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Abstract

In this paper, we investigate the performance of two linear receivers for CDMA downlink transmissions

over frequency selective channels, the users having possibly different powers. The optimum Minimum

Mean Square Error (MMSE) receiver is first considered. Because this receiver requires the knowledge of

the code vectors attributed to all the users within the cell when these vectors are time varying, its use may

be unrealistic in the forward link. A classical sub-optimum receiver, consisting in a chip rate equalizer

followed by a despreading with the code of the user of interest, is therefore studied and compared to the

optimum MMSE receiver. Performance of both receivers is assessed through the Signal to Interference

plus Noise Ratio (SINR) at their outputs. The analytical expressions of these SINRs depend in a rather

non explicit way on the codes allocated to the users of the cell, and are therefore not informative. This

difficulty is dealt with by modeling the users code matrix by a random matrix. Because the code matrices

used in the forward link are usually isometric, the code matrix is assumed to be extracted from a Haar

distributed random unitary matrix. The behavior of the SINRs is studied when the spreading factor and

the number of users converge to ∞ at the same rate. Using certain results of the free probability theory,

we establish the fact that the SINRs converge almost surely toward quantities that depend only on the
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complex amplitudes of propagation channel paths. We then put into profit the expressions of these SINR

limits to discuss the influence of the various parameters on the performance of the receivers.
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I. Introduction

The design of receivers for Code Division Multiple Access systems has received consid-

erable attention recently. In particular, performance evaluation of the existing detectors

became a major related concern. In this course, several works were devoted to the perfor-

mance study of linear detectors such as the conventional matched filter, the decorrelator,

the MMSE receiver, and various kinds of linear interference cancelers (see e.g. [1], [2]). For

this study to be done, one commonly uses the observation that the multi-user interference

at the output of these receivers can be approximated by a Gaussian distribution, a claim

which was thoroughly justified in [3] and quite recently in [4]. Therefore, performance

of these linear detectors can be completely characterized by their SINR. As mentioned

in [5], the SINR analytical expressions depend on several parameters such as the received

powers and the code sequences allocated to the users. In particular, no clear insight on the

compared performance of the detectors can be obtained directly from the SINR formulas.

To overcome this conceptual difficulty, it is now classical to model the code sequences as

random sequences. The various SINRs can in this situation be interpreted as random vari-

ables, and it has been shown that, under certain conditions, they converge almost surely

toward deterministic quantities when the spreading factor N and the number of users K

converge to ∞ in such a way that K
N

→ α where 0 < α < 1. The forms of these limit SINR

become quite explicit, and allow to obtain more insight on the parameters that influence

the performance of the detectors.

To our knowledge, the vast majority of these works modeled the code sequences of the

various users as independent identically distributed (i.i.d.) sequences, mutually indepen-

dent. Moreover, most of them assumed the channel as frequency flat fading. Noticeable

exceptions are [6] and [7] where frequency selective fading channels are considered.

Assuming the code sequences of the various users mutually independent and i.i.d. is
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certainly justified in the uplink transmission direction. However, in the downlink, code

vectors are usually constrained to be orthonormal instead, thanks to the fact that downlink

transmissions are synchronized. Code vectors orthonormality allows intuitively to achieve

a better separation of the various users. This fact appears clearly when the channel fading

is frequency flat, because in this case the matched filter suppresses the multi-user inter-

ference. However, this nice property is no longer verified for frequency selective fading

channels. The purpose of this paper is to study and compare the performance of two

MMSE like receivers in the context of downlink transmissions corrupted by multi-path

Rayleigh fading.

The linear receivers considered in this paper, beginning with the traditional MMSE

receiver, are implemented on a mobile station. Implementing the MMSE receiver requires

the knowledge or at least the estimation of the covariance matrix of the received vector

signal. When code vectors are time varying as it is frequently the case, this practically

means that the code vectors and powers associated to all interfering user signals within the

cell have to be known to the mobile station of interest. In the existing CDMA systems,

this is actually not the case. Partly for this reason, we also study the performance of

a sub-optimum MMSE receiver. Roughly speaking, it consists in a Wiener filter which

equalizes the chip-rate discrete-time equivalent channel. The despread output of this filter

gives an estimate of the transmitted symbols ([8], [9], [10]).

In order to get insights into the compared performance of these two receivers and to

evaluate clearly the loss of performance induced by the use of the sub-optimum receiver,

it is necessary to obtain interpretable expressions of their associated SINR. For this, we

still propose to model the spreading codes as random variables, and to study the behavior

of the SINR when the spreading factor N and the number of users K converge to +∞ in

such a way that K
N

→ α, 0 < α < 1. The point is that code vectors orthonormality is now

taken into account. More precisely, it will be assumed here that the K codes associated

to the K active users of the cell under consideration coincide with K columns of a N ×N

random unitary matrix. Another important assumption concerns the propagation channel

between the transmitter and the receiver. Here, we assume that when N converges toward
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+∞, the channel parameters (i.e. the time delays of the various paths and their complex

amplitudes) remain constant. In particular, the delay spread of the channel tends to be

negligible with respect to the symbols duration, an hypothesis which is often met in prac-

tical CDMA systems.

This paper is structured as follows. In section II, we introduce our notations and

assumptions, and give the discrete-time model of the received signal sampled at the chip

rate. In section III, we study the optimum MMSE receiver based on the knowledge of

the codes and the powers of the interfering user signals within the cell. We first state an

important intermediate result showing that the influence of the inter-symbol interference

generated by the channel on the SINR can be considered as negligible. We are thus

essentially led back to a model in which the N–dimensional vector obtained by stacking

N consecutive values of the sampled received signal is obtained as (a noisy version) of the

action of the vector of the symbols transmitted to the various users on a certain N × K

matrix. This matrix is defined as the product of three matrices. The first one is a circulant

Toeplitz N × N matrix built from the coefficients of the discrete equivalent channel, the

second matrix is the N ×K matrix obtained by putting the K vectors associated to the

codes of the users side by side, and the third matrix is a diagonal K × K matrix with

positive entries modeling a possibly non uniform allocated power distribution. When the

powers allocated to the various users are equal, it is possible to use the results of the work

[11] to study the asymptotic behavior of the SINR. However, the results of [11] are no

longer valid in the non uniform power distribution case. Another approach is therefore

proposed here to deal with this problem. As in [11], we compare the SINR obtained with an

isometric code matrix, with the results provided by mutually independent i.i.d. codes. The

obtained formulas allow us to have a better evaluation of the merits of using isometric code

matrices in the context of downlink transmissions. In section IV, we study the performance

of a sub-optimum MMSE receiver, which consists in a Wiener equalizer of the chip-rate

discrete-time equivalent channel followed by a despreading. We evaluate the limit of the

corresponding SINR, and compare the corresponding expressions with the results obtained

in the case where all the codes are known to the receiver. This allows us to evaluate the
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loss of performance caused by the non availability of interfering users codes and powers.

