . _Z[HY], Hij, = —
Z?Y;j n [ ]py q

The differential ofg(A) = log det(A) is given byg(A + 6A) = g(A) + tr (A~ §A) + o (||[6A])) .

We use this equation to derive the expressiobft)/dY;; also needed below:

oI t YY" t . N t t
=t (05 ) = e (s —am ] ) = Ll = Tyl a9
B. Gaussian tools
1) An Integration by parts formula for Gaussian functionalset ¢ = [¢1,..., &7 be a complex

Gaussian random vector whose law is determine®g] = 0, E[¢¢7] = 0, andE[¢€*] = E. Let T =

(&1, €60, &1, -+, &) be aCt complex function polynomially bounded together with itsidatives,
then: u
or
Bl6E) = 3 (S B | T2 an
m=1 m

This formula relies on an integration by parts and thus isrretl to as the Integration by parts formula
for Gaussian vectors. It is widely used in Mathematical Risy27] and has been used in Random Matrix

Theory in [17], [18].

2) Poincae-Nash inequality:Let £ andI" be as previously and 167" = [0I'/0z1,...,0' /0zp]"
and VI = [0I'/971,...,01' /0z3;]T . Then the following inequality holds true:

var (L(€)) < E |V.T(§)" & V.I(E)| +E[(V=T(€))" & V=T(¢)] . (18)

A proof of this inequality is available in [19] in the real easee also [22].
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When ¢ is the vector of the stacked columns of matix i.e. £ = [Yi1,...,Yy,]T, formula (17)
becomes:
E[V,T(Y)] = did,E [W(j)] , (19)
0Yi;

while inequality (18) writes:

n

N
var (T(Y)) <)) did; E
i=1 j=1

Poincaré-Nash inequality turns out to be extremely usefuleal with variances of various quantities

(20)

2 L) 2
Y;

oY, ;

'OF(Y)

7j

of interest related to random matrices. In order to givetrigdvay the flavour of such results, we state
and prove the following:
Proposition 3: Assume that the setting of Theorem 1 holds andAgtbe a N x N real diagonal

matrix whose spectral norm is uniformly boundedninThen

ltrAan> =0 (n_2) .
n
Proof: We apply inequality (20) to the function(Y) = %trAH. Using (14), we have

or 1 0H,, t

=_ = ——[y*HAH]; .

a}/;7j n Z:: ap . n [ ]

Therefore, denoting byl the upper bound! = sup,, ||A,|| and noticing tha{dor’/dY; ;| = |0T /dY |,

we have:

Zzn:ddﬂz( “HAH] ‘

i=1 j=1

2t%
= d,E (y;HAHDHAHY)
7j=1

22
FIE: tr | HAHDHAH

a 2t2 YDY* ®)  2A42d;0t? YDY*\ © K
< {HHII jal? HDIIt< ) )} 2 Etr( ) 0 K

var I'(Y)

IN

YDY* )

—~
N

n3 n n
where inequality(a) follows from (9), (b) follows from (11) and from the boundedness|&,, | and

|D..||, and(c) follows from (12). [ |

C. Approximation rules

The following theorem is crucial in order to prove Theoremant 2. Roughly speaking it allows to

replace matriceR,, and R, by T,, and T, up to a well-quantified small error.
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Theorem 3:Let (A,) and (B,,) be two sequences of respectively x N and n x n diagonal

deterministic matrices whose spectral norm are unifornadyriged inn, then the following hold true:

1 1 1
“trA,R, = —trA,T,+O <—2> , (21)
n n n
1~ 1 = 1
—trB,R, = —t:B,T,+0O <—2> . (22)
n n n

Proof of Theorem 3 is postponed to Appendix C.

D. More variance estimates and more approximation rules

We collect here a few results whose proofs rely on the Integrdy parts formula (19), on Poincaré-
Nash inequality, and on Theorem 3. The proofs of these msalthough systematic, are somewhat
lengthy and are therefore postponed to the Appendix. Thesdts will be used extensively in Section
V.

Proposition 4: In the setting of Theorem 1, I1€A) and (B) be two sequences of respectivélyx N
andn x n diagonal deterministic matrices whose spectral norm aiumly bounded inn. Consider

the following functions:

1 YBY* 1
(Y) = —tr (AH ) . W(Y) = —tr (AHDH
n

n n

YBY*
- .

Then,

1) The following inequalities hold true:
var (0(Y)) = O(n™?), var (U(Y)) = O(n™?) .

2) The following approximations hold true:

E[®(Y) — %tr (BTB) %tr (ADT) + O (n"2) |, (23)
E[U(Y) = ﬁ (%tr (f)i“B) tr (AD?T?) — Z—Ztr (]52’1“23) tr (ADT)> +O (%(}4)

The variance inequalities are proved in Appendix D; the apipnation rules, in Appendix E.

IV. FIRST ORDER MOMENT APPROXIMATION: PROOF OFTHEOREM 1

This section is devoted to the proof of the following approation:

E[L,(p)] = Va(p) + O (n_l) ) (25)
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where
Va(p) = log det (L, + pd (o)D) + log det (T + pdu(p)Dn) ~ npdu(p)ou(p) . (26)

This result already appears in [7] and is proved under gregeerality in [9]. The proof presented here

is new and relies on Gaussian tools.

Outline of the proof

The proof is divided into three steps. We first make some mpieéiry remarks. Notice that the mutual

information can be expressed &g) = [ tr (n"'H(t)YY™) dt. In particular,
14 *
E(l(p)] = [ <IE [H(t)YY D it . 27)
0 n

In order to study the asymptotic behaviour BfI(p)], it is thus enough to studyr (H(¢)XX-) for

n — +oo up to an integration. The Resolvent identity (10) yields

2 (1Y) - s (1)

n

We are therefore led to the study Bfitr(H(¢))]. We now describe the three steps of the proof.