We also present some numerical results showing that our evaluations allow to predict

accurately the performance of real life CDMA systems. In particular, we implement the

specifications of the downlink of the UMTS wide band CDMA mode, and observe that

the empirical results match the theoretical ones.

II. Model and assumptions.

We consider a multi-user communication system based on a direct sequence spread

spectrum with spreading factor N . We assume that a certain base station transmits si-

multaneously K centered unit variance symbol sequences (sk(n))n∈Z to K mobile receivers.

To transmit each symbol sequence (sk(n))n∈Z, the base station produces for each n the

so-called chip sequence (xk(m))m∈Z defined by the fact that

xk(n) = (xk(nN), . . . , xk(nN +N − 1))T = wk
√
pksk(n) (1)

where
√
pk is a positive scaling factor representing the amplitude allocated to user k, and

where the N -dimensional vector wk = (w
(0)
k , . . . , w

(N−1)
k )T is the code vector allocated to

that user. In order to simplify the notations, we assume that the code vectors (wk)k=1,...,K

are time-invariant (i.e. independent of n), a condition which is not verified in certain

existing CDMA systems. However, most of the following results extend trivially to the

case where these vectors are time varying. When the adaptation to the time-varying case

is not obvious, some comments will be provided. The transmitter delivers the composite

chip sequence x(m) =
∑K

k=1 xk(m), which is pulse shaped, transmitted across a multiple

path frequency selective fading channel, and received by a mobile station, say the mobile

station intended to detect symbol sequence (s1(n)). The received signal is filtered then

sampled at chip rate. The resulting discrete-time signal expresses as

y(m) =
M
∑

k=0

hkx(m− k) + v(m) (2)

where h(z) =
∑M

k=0 hkz
−k is the transfer function of the discrete time composite channel

with a degree M strictly smaller that N , and v(m) is an AWGN independent of x(m) and

having of variance of σ2. The coefficients channel (h0, . . . , hM) are assumed known to the
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receiver.

It is more convenient for our purpose to express relation (2) in terms of the vector y(n)

defined as y(n) = (y(nN), . . . , y(nN +N − 1))T . As M < N , vector y(n) can be written

as

y(n) = H0x(n) + H1x(n− 1) + v(n) (3)

where x(n) and v(n) are built in the same manner as y(n) and where H0 and H1 are the

N ×N Toeplitz matrices
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


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

.

If we denote by W the N ×K code matrix defined by

W = (w1, . . . ,wK)

and by P the diagonal K × K matrix whose entries are p1, . . . , pK, equation (3) can be

rewritten as

y(n) = H0W
√

Ps(n) + H1W
√

Ps(n− 1) + v(n) (5)

where s(n) = (s1(n), . . . , sK(n))T . In most cases, code vectors allocated to the various

users are orthonormal, in other words matrix W satisfies the relation

WHW = IK (6)
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because this relation intuitively allows to improve the performances of the detection of the

symbol sequence (s1(n))n∈Z. This is in particular the case when the channel is flat fading

and the shaping filter is a Nyquist filter. In this context, all the coefficients (hk)k=1,M are

zero, and h0 is reduced to the complex amplitude of the path. Therefore, (5) reduces to

y(n) = h0W
√

Ps(n) + v(n)

The matched filter receiver wH
1 y(n) coincides in this case with the maximum likelihood

detector, a property which is no longer true if matrix W is not isometric. This simple

observation suggests that the orthogonality of the code vectors may have an important

impact on the performance of the most classical linear detectors.

In order to assess the respective merits of the detectors that will be introduced in the

next two sections, we propose to study their output SINR in the case where the code

matrix W is a random isometric matrix and where N and K converge to +∞ in such a

way that the ratio K
N

converges to a constant α < 1. Before stating more precisely the

technical hypotheses we are going to formulate, we notice that as N grows to infinity, the

discrete time equivalent channel h(z) =
∑M

k=0 hkz
−k is supposed to be kept constant. In

particular, the degree M of h(z) becomes negligible with respect to the spreading factor.

In practice, this means that our results are applicable if the delay spread of the channel is

much smaller than the symbol duration and if the complex amplitudes of the paths do not

vary within the duration of one symbol. Our numerical evaluations show that our analysis

predicts quite well the performances if the ratio of the symbol duration over the delay

spread is equal to 20. As it will appear in the next section, the condition that M/N → 0

is important on a technical point of view because it will allow to replace the inter-symbol

interference term

H1W
√

Ps(n− 1)

by

H1W
√

Ps(n)

in the expression (5) of y(n), a replacement which will lead to more tractable expressions.

June 28, 2004 SUBMITTED VERSION



IEEE TRANSACTIONS ON INFORMATION THEORY 8

We are now in a position to say how the random isometric matrix W is modeled.

For that purpose, some notations and definitions need to be introduced. Denote by U
the multiplicative group of N ×N unitary matrices, and by Θ a random N ×N unitary

matrix. Θ is said to be Haar distributed if the probability distribution of Θ is invariant

by left multiplication by constant unitary matrices 1. Since the group U is compact,

this condition is known to be equivalent to the invariance of the probability distribution

of Θ by right multiplication by constant unitary matrices. In order to generate Haar

distributed unitary random matrices, let X = [xi,j]1≤i,j≤N be a N × N random matrix

with independent complex Gaussian centered unit variance entries. Then (see e.g. [11]),

the unitary matrix X(XHX)−1/2 is Haar distributed. There is another way for building

Haar distributed unitary matrices that will be useful to our purpose. Instead of multiplying

X by the inverse of the Hermitian square root of XHX, one can introduce the uniquely

defined upper triangular matrix with positive diagonal elements T(X) defined by

XHX = T(X)HT(X) .

The unitary matrix V(X) defined by

V(X) = XT(X)−1 (7)

is also Haar distributed ([11]). Finally, we state an interesting property of Haar distributed

unitary random matrices. Θ being one such matrix, its probability distribution is also in-

variant under right multiplication by unitary matrices, hence this distribution coincides

with the distribution of ΘP for any permutation matrix P. This shows that the N ×K

isometric matrices obtained by extracting any subset of K columns from Θ have the same

probability distribution.

In the following, it will be assumed that

A1 : matrix W is generated by extracting K columns from a N×N Haar unitary random

matrix Θ.

Code matrices commonly used in CDMA systems are of course not obtained as realizations

of Haar distributed unitary random matrices. They are often deterministic orthogonal

1In other words, the probability distribution of Θ coincides with the so-called Haar measure on U .
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sequences (e.g. Walsh Hadamard sequences) multiplied by a scrambling code. It is possible

to show that the results related to the sub-optimum receivers (section IV) are still valid

in this context (the proofs are however quite different). It seems more difficult to check

that the results of section III remain valid in this context, but simulations results tend to

indicate that it is the case.

III. Performance study of the optimum MMSE receiver.

In this section, we study the SINR of the MMSE receiver when N and K converge

toward +∞. We assume that the user of interest is user 1 corresponding to symbol

sequence (s1(n))n∈Z. In order to simplify the notations, we denote from now on the code

vector w1 by w, and by U the N × (K−1) isometric matrix obtained by deleting the first

column of W. In other words,

W = (w,U) .

The (K − 1) × (K − 1) diagonal matrix obtained by deleting the first row and the first

column of P is denoted Q.

The MMSE receiver we consider in this section consists in estimating symbol s1(n) by a

linear combination s̃1(n) = gTy(n) of the components of y(n) chosen in such a way that

E|s1(n) − s̃1(n)|2 be minimum. It is clear that

s̃1(n) = E
[

s1(n)yH(n)
] (

E
[

y(n)yH(n)
])−1

y(n)

=
√
p1w

HHH
0

(

H0WPWHHH
0 + H1WPWHHH

1 + σ2IN

)−1

y(n) . (8)

where it should be understood that the mathematical expectation represents the condi-

tional expectation given W.

In existing CDMA systems, mobile station 1 is not aware of the codes allocated to the

interfering users nor of the transmitted powers (pk)k≥2. In this context, the use of the clas-

sical MMSE receiver may be somewhat unrealistic because the use of formula (8) defining

the estimate of s1(n) requires the knowledge of matrices W and P. However, one should

note that if the code vectors (wk)k=1,...,K are time-invariant as assumed here, and if the

channel coefficients vary slowly, then the covariance matrix of vector y(n) can be estimated

consistently from the received signal. In such a context, the use of the MMSE receiver
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does not require the explicit knowledge of matrices W and P. In more general cases, we

nevertheless believe that it is important to study the performance of the MMSE receiver,

first for the purpose of comparison, and second because one may imagine that if needed,

base stations of future CDMA systems would transmit to all mobile stations the relevant

information. We thus begin by studying the case where matrices W and P are available.

In the next section, we will consider the case where the codes allocated to users 2 to K

are unknown, and will study a sub-optimal MMSE receiver.

The output s̃1(n) of the MMSE receiver is corrupted by both the thermal noise and

the multi-user interference due to the contributions of {sk(n)}k 6=1. Poor and Verdú showed

([3]) that the multi-user interference can be considered as Gaussian when N and K are

large enough if the code matrix W is considered as deterministic. Zhang et al. ([4])

extended this result to the case where W is a random matrix with i.i.d. entries. This

justifies the use of the signal to interference plus noise ratio as a performance figure, al-

though the situation considered in this paper (W is a random matrix obtained from a

Haar distributed matrix) is not covered by [3] nor by [4].

As is well known, the SINR, denoted β̃N , can be written as

β̃N = p1w
HHH

0

(

H0UQUHHH
0 + H1WPWHHH

1 + σ2IN

)−1

H0w . (9)

The idea at this point is to remark that as M
N

converges to zero when N → +∞, then the

SINR β̃N behaves asymptotically like the SINR corresponding to the following modified

observation model :

y(n) = H0W
√

Ps(n) + H1W
√

Ps(n) + v(n) (10)

which can also be rewritten as

y(n) = HW
√

Ps(n) + v(n) (11)

where H is the N × N circulant Toeplitz matrix H0 + H1. We note that equation (11)

represents the signal model in the case where the chip sequence corresponding to the

transmission of each symbol sk(n) is augmented by a cyclic prefix. In other words, if the
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N–dimensional chip sequence
(

w
(0)
k sk(n), . . . , w

(N−1)
k sk(n)

)

, was replaced by the N +M–

dimensional sequence defined by
(

w
(N−M)
k sk(n), . . . , w

(N−1)
k sk(n), w

(0)
k sk(n), . . . , w

(N−1)
k sk(n)

)

,

then equation (11) would represent the received signal after cancellation of the cyclic pre-

fix. The output ŝ1(n) of the MMSE receiver corresponding to model (11) is given by

ŝ1(n) =
√
p1w

HHH
(

HWPWHHH + σ2IN

)−1
y(n) (12)

and the corresponding signal to interference plus noise ratio, denoted βN in the following,

is given by

βN = p1w
HHH

(

HUQUHHH + σ2IN

)−1
Hw . (13)

We now state a result showing that β̃N and βN have the same behavior if N and K

converge to +∞ in such a way that K
N

→ α < 1. For this, we first formulate the following

assumption:

A2 : It exists two strictly positive constant b and B independent of K such that 0 < b ≤
pk ≤ B for k = 1, . . . , K.

It is also useful to remark that ‖H‖ ≤ supf∈[−1/2,1/2] |h(e2iπf )|, where ‖.‖ is the spectral

norm, due to the fact that H is circulant. This matrix verifies then

sup
N

‖H‖ <∞ . (14)

Because supK ‖P‖ <∞, supK ‖P−1‖ <∞, and supN ‖H‖ < ∞, matrices P, P−1, and H

are said uniformly bounded.

Proposition 1: Assume that conditions A1 and A2 hold. Then, β̃N − βN converges to

0 almost surely when N and K converge to +∞ in such a way that K
N

→ α < 1

The proof is deferred to appendix A. This proposition shows that instead of studying

model (5), it is possible to consider (11) and the corresponding SINR βN . From now on,

we thus replace (5) by (11) and study the behavior of βN .

In order to introduce the main results of this paper in a comprehensive way, we formulate

the following assumption :

A3 : The distribution (pk)k=1,...,K of the powers of the K users converges when K → ∞ to

the distribution νp =
∑L

l=1 ρlδ(p−Pl) where the coefficients (ρl)l=1,...,L are positive weights
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such that
∑L

l=1 ρl = 1. More precisely, for each bounded continuous function φ,

lim
K→∞

∑K
k=1 φ(pk)

K
=

∫ ∞

0

φ(p) dνp(p) =

L
∑

l=1

ρlφ(Pl)

In other words, the limit distribution of the (pk)k=1,...,K contains L classes of users. The

users of class l have the same power Pl, and coefficients (ρl)l=1,...,L represent the percentages

of users in each class. We note that our results extend immediately to situations where

the distribution of powers (pk)k=1,...,K converge to a more general compactly supported

distribution. We only consider the case of a discrete distribution in order to simplify the

presentation of our results.

We are now in a position to state the two main results of this section.

Theorem 1: Assume A1 to A3, and that N and K converge to +∞ and K
N

→ α < 1.

Then, the normalized SINR βN

p1
converges almost surely toward the deterministic constant

β defined as the unique solution of the equation

β =

∫ 1/2

−1/2

|h(e2iπf)|2

α|h(e2iπf)|2
∑L

l=1 ρl
Pl

Plβ+1
+ σ2

(

1 − α
∑L

l=1 ρl
Plβ

Plβ+1

)df (15)

Notice that the limit β of the normalized SINR does not depend on the user. For the

purpose of comparison, we also give the performance of the MMSE receiver in the case

where the entries of W are i.i.d. random variables.