A. In the first part of the proof, we expariH (¢) with the help of the Integration by parts formula
(19). This derivation will bring to the fore the determinéstiagonal matrixR, and Poincaré-Nash

inequality will then allow us to obtain the following appimation:
EtrAH = ttAR+ O (n™') |

for every diagonal matrixA with a bounded spectral norm. Here are the main steps, gathier

an informal way. Differentiating the terr <[Hy]] Y, ) we obtain:
B (Hy.], Vs) = 2 ] - 8 (L (DH) [Hy,], ¥, )

from which we will extractE[H,,| later on. At this point, Poincaré-Nash inequality yieldsne

decorrelation up t@ (n~!) and we obtain:
1 —_— 1 — —
E | —tr(DH) (Hy,),Y,;| ~E |-t(DH) | E |[Hy,], ;| = oE |[Hy,], ¥, -
This approximation allows us to |solalé<[HyJ] Y_>

(1+td;0)E ([Hy,), V) = o dE[Hy] < E([Hy)), V) = dpdisE [Hy,) |
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Now summing overj and using the Resolvent identi§/,, = 1 — & >°7_, E[Hy;] Y,; in the
previous equation yields:

1-EH .
— P ~ 4d,EH,,, thatis EH,,~r, .

All the technical details are provided in Section IV-A.

B. The second step follows from the approximation rule (2adexl in Section 11I-C, which immediatly
yields
EtrAH = trtAT + O (n7") .

This in turn will imply that
Etr <H(t)YY > b <I _tEH> —tr <¥> Fenlt) D no@®)3(t) + en(t).
n

where (a) follows from the fact thal — T = tdD(I + t6D) !

C. In the third step, we integrate the previous equality:

/OIEtr< ) Y*>dt_n/ 5t dt+/ en(t)dt.

We identify n [ 6(t)0(¢)dt with V,,(p) as given by (26), and check th§f e, (t)dt = O(n™1).

A. Development of (trAH(t)) and approximation byrAR(t)

In order to studyE (trAH(t)), we first consider the diagonal entriés,,(¢) of H(¢). For each index

7, we have
E([Hy]]p pj) ZE HPZYZJY;?J) :

We now apply the Integration by parts formula (19) to the s@mdof the right hand side for function

I defined ad'(Y) = H,;Y,;. This yields:
_ - , -t .
E (HpiYiYy;) = didE [Hz] 6(i — p) — did;—E ([H.Yj]p Hz'z'ij> - (28)

Therefore,

B (1Hy.], V7) = i [y 105 (L ox(DH) [y, ¥, ) (29)
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from which we extractf[H,,] later on. Recall at this point thatar (n~'trDH(t)) = O (n™?) by
Proposition 3. Recall also the following notation$:= n~'tr(DH), a = E[f], and% = 0 - a.
Plugging the relatiod = « +% into (29), we get

B [[Fy,], o] = dpdiElf,] - tdan [[y,], 5] - edje [y T . @0

Solving this equation w.r.t& [[Hy;],Y), ;] provides:

N ~ ~ o __ _ 1 )
E [[Hy;],Y,;] = dpd;7,E[Hpp)—td;7;E [ﬂ [Hyj]p}/;)j] where 7(t) = —— = for1<j<n.
1+ tOé(t)dj
(31)
Summing (31) ovey yields:
E {HYY } — ad,E[H,,] — tEj Hm] : (32)
n pp n

pp

~ ~\ —1 ~ ~
whereR is the diagonal matrixiag (7;(t)) = <I +atD) anda = 1trDR. In order to obtain an

expression foil[H,,|, we plug the identity (32) into the Resolvent identity:

E[Hpy) =1—tE [HYY } ]
n pp
and obtain:
o | _YDRY*
E[Hpp| =1 + tzrpE A [H . ] (33)
n
pp

with 7,(t) = (1 + tddp)‘l . Let A be aN x N diagonal matrix with bounded spectral norm. Multiplying

(33) by A’s components and summing ovelyields:

Etr(AH) = tr(AR) + nt’E [ﬁ @(Y)} ,

o o

whered(Y) = %tr(ARH@). As G is zero-mean]E[é ®] = E[3 ®]. In particular, Cauchy-Schwarz
inequality yields:

B3 ®| < \/var(3)y/var(®)

Recall thatvar(3) = O (n=2) by Prop. 3. Sincd/R/| and |[DR| are both bounded by Assumption
(A1) and by the definitions oR andR, one can directly apply the result of Proposition 4dtan order
to getvar(®) = O (n™?).

We have therefore proved the following:
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Proposition 5: In the setting of Theorem 1, leA,, be a uniformly bounded diagon&l x N matrix.
Then for everyt € RT,
E(trA,H,(t)) = trA,R,(t) + O (n™1) . (34)

B. The Deterministic Approximatiom,, ().

Proposition 5 provides a deterministic equivalenEttrA,, H,,) since the matrixR,, is deterministic;
however its elements still depend én= n~'tr(D,R,,), which itself depends on = E (n~'trD,H,,),
an unknown parameter. The next step is therefore to applpréne 3 to approximate the matrRr,, by
T,,, which only depends o,, and D,, and oné and?, the solutions of (2). Theorem 3 together with
Equation (34) imply that:
E(trA,H,) = tr(A,T,) + O (n7') . (35)

SinceT,, only depends om and4, (35) provides a deterministic equivalentBftrA,H, ) in terms of
§ andé. Note that takingA = D yields in particulara = § + O(n~?) while a direct application of
Theorem 3 forA,, = D,, yieldsa = 6 + O(n2).

We are now in a position to describe the behaviouiEaf (Hn(t)%) by using the Resolvent
identity. From (10) and (35), takind.,, = I,,, we immediately obtain:

YnY2> = Str (L~ () + O (n7") |

E tr <Hn(t)

As I, — T, (t) = (T,(t)"! = I,)T,(t) = t6(t)D,T,(t), we eventually get that
E [tr (H,ﬁ)@)] — n(1)5(t) + enlt). (36)

where the erroe,(t) is aO(n~1) term.

C. Recovering the Deterministic Approximatidiip) of E[(p)].

As mentionned previously;,(t) is aO(n~1!) term, i.e.|e,(t)] < K;n~!. One can easily keep track
of K in the derivations that lead to (36) and prove ti#gtis bounded on the compact interval p].
In particular, |, (t)| < Kn~! on the compact intervdD, p] for someK > 0. The proof of this fact is
omitted.

As ney(t) is uniformly bounded or0, p], we have| [ e, (t)dt| = O(n~'). Therefore,

E[I(p)] = /Op nd(t)o(t) + O (n71) .
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Consider now
Vp) =W (p,8(0),3(p)) .
where functioni¥ (p, 8, 6) is defined by
W <p, d, 5) = log det <In + p5f)n> + log det <IN + pSDn> — npds .

One can easily check that:

aW o g g —1 = aW o = -1
v p (tr (Dn(In + péDy,) ) — né) and 5= P (tr (Dn(IN + péDy,) > — né) .
As the pair(5(p),d(p)) satisfies (2), the above partial derivatives evaluated attfp, 5(p),d(p)) are

zero. Therefore,
w_ (o)
do N 9P/ (05(0).3(0)
which in turn implies (7). Theorem 1 is proved.

= nd(p)d(p) (37)

Remark 1 (On the deterministic approximati@h): The deterministic approximatidh,, can be used
to approximate functionals of the eigenvalue¥ofY* other that the mutual informatidog det(pn =Y, Y} +
In) (see for instance [9]). This relies on a specific represimtadf T,: The spectral theorem for
Hermitian matrices yields the integral representation:

N (dN)

1 o0
SwH,(2) = | MY e C\R_,
LrH (2) /0 ) secy

whereN,, represents the empirical distribution of the eigenvalde¥ gY . It can be shown that~!trT,,

admits a similar representation:

1 7 (dX)
—trT,(2) = , C\R_,
n (2) /0 1+ Az 2€C

where 7, is a probability measure. Finally, one can prove th&t f(A)N,(dX) — [;° f(A)mn(dX)

converges to zero almost surely for every continuous bodifidiection (see [9] for details).

V. SECOND ORDERANALYSIS: PROOF OFTHEOREM 2

This section is devoted to the proof of the Central Limit Tieso:

o1 (0) (Ln(p) — Via(p)) —E— N(0,1) . (38)

n,N—oo

Denote by, (u, p) = E [elv(=(P)=V2(P))] the characteristic function af,(p) — V,,(p). We first reduce

the problem in the following way:

March 2008 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORWAL VERSION 18

Proposition 6: Assume that for every, € R,

hn (1) = Yy (u, p) —e W 0/2 0 (39)

n,N—oo

then (38) holds true.
Proof: 2 We first prove that the sequeneg! (I,, — V},) is tight (we drop the dependence j).
Recall from Proposition 2 that < m < 02 < M < co. Lete > 0. Forz > 0 small enough, we have:

R L e L

T x

Moreover, sincep, (u) — e~* 7+ — 0, the Dominated Convergence Theorem yields:

%/ (1—¢n(u))du_%/_x (1= %) du

—T x

<e

for n large enough. Now, given a real random variallevith characteristic functiop(u), the following

inequality holds true:

Pl 2] <1 [ a- et

TJg

(see for instance Eq. (26.22) in [28, Th. 26.3]). Applyingstmequality tol,, — V,,, we obtain:
P, — V.| > 2/z] < 2¢

for n large enough; in other wordg,, — V,, is tight. Tightness ot ! (I,, — V;,) follows from the fact
thato2 > m > 0. We are now in position to conclude. Sineg! (I, — V;,) is tight, one can extract a
subsequencén) such thato—(‘nl) (I(n) — V(n)) converges. Now, since,, belongs to a compact set, one
can extract a converging subsequence fi@m say (m), such thata?m) — a > 0. From (39), we have
c . _ c - _

Iim)—Vim) — N(0,a) or equwalentlyf(n}b) (Ltm) — Vimy) = N(0,1), and the limit Ofa(nl) Ity — Vi)
(which is the same as the one of the subseque'r(Tn(%Se(I(m) — V(m))) is necessarilyV (0, 1).

We have proved that for every subsequerigg such thato'(—nl)(p) (I(n)(p) —V(n)(p)) converges,
a(‘nl) (P) (Iny(p) = Viny(p) £, N(0,1). The result remains true for the whole sequenge (I,, — V;,)

by Corollary of [28, Th. 25.10] |

2This proof simplifies an earlier proof by the authors and waggssted by one of the reviewers whom the authors would
like to thank.
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Outline of the proof of(39).
The proof of the convergence éf, (u) towards zero is divided into two steps.

A. We first differentiatey,, (u,t) with respect tot in order to obtain a differential equation of the
form:
Oy (u,t) u?

ot = g m)¥n(ut) +enlut) . (40)

In order to obtain the differential equation (40), we firsivelep 0w /0t with the help of the
Integration by parts formula (19). We then use PoincargiNmequality to prove that relevant
variances are of orde?(n~2). This will enable us to decorrelate various expectatiapsto express
them as products of expectations up to negligible terms. N ghen use the approximation rules

stated in Proposition 4 in Section I1I-D to deal with the ob&sl expectations.