Theorem 2: Assume that the entries of W are centered i.i.d. random variables of

variance 1
N

and finite eighth moment. Then, under A2 and A3, the normalized SINR βN

p1

converges almost surely when N and K converges to +∞ and K
N

→ α < 1 toward the

deterministic constant β iid defined as the unique solution of the equation

βiid =

∫ 1/2

−1/2

|h(e2iπf )|2
α|h(e2iπf)|2

∑L
l=1 ρl

Pl

Plβiid+1
+ σ2

(16)

Proof. The proof of theorem 2 is similar to the proof of theorem 2 of [11]. We therefore

only recall the result on which it is based. As W is i.i.d., then vector w and matrix

B = HH
(

HUQUHHH + σ2IN

)−1
H

are independent. Therefore (see [12] and [6]), βN

p1
= wHBw and 1

N
tr(B) have the same

behavior. The limit of 1
N

tr(B) is eventually evaluated by using the classical results of [13].
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We now present informally the main steps of the proof of theorem 1. The detailed proof

is given in the appendix.

First step. The first difficulty encountered in the isometric case follows from the obser-

vation that w and matrix B are of course no longer independent. Hence, wHBw and

1
N

tr(B) do not share the same limit. Actually, it is shown in the appendix that if we let

A = ΠHH
(

HUQUHHH + σ2IN

)−1
H (17)

where Π = IN − UUH is the orthogonal projection matrix onto the subspace orthogonal

to the columns of U, then

βN

p1
− 1

N −K
tr(A) → 0 a.s. (18)

when N and K converge to +∞ in such a way that K
N

converges to α. In order to give an

intuitive idea of the reasons for which this result holds, assume that vector w is given by

w =
Πx

‖Πx‖ (19)

where x is a complex Gaussian N -dimensional centered random vector independent of U,

and satisfying E[xxH ] = IN . In this case, βN

p1
can be written as

βN

p1
=

1

N
xHAΠx × N

‖Πx‖2

In order to justify (18), we first remark that as x√
N

is independent of A, then 1
N
xHAΠx−

1
N

tr(A) → 0. Just notice that tr(AΠ) = tr(ΠA) = tr(A).

We now study the term N
‖Πx‖2 . As x is Gaussian, ‖Πx‖2 coincides with the sum of

the squares of (N −K +1) independent centered unit variance complex Gaussian random

variables. Therefore,
‖Πx‖2

N −K
→ 1

almost surely, and
N

‖Πx‖2
− N

N −K
→ 0

This gives (18). The rigorous proof of (18) is presented in the appendix, where it is in

particular shown that there is no restriction to assume that w is given by (19).
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We have now to show that tr(A)
N−K

converges almost surely. As matrices HHH and UQUH

are asymptotically free almost everywhere (see [14] or [11] for a short introduction and

[15] for a detailed presentation), it is not hard to show that tr(A)
N−K

converges almost surely

toward a certain deterministic constant (see appendix).

Second step. The second difficulty of the proof of theorem 1 is to evaluate this limit.

For this to be done, one could use a result of Biane (see [14]) indicating how to evaluate

the limit of expressions of the form

1

N
tr(f(R + S)g(R))

where R and S are two almost everywhere asymptotically free random matrices and where

f and g are smooth enough functions. However, this direct approach needs the introduction

of some perhaps complicated tools. We therefore use an alternative method, which, we

hope, is easier to follow.

In order to present the present approach, we need to introduce the SINR, denoted βN,k, that

corresponds to the MMSE estimate of each component sk for k = 1, . . . , K. In particular,

the SINR βN under study coincides with βN,1. We also denote U(k) and Q(k) the matrices

obtained by deleting the k-th column of W and the entry (k, k) of P respectively (U(1)

and Q(1) thus coincide with U and Q). Finally, Ak represents the matrix defined by

Ak = (I − U(k)U(k)H)HH
(

HU(k)Q(k)U(k)HHH + σ2IN

)−1
H

which means in particular that matrix A defined by (17) coincides with A1. For each

k = 1, . . . , K, we define βN,k by

βN,k =
βN,k

pk
= wH

k HH
(

HU(k)Q(k)U(k)HHH + σ2IN

)−1
Hwk (20)

and put

ηN,k = pkw
H
k HH

(

HWPWHHH + σ2IN

)−1
Hwk =

pkβN,k

1 + pkβN,k

. (21)

The results of step 1 show that for each sequence (k(N))N≥1 of integers satisfying 1 ≤
k(N) ≤ K, βN,k(N) and

tr(Ak(N))

N−K
have the same asymptotic behavior. Moreover, it is not

hard to check that the limit of
tr(Ak(N))

N−K
does not depend on the choice of the sequence

(k(N))N≥1 (see appendix). This common limit is precisely the limit normalized SINR
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β. It is clear that for each sequence of integers (k(N))N≥1 satisfying 1 ≤ k(N) ≤ K,

ηN,k(N) − pk(N)β

1+pk(N)β
converges to 0. Using this fact, it is shown in the appendix that when

N → ∞, K → ∞, and K
N

→ α, then,

∑K
k=1 ηN,k

K
−→

∫

λβ

1 + λβ
dνp(λ) =

L
∑

l=1

ρl
Plβ

1 + Plβ
(22)

Here, we recall that if θ is a certain probability measure, then the ψ transform of θ is the

function ψθ defined by

ψθ(z) =

∫

zλ

1 − zλ
dθ(λ) (23)

The right hand side of (22) thus coincides with -ψνp(−β). In order to calculate β, we now

observe that the limit of
∑K

k=1 ηN,k

K
can be evaluated independently. Indeed,

∑K
k=1 ηN,k

K
can

be written as
∑K

k=1 ηN,k

K
=

1

K
tr
(

(HWPWHHH + σ2IN)−1HWPWHHH
)

(24)

As WPWH and HHH are asymptotically free almost everywhere, the right hand side of

(24) converges almost surely toward

− 1

α
ψµ�ν(−

1

σ2
) =

1

α

∫

λ

λ+ σ2
dµ�ν(λ)

where µ and ν represent the limit eigenvalue distributions of HHH and WPWH respec-

tively, and µ�ν denotes the free multiplicative convolution product of µ and ν. Measures

µ and ν can be characterized easily (the eigenvalues of HHH are the (|h(e2iπk/N |2)k=1,...,N

and ν = ανp + (1− α)δ(λ)). Therefore, it is possible to give the expression of ψµ�ν(− 1
σ2 ).

Equating -ψνp(−β) with − 1
α
ψµ�ν(− 1

σ2 ) results in equation (15).

The two above results deserve some comments.

Discussion of Theorem 2. We first compare (16) to the results presented in [5]. [5]

considered the case of a flat fading channel, which amounts to h(e2iπf ) = h0 for each f .

Formula (16) then coincides with what is found in [5], i.e.,

β iid =
|h0|2

α|h0|2
∑L

l=1 ρl
Pl

Plβiid+1
+ σ2

. (25)

Recall that α
∑L

l=1 ρl
Pl

Plβiid+1
' 1

N

∑K
k=2

pk

pkβiid+1
for K and N large enough is interpreted

in [5] as the effective interference produced by users 2 to K on the signal of user 1 at

June 28, 2004 SUBMITTED VERSION



IEEE TRANSACTIONS ON INFORMATION THEORY 16

a target normalized SINR of β iid. One of the main conclusions of [5] was then that the

total multi-user interference can be decoupled into a sum of interference terms from each

of the interfering users. By inspecting the result of theorem 2, it turns out that this

interpretation can be generalized to the frequency selective channel case. To fix our ideas,

let us introduce the model

r(n) = H

(

√
p1s1(n)w +

K
∑

k=2

uk(n)

)

+ v(n) (26)

where the K−1 uncorrelated vectors {uk} are also uncorrelated with s1(n) and v(n), and

have E
[

uku
H
k

]

= 1
N
ζkIN as covariance matrices. In this case, it is not difficult to show

that the SINR at the output of the MMSE receiver for detecting s1(n) is

p1w
HHH

((

1

N

K
∑

k=2

ζk

)

HHH + σ2IN

)−1

Hw

For large values of N , this SINR can be approximated by

p1

N
tr(HH

((

1

N

K
∑

k=2

ζk

)

HHH + σ2IN

)−1

H

Matrix H is circulant, and can thus be written as H = FDFH . Here, F is the N × N

Fourier matrix which (p, q) entry is Fp,q = 1√
N
e2iπpq/N for (p, q) ∈ {0, . . . , N − 1}, and D

is the diagonal matrix with entries (h(e2iπl/N )l=0,...,N−1. Therefore, the above SINR can be

written as

p1
1

N

N−1
∑

n=0

|h(e 2iπn
N )|2

|h(e 2iπn
N )|2 1

N

∑K
k=2 ζk + σ2

.

This expression approximates the right hand member of (16) if we choose ζk = pk

pkβiid+1
.

In conclusion, the MMSE receiver operates as if the covariance matrix UQUH of the in-

terference term in the transmitted signal was replaced by 1
N

∑K
k=2

pk

pkβiid+1
IN . This last

matrix might then be seen as the effective interference covariance matrix for the given

SINR target, whether the channel is frequency flat or selective.

As mentioned in the introduction, all our derivations and results are devoted to down-

link transmissions over a frequency selective channel. It is interesting to compare theorem
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2 with the result of [6] specialized to uplink transmissions over different frequency selective

channels. The signal model (11) becomes in the uplink direction

y(n) =
K
∑

k=1

Hkwksk(n) + v(n) (27)

where {Hk}k=1,...,K are the circulant matrices associated to the K channels hk(z) =
∑M

m=0 hk,mz
−m as described above. Because the channels are now different, we drop the

parameters (pk)k=1,...,K and include the power differences in the channels transfer func-

tions in order to simplify the notations. For each k, vector Hkwk can be seen as a linear

combination of shifted versions of the code vector wk. Under the simplifying assumption

that these shifted versions are independent, [6] obtained an expression for the asymptotic

SINR β1,uplink of user 1. Specifically, it appeared that the asymptotic normalized SINR

βuplink =
β1,uplink

∑M
m=0 |h1,m|2

is identical for all users and is nearly given as the unique solution of the equation

βuplink =
1

1
N

∑K
k=2

∑M
m=0 |hk,m|2

1+βuplink
∑M

m=0 |hk,m|2 + σ2
. (28)

In order to compare this formula with theorem 2, we remark that after (28), the limit

SINR for user 1 can be written in the frequency domain

β1,uplink =

∫ 1/2

−1/2

|h1(e
2iπf)|2

1
N

∑K
k=2

∑M
m=0 |hk,m|2

1+βuplink
∑M

m=0 |hk,m|2 + σ2
df .

It is clear that if hk(z) = h1(z) for each k ≥ 2, then this formula is not in accordance

with theorem 2. This is because the simplifying assumption regarding the independence

of shifted versions of the code vectors is not justified in the downlink. A contrario, (28)

is certainly correct if one assumes that coefficients (hk,m)k=1,...,K,m=0,...,M coincide with the

realizations of independent (but not necessarily identically distributed) random variables,

a rather common assumption. In the following, we shall give some arguments to motivate

this claim. For this, we first give an equation (eq. 29) which should be nearly satisfied

by the limit SINRs (βk,uplink)k=1,...,K provided by the MMSE receivers of the K users. We

mention here that a rigorous proof of this equation requires some work, and is outside
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the scope of this paper. A informal justification is provided in appendix C when the code

vectors (wk)k=1,...,K are Gaussian.

β1,uplink ' 1

N

N−1
∑

l=0

|h1(e
2iπl/N )|2

σ2 + 1
N

∑K
k=2

|hk(e2iπl/N )|2
1+βk,uplink

. (29)

We note that this equation corresponds to the SINR associated to the model

r(n) = s1(n)H1w1 +
K
∑

k=2

Hkuk(n) + v(n) (30)

where the K − 1 vectors {uk} are such that E
[

uku
H
k

]

= 1
N

1
1+βk,uplink

IN . The MMSE

receiver operates as if each interfering term wksk was a white noise of variance equal to

1
N

times the effective interference 1
1+βk,uplink

. Note that the effective interference produced

by user k on user 1 depends on the SINR βk,uplink.

Under the hypothesis that the coefficients {hk,m}k=1,...,K,m=0,...,M are independent random

variables, we now infer that

1

N

K
∑

k=2

|hk(e
2iπl/N)|2

1 + βk,uplink

' 1

N

K
∑

k=2

E(|hk(e
2iπl/N )|2)

1 + βk,uplink

. (31)

Writing |h(e2iπf)|2 as |h(e2iπf)|2 =
∑M

m=−M rme
−2iπmf , where rm =

∑

l hl+|m|hl
∗, we

get immediately that E(|h(e2iπf)|2) does not depend on f , and reduces to E(r0) =

E(
∑M

m=0 |hk,m|2). Hence,

1

N

K
∑

k=2

|hk(e
2iπl/N )|2

1 + βk,uplink
' 1

N

K
∑

k=2

E
(

∑M
m=0 |hk,m|2)

)

1 + βk,uplink
(32)

which is itself nearly equal to

1

N

K
∑

k=2

(
∑M

m=0 |hk,m|2)
1 + βk,uplink

. (33)

By plugging (32 and 33) into (29), this last equation can be rewritten

β1,uplink ' 1

σ2 + 1
N

∑K
k=2|hk,m|2

1+βk,uplink

(

M
∑

m=0

|h1,m|2)

Notice that this equation remains true if user 1 is replaced by any other user and that

for every user k, βk,uplink/
(

∑M
m=0 |hk,m|2

)

does not depend on this user in the asymptotic

regime. In conclusion, in this regime βk,uplink = βuplink

∑M
m=0 |hk,m|2 where βuplink is given

by equation (28).
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Discussion of Theorem 1. We first compare the two SINR given by (15) and (16). It

is clear that for each β,

∫ 1/2

−1/2

df

α
∑L

l=1 ρl
Pl

Plβ+1
+ σ2

|h(e2iπf )|2

(

1 − α
∑L

l=1 ρl
Plβ

Plβ+1

) ≥
∫ 1/2

−1/2

df

α
∑L

l=1 ρl
Pl

Plβ+1
+ σ2

|h(e2iπf )|2

Therefore, β is greater than β iid, in confirmation of the fact that the use of an isometric

code matrix improves the performance of the MMSE detector on a frequency selective

channel. Moreover, for a given SINR target β, (15) and (16) show that a system corrupted

by a background noise of variance σ2 using an isometric code matrix provides the same

performance as an i.i.d. one corrupted by a noise of variance

σ2

(

1 − α
L
∑

l=1

ρl
Plβ

Plβ + 1

)

.