B. The second step is devoted to identify the variance, th&b prove the identity
p 2
[ mttyat = o2,

whered? is given by (5), i.e02(p) = —log(1 — p*7,(p)¥n(p))-

C. The third step is devoted to the integration of (40). ladtef directly integrating (40), we introduce
Ko (u, p) = tn(u, p)e's7#) which satisfies the following differential equation:

Taking into account the obvious facts that(u, 0) = 1, 02(0) = 0 and therefore thak’,, (u,0) = 1,

we shall obtain that

u22

p
K,(u,p) =1 —I—/ enlu, t)e T dt |
0
and prove thatf/ en(u,t)e 5@ dt = O(n~1). This will yield in turn that;
Un(u,p) = (1+0(n™h) 5o W —gaie) +0(mn™ .

where (a) follows from Proposition 2.

The theorem will then be proved.
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A. The differential equatiod;,, = _%znnwn +en

Recall thatiy, (u, p) = ¢ (u, p)e V2 (?) wherep(u,t) = E (e/®)). As V! (t) = nd(t £)o(t) by (37),

we obtain:
W) _ v 92hD) o s)5(8)(u, ) - (42)
ot ot
Sincel’(t) = n~%rH(t)YY* by (27), we have:
a(p(uvt) e YY* iul(t)| _ iu al g X iul
S = E [tr <H(t)T> MOl == 33 E [nmey;,je : (43)

pi=1j=1
Applying the Integration by parts formula (19) B[Y;; H,;Y,;e!] (which can be writterE (Y;,I'(Y))
for I'(Y) = Hy;Yy;e!) and using the differentiation formulas (15) and (16) yseld

E [v;, Hpiﬁjeiul] = did,;E [83” (Hpiﬁjeiuf)} ,

t Y iu 7 . iu
= - EdidjE [[HYj]pHiiYZDjel I] + d;d;0(i — p)E [Hme I]
b - o '
+ %didjE [Hmym [Hyj]ie"”} . (44)
We now sum over index and obtain:

o[, 7] = e [ ] 5] e ]

+ ﬂd E|[HDHy,] Ve

p

where3 = n~'trDH. Writing 8 = E+ a yields:

(1+tad))E |[Hy,] Ve | = —td;E [ﬁ Hy,] Ve ‘“1] + dpdiE | Hype™™ |
+ Etd E [[HDHy]] Y e luf] . (45)
We now take into account thaf(t) = (1 + tad;)~" and sum ovey:
E[EYY", ] = —m® [5 HYDRY'| « ‘“1} + néidyE [ Hype!|
+ ﬂE HHDHYﬁf{Y*Lp ei“ﬂ : (46)

By the Resolvent identity (10 [H,,e'"/] =E [e!*/] — LE [[HYY*]pp ei“I}. Replace now in (46),
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recall thatr,(t) = (1 + ta(t)d,)” " and sum ovep to obtain:

E{tr <HYY*>€MI] — tr(DR)aE [ei“}

n
L (RHDHm> ]
n n

+ iutE

_{E|ftr (RH@> ei“I]
n
= xatx2+txs- (47)
Thanks to Theorem 3,
xi = tr(DR)aE [eiuf] — tr(DT)aE [ei“f} +Om™Y) = nddE [ei“f} +OmY).  (48)

In order to deal withys, we apply the results of Proposition 4 relatedi¢Y) in the particular case
where A = R and B = DR. In this case,x, writes x» = iutE (¥(Y)e*!), and Cauchy-Schwarz
inequality yields:

B (wett) B () E ()| = ‘E[ei“ Ul < |E

Therefore,
E (xpeiuf) ~E <ei“~’> E(¥) + O(n) .
We now use the approximation f@¥(Y) given in Proposition 4. By Theorem 3, we can repldte

(resp.f{ by T (resp.’f‘) in the obtained expression. We therefore obtain:

E (xy(Y)eW) — EU(Y)E [ei“f} +0 (™)
_ 1 1 23y oL, (33 L 2 il —1
- e (’yntr (D*T?) —ty=tr (D*1°) —tr (DT?) | E (1] + 0 (n"y49)
The termys can be handled similarly: We apply the results of Propasitdorelated to®(Y) in the
particular case wherd = R and B = DR. In this casey; writes xo = —tnE (%@(Y)eiul> _and

Cauchy-Schwarz inequality yields:

g (Boer) - (e ) m@)| = eiien d] < ¢ 5] ¢ ¥ =002

We therefore obtain
e|

= E[Beﬂ Ftr (DT?) +0 (n7') (50)

ey

eiuz} ir (D*IR) Lt (DTR) + 0 (n )

n n

—
S
=
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where (a) follows from Theorem 3. It remains to deal with the te 5ei“1]. To this end, we shall

rely on (46) and develop the teri [prei“]. The Resolvent identity yields:
* iwl] _ T iul n iul
E [[HYY Jp© ] = 2E [e‘ }— “E [prel ] .

Plugging this equality into (46) and using = (1 + tddp)_l, we obtain after some computations

] = e [g ot Ly <mﬂ)]
n n
w2 |1 YDRY*) , 1 ,
Mg [—tr <RDHDH7> e | + ~tr (D (R -E[H))E [e“ﬂ}
n n n n

@ o o [9 gur| 1 ut? -1 33y _ 21l (3m3 -
= t°vyE [ﬂe } nd—27) <’yntr (D°T?) —ty ntr <D T > © 4+ O(n"{p1)

where (a) follows from Theorem 3, Proposition 4 and Proposition 5. \Wer¢fore obtain:
°o . 1 iut? 1 1, (= 1
wr| _ 1 <1 33 _ 2t 33 L
E [ﬂe } = n(l—t271)2 <’yntr(D T ) ty ntr (D T )> o+ 0O <n2> .
Plugging (51) into (50), and the result together with (48} #49) into (47), and getting back to (43)

and (42), we obtain:

O (u, t -
OOnD) (1) + O )
where
(t) B 1 tZV%tr <D3T3) %tl‘ (DTZ) - 1t (DQT?,) t3’~}/2%tr (D3T3) %tl‘ (DT2)
=T T | T 1- 2775 i * 1— 297
(52)
Equation (40) is established, and the first step of the pmabmpleted.
B. Identification of the variance
In order to finish the proof, it remains to prove that:
2
Na(t) = %Ck‘#(t) where ai(t) = —log (1 — ty,(t)An(t)) - (53)
To this end, we first begin by computing the derivativesypft) and~, (t). We shall prove that
o %tr (f)S’iv‘g) %tr (DT2) dy 2%tr (D3T3) %tr (f)’iv‘2) (54)

dt 1—t2vy dt 1 —t2%y
We only derive%, the computations being similar in the other case. We firpaad the expression of

4, and obtain:

n n 2
- == T = — — | —— ] =—2—(¢ —tr (D°T”) . 55
dt n ot d; dt" 77 n ot d; dt \ 1+ t5(t)d; dt (ta()) ntr < > (55)
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Let us now compute’(¢):

N !
) — I S RO TR
d(t) = > d; <1 +t5(t)di> = —0(t) — yto'(t) . (56)

S

A similar computation yield$§’(t) = —44(t) — 4td’(t). Combining both equations yields:
R e )
-2y
We now plug this into (55) and obtain:

b (5F) (b nd)

dat 1— 297 S
Recall now that the mere definition &, T, § and 4 yields
t6DT =1—T
. (58)
toDT=1-T
Using (58), we obtain:
nlr (DT?) = nltr (DT (1 - tSDT)) — 5 —tdy (59)
n”ttr (f)'fQ) = n lr (f)'i‘ (I — t5f)'f)> =0 —t67 . (60)

It remains to plug (59) in (57) to conclude the proof of (54).

We are now in position to prove (53). The main idea in the feifgg computations is to express (52)
as a symmetric quantity with respect doand T on the one hand andl and T on the other hand. To
this end, we splity, (t) in (52) asn,(t) = === (1" + 1@ +n®)). We first work ony®:

@ 3032 Ltr (D*T%) 4697y 4tr (DPTY)

—
S]

1 — 3y 1 — 295
e (00T e (BT)
® " - + 1250~ tr (D°T?) .
1 —t2vy n

where (a) follows from (59), and(b) from (60). We now look ai;(®):
0 4 2562t (DTP) = 15 (ltr <D2T3 +1ln <D2T2 (tSDT))>> — th7
n n n

where the last equality follows (58) again. We thereforeehav

] 2y L (]53"1“3) Ltr (DT?) 231t (D?T%) Lt (]5"1“2)
- - +t9y ]

t =
L - 273 - 273

@ 1899 + 1295 + 2t
2 1 —t2vy
1d
= ———log(1—1t*y3
5 108 (1=19%)
where (a) follows from (54). This concludes the identification of thariance.
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C. Integration of the differential equatiof@0)

Let us introducek,, (u, p) = wn(u,p)e%ai(p). Due to (40),K,(u, p) readily satisfies the following

differential equation:

M{"T(:’t) = 5n(u,t)e%"§(t) . (61)

As in Section IV-C, one can easily prove thaj,(t)| < £ for everyt € [0, p]. As K,(u,0) = 1, we get
p u? 2
Ky(u,p) =1 +/ en(u, t)e M gt .
0

Due to Proposition 5¢2(t) is bounded from above uniformly in andt € [0, p]. This fact, together

with |e,,(t)] < £ implies that:

1
Kn(uap) =140 <_> :
n
This in turn yields
Up(u,p) = (140 (n_l)) e~ 5

_ 50 +0(nY,
where the last equality follows from the fact tha}(p) is uniformly bounded by: by Proposition 2.

APPENDIX
A. Proof of Proposition 1

Let us first establish the existence and uniqueness of thai@olof (2). To this end, we plug the
expression of in (2). The system of two equations reduces to the single teua = f(t,6) where
f(t,0) is defined by

F(t,0) = %tr (Dn <1N + %tr (f)n (In + téf)n) _1> Dn> _1> (62)

which is itself equivalent tg(d,¢) = 1 where

_ -1
ot 8) = @ _ 1 (Dn <5IN + %tr (515n (In +t5f)n> 1> Dn> ) .

n
The functionéd — g¢(t,6) is continuous, decreasing and satisfigs,0) = +oo and g(t,+o00) = 0.

Therefore, the equation(t,d) = 1 has a unique solutiof(t) > 0.

The integral representation (3) éfands is related to the Stieltjes representation of a class ofyinal
functions. We refer to [9, Section 3.2] where a more gen@sllt is proven and skip the details. Be aware
however thav in this paper and in [9] slightly differ (but are related byeee(2) = 2~ 16pap(—27 1)),
so do thed's.
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B. Proof of Proposition 2

In order to prove Proposition 2, it is sufficient to first pravet 1 — t2v7 is bounded away from zero
and then to prove that the same quantity is strictly lowenthauniformly inn. We shall proceed into
four steps.

1) A priori estimates fow, 4, v and4: The mere definition of andJ yields:

N n 7
1 i Ndmax I 1 j 7
5=-3" di o N g ==> LI (63)
n =1+ td;6 n ni 1 +tdjo
Using these upper estimates, one gets the following lowimates:
1 L)
=t Dn ~ =t Dn
§>—n " and §>—n " (64)
1 + tdmaxdmax 1 + Etdmaxdmax

One can notice that due to Assumpti@®), these lower bounds are uniformly boundechimway from

zero. Finally a straightforward application of Jensenisgnality yields:

N 2
1 N . L ~
6% = (5 E d,Tu> <27 e %52 <~, Similarly 6%2<#. (65)
=1

n

2) An estimate ove;l#f: The following equalities are straightforward (see for amte (56)):
8'(t) = —vo(t) —~td'(t) and 0'(t) = —30(t) — At (t) . (66)

In particular, |§(0)| = 5(0)6(0) < Nn~'d?

max

dmax Which is eventually bounded. Recall thatadmits

the following representation:

- * fi(d))
i) =
*) o 14+t\
where i is a nonnegative mesure satisfyipgR*) = %tr D,,. In particular, one obtains:
-  Au(d)) < Iy
0< =) = S < 5(0) € Nn d?, dimax - 67
<=5 = [ FESE < T < Nald, 67)

3) The quantityl — t2~7 is bounded away from zero, uniformly inand fort < [0, p]: Eliminating
5" between the two equations in (66) yields:
dg 2~ o~/ _ ’7 < _ 5/ 2
E(l t“vy) = A(toy—9) = EtrD"T" <t5DnTn IN> = EtrD"T” ,
where the last equality follows from the identily,, = (Iy + téD,,)~" which yields(t0D,, T, — Iy) =

—T,,. Otherwise stated:
_ 54D, T

1 — t2~47 non
T C0)
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This immediatly implies thal — ¢t2~7 is positive. In order to check that it is bounded away fromozer
uniformly in n, notice first thato~'trD,, T2 > d_! ~. Collecting now the previous estimates (65) and
(67), we obtain: o g

1— tZ’Y’NY > WW

max-"max

Using (64) and AssumptiofA1), we obtain thatl — t>v% is bounded away from zero, uniformly in

and fort € [0, p].

4) The quantityl — 247 is strictly bounded above from 1, uniformly ix The inequalities (65)
together with (64) yield:

sup (1 — tzyi) < sup (1 - t2%5252> < 1.
n n

This completes the proof of Proposition 2.

C. Proof of Theorem 3

We first give a sketch of the proof to emphasize the main ideasthbe technical aspects of the proof.
1) We first prove that the asymptotic behaviourrof'tr (A, (R, — T,,)) is directly related to the
behaviour ofa(t) — 4(t). Similarly, n='trA,, (ﬁn - 'f‘n) is related tod(t) — &(¢).

2) We extend the definition af from ¢ € R* to z € C\ R_ and establish an integral representation:

olt) = / v(dN)

R+ 14Xt

As a consequence of the integral representationsyfar and o, we prove thats, 5 and a are
bounded analytic functions on every compact subset R .
3) As a consequence of this detour in the complex plane, weepitte following weaker result. For
every uniformly bounded diagonal matri,,, the following holds true:
n~ltr(A,Ry,) =n"r(A,T,) +o(1)
n~lr(A,R,) =n"ltr(A,T,)+ o(1)
4) We then refine the previous result in order the get the snagte of convergeno®(n—?2) instead
of o(1).

The theorem will then be proved.
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1) The asymptotic behaviour ef 'tr (A, (R,, — T,,)) and its relation witha(t) —&(t): The standard
matrix identity

R, - T, =R,(T;' -R;HT,

n

immediatly yields
n"Hr(A,(R, —T,) = t(0(t) — &(t))%tr (A,R,D,T,) and
7t (BT~ Ry)) = 5()— a(r) = talt) - 5(t))%tr (B.R,D,T,) .

Therefore,

2 lr (A (R — Th)) = 2(at) — 5(t))%tr (B.R.D,T,) %tr (A,R,D,T,) .  (68)

2) An integral representation fax, and bounds ovew, § andé: Recall thaia(t) = E[n~'tr(D,, (Ix+
tn=1Y,Y)~1)]. This function readily extends fromc R* to z € C\ R~. Moreover, the following

representation holds true:

0 u(dN)
ot = [ EEE (69)

where v is a uniquely defined positive measure 81 such thatv(R*) = %tan. To prove this,
we introduce the eigenvalue/eigenvector decompositiomafrix n=1Y, Y = ZiNzl Aiu;u; where
(N, 1 <i < N)and(u;, 1 <i < N) represent its eigenvalues and eigenvectors respectivegy.

random variables(z) = LtrD,, (I + 2Y=Y2)~1 can be written as

“n

1 u'D,u; _/+°° w(d\)
0

n N — 2
i=1

wherew is the nonnegative random measure defined by
L
=— Dpuid(A—N) .
0= o uDam - )
Consider now the measutedefined byr = E[w], that isv(B) = E|w(B)] for every Borel seB C R™.

It is clear thata(z) = E[3(2)] is given by (69), and that(R™) = E[w(R™)] is given by

N
1 1
v(RT)=E - ZE:I uD,u;| =E Etan( % u,-u}k)] .
As Y, uu; = Iy, v(R") = 1tzD,, as expected and representation (69) implies thaj is analytic

overC\R™.
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Let distw, R™") stand for the distance from elemente C to R*. Then the following holds true for
everyz € C\R™:

1 1 1 N 1 1
< —t Dn T 3w 1 N < _dmax_i . 70
lel2)l = n x )|z| dlSt(—%,RJF) —n |z dlst(—%,RJf) (70)
Similarly, (3) yields that
Ndpax 1

5(2)| < .
9(2)] < nlz| dist(—1, R¥)

(71)

A similar result holds ford(z). These upper bounds imply in particular thatz), §(z) and é(z) are

uniformly bounded on each compact subseCof R _.