In other words, the effective interference term introduced in the discussion of Theorem 2

is not modified by the use of an isometric code matrix. However, an isometric code matrix

reduces in some sense the noise variance to the ”effective noise” variance given above. This

expression provides directly the gain on the signal to noise ratio Eb

N0
resulting from the use

of isometric codes instead of i.i.d. ones :

γdB = −10log10

(

1 − α
L
∑

l=1

ρl
Plβ

Plβ + 1

)

We note in particular that the attenuation factor is all the more favorable that α is close

to 1.

Numerical illustration. Here, the theoretical performance of the optimum MMSE

receiver with isometric codes spreading is compared to the performance of the same receiver

with i.i.d. codes spreading, based on the results of theorems 1 and 2 respectively. The

figure of merit will be the theoretical Bit Error Rate (BER), given by Q(
√
SINR) when

a QPSK constellation is used, as it will be the case. Q(x) is of course defined by

Q(x) =
1√
2π

∫ ∞

x

e−
t2

2 dt

In figure 1, we assume that all the users have the same power, and compare the performance

obtained with an isometric spreading matrix to the one obtained with an i.i.d. spreading
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matrix. The load α has been chosen equal to 1/4, 1/2, and 1. The plots confirm the

fact that the difference between the two cases is all the more significant that α is close

from 1. In contrast, the two BERs for α = 1
4

are rather close. In this experiment, the

propagation channel is the so-called vehicular A channel. This is a multiple path Rayleigh

fading channel whose time delays are 0, 1.2Tc, 2.8Tc, 4.2Tc, 6.6Tc and 9.6Tc. The variances

of the corresponding complex amplitudes are equal to 0 dB, -1 dB, -9 dB, -10 dB, -15 dB,

and -20 dB, and the BER represented in figure 1 are obtained by averaging Q(
√
SINR)

on 10 realizations of the complex amplitudes. Finally, the shaping filter is a square root

raised cosine with a roll-off factor of 0.22.

Adaptation of the results to the context of time-varying codes. Let us give

now some remarks on these results in the case where code matrices W are time-varying.

In order to mention explicitly this time-dependence, they are denoted W(n) in this para-

graph, and we assume that the sequence ofN×K matrices (W(n))n∈Z is (Haar) identically

distributed and ergodic. In this context, the various SINRs of course also depend on n.

The reader may check that the proof of Proposition 1 can be extended to this context,

and that β̃N(n) shows the same asymptotic behavior as the SINR βN (n) defined by

βN (n) = p1w
H(n)HH

(

HU(n)QU(n)HHH + σ2IN

)−1
Hw(n) (34)

and associated to the output MMSE receiver ŝ1(n) of model

y(n) = HW(n)
√

Ps(n) + v(n) (35)

Under the hypothesis that the channel coefficients (hk)k=0,...,M remain constant over a

duration large enough, the performance of the MMSE receiver is of course characterized

by EW( 1
βN (n)

), where EW(.) is the mathematical expectation with respect to the Haar

distribution. Theorem 1 shows that for each n, βN (n) converges almost surely toward

β defined by (15). If we assume that |h(e2iπf )| > 0 for each f , then it is easy to check

that 1
βN (n)

is upper-bounded by a deterministic constant term. The Lebesgue dominated

convergence theorem thus implies that EW( 1
βN (n)

) converges toward 1
β
. It turns out that,

like in the time-invariant case, the performances of the MMSE receiver are completely

characterized by β as N → +∞ and K
N

→ α < 1.
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We now tackle the question related to the values of N for which our asymptotic analysis

is likely to provide reliable performance evaluations. In the time invariant case, the asymp-

totic analysis is relevant if N is chosen in such a way that 1
βN

' 1
β
. One can intuitively

suppose that in the time varying case, the condition EW( 1
βN (n)

) ' 1
β

will be satisfied for

smaller values of N , thanks to the averaging effect w.r.t. the values of the code matrices.

This claim will be justified by the simulations presented in section IV in which it is shown

that, in the time-varying code vectors case, our asymptotic results are quite reliable for

N = 256.

IV. The sub-optimum MMSE receiver.

In this section, we address the case where matrices U and Q are not available. In

this context, it is often difficult to obtain reliable estimates of the covariance matrix

HWPWHHH + σ2IN directly from the observation. It is natural in these conditions to

study the receiver consisting in a chip rate filter that equalizes the transfer function h(z)

shown in (2), followed by despreading. Denote by p(K) = 1
K

∑K
k=1 pk the mean of the

power distribution allocated to the various users of the cell. The power of the received

signal, defined as limT→+∞
1
T
(
∑T−1

m=0 |y(m)|2), is given by K
N

(
∑M

k=0 |hk|2)p(K) + σ2. If σ2

is known, it is therefore straightforward to estimate consistently K
N
p(K). This justifies

that it is relevant to assume that K
N
p(K) is known at the mobile station side although the

(pk)k≥2 and K
N

are not. The sub-optimal Wiener filter we consider here is derived under

the assumption that the chip sequences (xk)k=1,...,K generated by the various users are

uncorrelated white sequences with variance 1
N
p(K). Based on this assumption, the N ×N

matrix G minimizing

E‖x(n) − Gy(n)‖2

is equal to (see formula (3))

G = HH
0 (H0HH

0 + H1HH
1 +

σ2

K
N
p(K)

I)−1 .

Vector Gy(n) thus estimates vector x(n), so that the action of G on y(n) is equivalent to

the action of a chip-rate equalizer g(z) on signal y(m). The sub-optimum MMSE receiver

June 28, 2004 SUBMITTED VERSION



IEEE TRANSACTIONS ON INFORMATION THEORY 22

consists in despreading Gy(n), i.e. s1(n) is estimated from

wHGy(n) . (36)

It is possible to show that as N → ∞ and K
N

→ α < 1, the SINR corresponding to this

sub-optimal receiver has the same behavior as the SINR associated to the action of the

receiver wHHH(HHH + σ2

K
N

p(K) IN)−1 on vector y(n) defined by (11). The proof of this

statement is similar to the proof of Proposition 1, and is thus omitted.

We therefore propose to evaluate the performance of the sub-optimum MMSE receiver

described by the equation

s1(n) = wHHH(HHH +
σ2

K
N
p(K)

I)−1(HW
√

Ps(n) + v(n)) (37)

We first evaluate the SINR, denoted βchip,N , associated to this receiver. Using (37), we

immediately obtain

βchip,N = p1
(ηN)2

γN

(38)

where

ηN = wHHH

(

HHH +
σ2

K
N
p(K)

I

)−1

Hw (39)

γN = wHHH

(

HHH +
σ2

K
N
p(K)

I

)−1
(

HUQUHHH + σ2I
)

(

HHH +
σ2

K
N
p(K)

I

)−1

Hw (40)

In order to study the behavior of βchip,N when N and K converge to +∞ and K
N

→ α, we

shall consider ηN and γN separately, and begin by investigating the behavior of ηN . In

the following, we denote by p =
∑L

l=1 ρlPl = limK→+∞ p(K) the average of the limit power

distribution.

Proposition 2: Under assumptions A1 to A3, ηN converges almost surely to η defined

by

η =

∫ 1/2

−1/2

|h(e2iπf )|2
|h(e2iπf)|2 + σ2

pα

df (41)
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Proof. The result follows immediately from Lemma 1 : just use this result and use the fact

that the eigenvalues of matrix HH(HHH+ σ2

K/Np(K) I)
−1H are the ( |h(e2iπl/N )|2

|h(e2iπl/N )|2+ σ2

K/Np(K)

)l=0,..., N−1
N

.

γN can also be written as wHBw for a certain uniformly bounded matrix B. However,

B is not independent of w in the isometric case.

Proposition 3: Under assumptions A1 to A3, γN converges almost surely toward a

deterministic constant γ . Moreover,

γ − αpwHHH(HHH +
σ2

αp
I)−1(H(I − wwH)HH +

σ2

αp
I)(HHH +

σ2

αp
I)−1Hw → 0 (42)

in the least mean-square sense when N and K converge to ∞ and K
N

→ α < 1.

Proof. See appendix.

The second term of the left hand side of (42) clearly converges almost surely toward

αp η(1 − η). This in turn shows that γN converges almost surely toward αp η(1 − η).

Therefore, we have proved the following result :

Theorem 3: Under assumptions A1 to A3, the SINR βchip,N converges almost surely

to the quantity βchip defined by

βchip =
p1

αp

η

1 − η
(43)

Let us comment this result. If we consider the classical Single Input Single Output

(SISO) signal model where the channel impulse response is h(z), the useful signal power

is αp and the noise power is σ2, then it is known that the MMSE receiver output SINR is

η/(1− η). The extra factor p1

αp
in (43) can thus be interpreted as the SINR gain provided

by the despreading.

We furthermore remark that η depends on the power limit distribution through its

average p only. This shows that the effect of a non uniform power distribution on βchip

only depends on the ratio p1

p
, and not on the particular form of the limit distribution.

We now compare the performances of the optimum and sub-optimum receivers. We

first consider the case where the power distribution is uniform, all powers being equal to

P . In this case, we trivially have p = P , and we denote the corresponding value of βchip

by β
upd

(the subscript ”upd” stands for uniform power distribution). Accordingly, let
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βupd = βP , where β is given by equation (15), be the limit SINR provided by the optimum

Wiener filter of subsection III. (43) leads immediately to

β
upd

=
1

α

η

1 − η
. (44)

In order to compare the performance of the optimum to that of the sub-optimum MMSE

receiver, we remark that

β
upd

αβ
upd

+ 1
=
η

α
=

∫ 1/2

−1/2

P |h(e2iπf)|2
αP |h(e2iπf)|2 + σ2

df

It turns out that β
upd

may thus be interpreted as the unique solution of the equation

β
upd

=

∫ 1/2

−1/2

P |h(e2iπf)|2
α|h(e2iπf)|2 P

αβ
upd

+1
+ σ2

(αβ
upd

+1)

df . (45)

On the other hand, the optimum MMSE limit SINR βupd is defined as the solution of

βupd =

∫ 1/2

−1/2

P |h(e2iπf)|2

α|h(e2iπf)|2 P
βupd+1

+ σ2
(

1 − αβupd

βupd+1

) df . (46)

We first notice that the two expressions coincide when α → 1. When α < 1, we remark

that for a given target SINR β
upd

, the effective interference term P
αβ

upd
+1

is less favorable

than in formula (46) because α < 1. However, the term 1
αβ

upd
+1

< 1 attenuating the

variance σ2 in (45) is more favorable than the corresponding term (1 − αβupd

βupd+1
) in (46).

Yet, β
upd

is of course smaller than βupd. As the corresponding formulas are difficult to

interpret, we only resort to numerical simulations to compare βp1 with βchip in the non

uniform power distribution case.

One should also remark that the sub-optimum Wiener filter is in principle still near

far resistant, i.e. it is able to cancel perfectly the multi-user interference if σ2 → 0. To see

this, notice that β
upd

satisfies

β
upd

αβ
upd

+ 1
=

∫ 1/2

−1/2

P |h(e2iπf)|2
αP |h(e2iπf)|2 + σ2

df (47)

When σ2 → 0, then the right hand side of (47) converges to 1
α
, a condition which implies

that β
upd

converges to +∞. We note that this property is not surprising because the
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knowledge of the codes of the other users is not necessary to design near far resistant

receivers in the downlink if the code matrix is isometric : a simple chip rate zero forcing

equalizer (equivalent to the inversion of matrix H), followed by a correlation with the

code of the desired user, is near far resistant. However, as shown in the simulations below,

the performance of the optimum MMSE receiver is nearly independent of the power p1

allocated to the user of interest, while that of the sub-optimum MMSE receiver depends

strongly on the ratio p1

p
.

Adaptation of the results to the context of time-varying codes. We just men-

tion that the above results are still valid when code vectors are time-varying. As in section

III, the performance of the sub-optimum MMSE receiver is characterized by EW( 1
βchip,N

),

which converges toward 1
βchip

.

Numerical simulations. We first check that our theoretical results (based in partic-

ular on the assumption that the code matrix is obtained from a Haar distributed random

unitary matrix) allow to predict accurately the performance of a real-life CDMA system.

For this, we simulated the downlink of the wide-band CDMA mode of the UMTS (see the

specifications [16] for more details). In this context, the codes allocated to the users are

obtained by multiplying time-invariant Walsh-Hadamard codes with a cell specific time-

varying QPSK scrambling code whose period is equal to 150 symbols. The corresponding

matrices W(n) are thus time-varying. Note also that the symbols transmitted by the base

station are QPSK symbols.