3) A weaker result as a consequence of Montel's theoréfa:first establish that for every diagonal

matrix A,, uniformly bounded,
n~1tr(A,R,) =n"1tr(A,,T,) + o(1
(AR) (ATo) + o(1) 72
n~r(A,R,) =n"ttr(A,T,) +o(1)
We take (68) as a starting point. MatricBs,, R,,, T,,, and T,, have their spectral norms bounded by
one fort € R and matricesA,,, D,,, and D,, are also uniformly bounded by assumption. Therefore,
the termsn~ltr (an{nf)n’f‘n> andn~'tr (A,R,D,T,) are also bounded. In order to prove (72), it
is sufficient to prove thaty(t) — 6(t) = o(1). To this end, we make use of Proposition 5 and write

a(t) —i(t) as

a(t) ~ (1) = ~tr (Dy(Ry — Ty)) + (1)

wheree, (t) = O(n~2) . Using relation (68) forA,, = D,,, we immediately get that:
a(t) — 8(8) = (alt) — 5(t))t2%tr (B.R.D,T,) %tr (DuR. D To) + 2n(t) . (73)
As sup, (IR |Rall, I Ta ] | T} <1, we have:

o~ 1 N
n

1 _ . .
“tr (DanDnTn> Ztr (DpRuDyTy) < —d2 .. < 2cd>, ...
n n

as soon ag’ < 2(*, where(™ is defined in (1). Therefore, if < t( := (2dmaxdmaxV0) "1, then
1 /= o~ =~ 1 1
21 2z Z
2= tr (DanDnTn> ~tr (DR, D, T) <
for n large enough. Eq. (73) thus implies that

lan(t) — 8, (0)] < 20en(t)], ie. alt)—8(t) =Om™2) for t<tq. (74)
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This in particular implies thatv,(t) — 6,(t) = o(1) for ¢ < to; however, it remains to establish this
convergence for > t,. To this end, observe that,(z) — d,,(z) is analytic inC \ R_ and bounded on
each compact subset @f\ R_. Montel's theorem asserts that the sequence of functgiis) — d,(z)

is compact and therefore that there exists a convergingesuiesice which converges towards an analytic
function. Since this limiting function is zero o, tg[ by (74), it must be zero everywhere due to the
analycity. Therefore from every subsequence, one canadraubsequence that converges toward zero.
Necessarilyo, (z) — 0,(z) converges to zero for every € C\ R~ and in particular fort > 0. This
establishes (72).

Even if the convergence rate of,(t) — 6,(t) is O(n~2) for t < to, Montel's theorem does not imply
that the convergence rate of,(z) — 6,(2) remainsO(n~2) elsewhere. Therefore, there remains some

work to be done in order to prove that,(t) — §,(t) = O(n~?2) for eacht > 0.

4) End of the proof:We take (73) as a starting point. Equations (72) imply thatefacht > 0,
n~ltr (DR, (1)D,Ty(t)) —y(t) = o0(1)
n~ltr <f)nf{n(t)f)n’f‘n(t)> — () =o(1)

where,, = n~1trD2T2 and¥, = n~'trD2T2. Thanks to Proposition 6, (75) implies that

(75)

n

in (1 - tz%tr (DR, ()Dy T (1)) %tr (f)nf{n(t)f)n’f‘n(t))> >0,

Equation (73) thus clearly implies thatt) — i(¢) is of the same order of magnitude ag(t), i.e. that
at) — 6(t) = O(n=2). Theorem 3 is proved.

D. Proof of Proposition 441) - Variance controls

Consider firstb(Y) = 2tr (AHYEY"). We use Poincaré-Nash inequality (20) to control the vaea

of ®. It writes

N n
E[ ]<Z did,E ‘ +ZdeE ] . (76)
i=1 j=1 i=1 j=1
We have®(Y) = (1/n?) Zgrzl > =1 apbgHyYrq Yy From the differentiation formula (14) we have
0 — t . — — _ ,
Z?T,-j (HprYrqYpq) = _EHpi 3] YrqYpg + HppYpgd(r —i)d(q — j) -

Therefore, after a straightforward computation we obtdrydY;; = qﬁl(-jl») + qﬁg) with

; 1
¢ = —— [yJHYBY'AH], and ¢ = —b; [y;AH], .
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The first term of the right hand side of inequality (76) can leated as follows:
N n _ N n _ ) 9 @ 9
SN ddiE 23" 3" did (E“%”HE[%(D
i=1 j=1

i=1 j—=1
212 . . SN
= =5E [tr (HYBY AHDHAYBY*HYDY )]

2

IN

0P
Y, ;

+34E [tr (AHDHAYBQIN)Y*)} : (77)
n
Let A =sup ||A||. Using inequalities (8), (9), (11) and Cauchy-Schwarz usdity, we have

%SE [‘Gr (H YBY* AHDHA YBY* H Y15Y*>]
\/tr ((HYBY*AHDHAYBY'H)’) \/tr <(Y5Y*)2>]
1A D e (YBY)Y) ¢ “ <(Y’5Y*>2>]

st 1 o (2 )] 2o (2))

K
n?

22
< Ik

22
n6

IN

E

IN

< ) (78)

where the last inequality is due to (12). Turning to the sectmm of the right hand side of (77), we
have

2 ~ 2A%dax . [ 1 1 ~ K
) [tr (AHDHAYBQDY*)] < 28 fmaxp | 2 (ZYB2DY* ) | < (79)
n4 n2 n n n2

The second term of the right hand side of Inequality (76)eésted similarly. This proves thatr(®) =
O(n=2).

Consider now?(Y) = Ltr (AHDHYEY"). The proof being quite similar to the previous one, we just

give its main steps. By (20) we ha\E\%(Y)Z] <3N S0y did; (B[|0W/0Y; ;%] + E[|0W/0Y; ;1))
A computation similar to above yield$V /0Y;; = ¢§;) + %(f) + ¢S’) where

1 t * *
vy = —— [yJHDHYBY"AH],
) toros x
W —— [y;HYBY AHDH],,
3 1 *
v = —b; [y; AHDH],
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We have

N n _ OU 2 N n _ 9 9 9

SN ddE 'W < 33" did; (EM(;)‘ ] +E[¢§§>‘ } +E[¢5))‘ D

i=1 j=1 tJ i=1 j=1
32 _

- ZE [tr (HDH YBY* AHDHA YBY* HDH YDY*)]

n
32

+25E |tr (H YBY" A (HD)HA YBY" H YDY" )|
+%E tr (A (HD)*HA YB?DY")] .

The first two terms of the right hand side can be bounded byiessef inequalities similar to inequalities
(78). The third term can be bounded as in (79). This ends iafpof the variance controls in Proposition
4.

E. Proof of Proposition 42) - Approximation rules

Consider firstd(Y) = Ltr (AHYBY"). we write ®(Y) = n=2 3. 20 a,b;E [V;; Hy,Yy;] and

n

apply the Integration by parts formula (19) to the summansing identity (15), we have
— ~ 0 — t - o Ty
E [Yij HyiYy;] = didjE [6? (Hptij)} = —did;E [[HyﬂpHiﬂ/py’] + did;6(i — p)E [Hp] .
ij
By taking the sum over the indexwe obtainE [[Hyj]pm] = —td;E [5 [Hyj]p%} + dpd;E [Hyy).

Writing now 3 = B + o and then grouping together the terms V\JET{ [Hyj]p%}, we obtain:
E [[Hyj]pm] = _tdjij [6 [Hyj]pm} + dpdjij [Hpp) -

We now sum ovey andp, and obtain:

[1 YBY* 1
B o (Ao )|
K n

with

Applying Cauchy-Schwarz inequality, Proposition 3 and Yagiance controls in Proposition 4, we get
le] = O(n=2).

By Theorem 3,0~ ltr (f)f{B) = nltr (f)’f‘B) + O(n~2). By Theorem 3 and Proposition 5, we
obtainn~'tr (AD E[H]) = n~'tr (ADT) + O(n~2). This ends the proof of (23).
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Consider now?(Y) = 1tr (AHDHYEY") | In order to comput&¥(Y'), we shall need the following
intermediate result:
Lemma 1:In the setting of Theorem 1, I&f(Y) = 2tr (DHDH). Then

1) The following estimate holds true:

var [Y(Y)] =0 <%> ,
2) moreover,
EHWN:Tf%ﬁ+O<%>.

Proof: In order to prove Lemma 1-(1), we use the Resolvent identi@) @nd write:
DHDH = DHD — tn 'DHDHYY" .

Sincevar(X +Y) < 2var(X) + 2var(Y), we only need to deal with each term of the right handside.
By Proposition 3,var(n~'tr DHD) = O(n~2) and by Proposition 4-(1)ar(tn 2tr DHDHYY*) =
O(n~?) and the proof of Lemma 1-(1) is completed.

Let us now prove Lemma 1-(2). The Resolvent identity (10)dge

n

E[[HDH]M] = d,E [pr]—tIEHHDHYY*] ] | 80)

We then writeE “HDHYY*]W} = n~t SN S0 diHyw HyiYi;Y,,;, and apply the differentiation

n

formula (14) to the summand. After derivations similar td{45), we obtain:

1 _ £ 1
“E [[HDHyj}py;,j] — —Zd;iE [[Hyj]pl/;,jﬁtr (DHDH)}
t ~ o _
—diTjE [5 [HDHYj]me]
1
+—dyd;E [[HDH]pp] . (81)

Taking the sum ovej and combining with (80) yields:

E [[HDH]pp] = K

n

[H YDRY
n

] L (DHDH)
pp

0 YDRY*
+t*r,E | 8 [HDH7R] }
pp

n

+rpdpE [Hpp] (82)
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Taking now the sum ovep, we obtain:

1
E[ tr(DHDH} ZdE[HDH] ]—x1+x2+x3, (83)
p=1
where
1 YDRY*
x1 = tE|=tr (DRHiR )—tr(DHDH)] ,
o1 YDRY*
X2 = t2E[ﬁ—tr (DRHDHiR )]
n n
1
= —tr (D’RE[H]) .
X3 ~tr ( [H])

Let us first deal with the termg, and x3. Cauchy-Schwarz inequality together with Proposition 8 an
Proposition 4-(1) yieldy, = O(n~2). Proposition 5 together with Theorem 3 yield = v + O(n~2).
We now look aty;. Due to Proposition 4-(1) and to Lemma 1-(1), we have:

YﬁﬁY*)

1
X1 = tzE[—tr (DRH
n n

E [%tr (DHDH)] e (%) ,

—
S
=

23R [ tr (DHDH)} +0 <i2> ,

n
where (a) follows from (23) in Proposition 4. It remains to plug the wa$ obtained for, x2 and xs
into (83) to obtain:

(1 —t*49)E [ltr (DHDH)} =y+0(n7?).
Recalling Proposition 2, we can divide % — ¢>y5) and obtain the desired resullt. |

We can now go back to the computation B¥(Y). Let us give the main steps of the derivation.
ExpandingE¥ (Y) yields:
1 YBY* —
E [Etr (AHDH — ﬂ = Zzapb E |[HDHy,], V| -

p=1j=1

We replace the summand 'E [[HDHyj]p%} by the expression given by (81). We then replace the
termE [[HDH]W] in (81) by the expression given by (82). We sum oyeand j and notice afterwards

that the terms Wheré is involved are of orde®(n~2). We therefore end up with:

1 YBY* YDRBY*
E {—tr (AHDH >] — tE [ tr (DHDH) —tr (AHL>
n n n
2~ 1 1 YDRY*
+tr <DRB) E | ~tr (DHDH) - tr (ARDH7R>]
n n n n
1 /may 1 , 1
+tr (DRB) - tr (AD?REH) + O ( - | .
n n n
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We first decorrelate by using the variance estimates in Ritpo 4-(1) and Lemma 1-(1) and obtain:

1 YBY* 1 1 YDRBY*
E[—tr (AHDHiﬂ - —tE[—tr(DHDH)}IE L [ A YPRBY.
n mn n n n
1, [~ 1 1 YDRY*
2=ty <DRB)E[—tr(DHDH)}E Li [ ARDHYPRY.
n n n n

1 ~ ~ 1 1
+—tr (DRB) - tr (AD?’REH) + O (—2>
n n n
It remains to apply Theorem 3, Proposition 4 and Lemma 1-¢2he terms in the right hand side of

the previous equality to conclude.
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