We consider the case where N = 256, K = 64 (α = 1
4
) or K = 128 (α = 1

2
), and

assume that there exists Kc = 5 classes of users with a limit power distribution given by

(α1, . . . , α5) = (5/16, 1/4, 13/64, 11/64, 1/16) and (p1, . . . , p5) = (P, 2P, 4P, 8P, 16P ). Like

in section III, the propagation channel is the vehicular A channel, and the shaping filter

is a square root raised cosine. In this case, one can check that the degree M of filter h(z)

is nearly equal to 10. The complex amplitudes of the channels remain constant on each

frame of 150 QPSK symbols, and differ from one frame to another frame. The empirical

BERs are averaged on 350 frames. In order to check the validity of our theoretical SINRs
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formulas we have evaluated, for each user of class 2, the empirical BERs provided by

the optimum and sub-optimum Wiener filters defined by formula (8) and (36). These

empirical results are then compared to the BERs given by formulas Q(
√

βpk) (optimum

Wiener filter) and Q(
√

βchip) (sub-optimum Wiener filter). Figures 2 (K = 64, i.e. α = 1
4
)

and 3 (K = 128, i.e. α = 1
2
) allow to compare the theoretical performances with the

empirical results. These results show that our formulas allow to predict quite well the

performances of the downlink of the wide band CDMA mode of the UMTS, but that a

certain dispersion occurs when Eb

N0
increases. This observation is in accordance with [17] in

which it is shown, in a simple case, that the variance of the difference between the SINR

and its asymptotic expression increases when Eb

N0
increases.

We now compare the theoretical performances of the optimum with that of the sub-

optimum Wiener filter. For this to be done, we first consider the uniform power distribution

case, and represent in figure 4 the theoretical BERs provided by the two receivers for

α = 1, α = 1
2
, and α = 1

4
. The channel is still a realization of the vehicular A. As mentioned

above, the optimum and sub-optimum Wiener detectors provide the same performance

when α = 1. However, the differences between the two receivers tend to increase if α = 1
2

and α = 1
4
. We finally compare the effect of a non uniform power distribution on the

behavior of the optimum and sub-optimum Wiener filter. Here we assume that α = 1
4
,

and that the distribution of the powers is the same as in the previous experiments. We

represent in figure 5 the theoretical BER provided by the two receivers for each class.

Figure 5 shows that the performance of the optimum Wiener filter is nearly independent

of the user’s class. However, this is not at all the case when the sub-optimum receiver is

implemented. In particular, for a target BER of 10−2, we observe a loss of performance of

4 dB between class 1 and class 5.

V. Conclusion

We studied the performance of two linear receivers acting on CDMA signals trans-

mitted in the downlink direction over a frequency selective channel with unequal power

allocation. The first receiver is the optimum MMSE receiver and the second one is a chip

rate equalizer followed by despreading. Spreading codes are modeled as random variables

and the analysis is made in the asymptotic regime where the spreading factor and the
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number of users grow toward infinity at the same rate. Both isometric code matrices and

code matrices with i.i.d. elements are considered. Asymptotic expressions for the SINRs at

the outputs of these receivers are derived. It appears that these quantities depend only on

the channel transfer function, the power distribution and the asymptotic ratio α between

the number of active users and the spreading factor.

In particular, the following phenomena are quantified in a precise manner: when the opti-

mum MMSE receiver is used, the performance gain which results from the use of isometric

spreading codes rather than i.i.d. ones grows as α→ 1.

While the two receivers provide the same performance when an isometric code matrix is

used and α = 1, the performance loss induced by the use of the sub-optimum receiver

increases as α → 0.

Finally, even though the sub-optimum receiver is in principle near-far resistant when the

codes are isometric, the low-power users are much more penalized by this receiver than by

the optimum MMSE receiver.
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Appendix

I. Proof of Proposition 1

We shall prove in this appendix that under A1 and A2, the difference between the

SINR β̃N given by (9) and the more tractable expression βN given by (13) converges to

zero almost surely. Writing for conciseness

R = HUQUHHH + σ2IN , (48)

T = −H0UQUHHH
1 −H1UQUHHH

0 , and (49)

z =
√
p1H1w , (50)

we clearly have

β̃N = p1w
H(H −H1)

H
(

R + T + zzH
)−1

(H−H1)w (51)
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and βN = p1w
HHHR−1Hw. Before going into the proof, some remarks are in order.

First, H0 and H1 are both uniformly bounded. To see this, let H = [HT
0 HT

1 ]T and notice

that HHH is a Toeplitz matrix associated to the spectral density |h(e2iπf )|2. As a con-

sequence, ‖H‖ ≤ maxf |h(e2iπf )|. Because ‖Hk‖ ≤ ‖H‖ for k = 0 and 1, these matrices

are uniformly bounded. Second, R + T = H0UQUHHH
0 + H1UQUHHH

1 + σ2IN is also

uniformly bounded: use the inequalities ‖X + Y‖ ≤ ‖X‖ + ‖Y‖ and ‖XY‖ ≤ ‖X‖‖Y‖
repeatedly, and notice that ‖Q‖ < ∞ thanks to A2. Moreover, ‖(R + T)−1‖ is upper

bounded by 1/σ2. Remember that H is also uniformly bounded (see (14)).

As a first step, we shall prove that the difference between β̃N and

β̃
(1)
N = p1w

H(H −H1)
H (R + T)−1 (H−H1)w

converges almost surely to 0, in other words, the term zzH in (51) can be neglected. By

the matrix inversion lemma,

(R + T + zzH)−1 − (R + T)−1 = −(1 + zH(R + T)−1z)−1 (R + T)−1zzH(R + T)−1 .

The scalar term (1 + zH(R + T)−1z)−1 of the right hand member is upper bounded by 1,

so

‖(R + T + zzH)−1 − (R + T)−1‖ ≤ ‖(R + T)−1‖2‖z‖2 ≤ (1/σ4)‖z‖2

and we need to prove that ‖z‖2 → 0 almost surely. The code vector being w = (w
(0)
1 , . . . , w

(N−1)
1 )T ,

z has the form z = (z
(1)
N , . . . , z

(M)
N , 0, . . . , 0)T , where a non zero element is written z

(m)
N =

√
p1

∑M−m
i=0 hM−iw

(N−M+i+m−1)
1 . Every one of these elements is thus a finite weighted sum

of elements of a Haar distributed unitary matrix. By Minkowski’s inequality,

4

√

E[|z(m)
N |4] ≤

M−m
∑

i=0

4

√

p1
2|hM−i|4E[|w(N−M+i+m−1)

1 |4] .

As an element of a N×N Haar unitary random matrix, wk
1 satisfies E[w

(k)
1 |4] = 2/(N(N+

1)) (see [15, chap.4]), and moreover, p1 <∞ by A2. It results that E[|z(m)
N |4] = O(1/N2).

Now, Markov’s inequality implies that

∀ ε > 0, P

(

|z(m)
N |2 > ε

)

≤
E

[

∣

∣

∣
z

(m)
N

∣

∣

∣

4
]

ε2
= O(N−2) .
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Therefore,
∑∞

N=1 P

(

|z(m)
N |2 > ε

)

< ∞ and the fact that |z(m)
N |2 → 0 a.s. follows from the

Borel-Cantelli lemma. So, ‖z‖2 =
∑M

m=1 |z
(m)
N |2 → 0 almost surely. Writing

|β̃N − β̃
(1)
N | ≤ p1‖(R + T + zzH)−1 − (R + T)−1‖ ‖(H −H1)w‖2

≤ p1‖(R + T + zzH)−1 − (R + T)−1‖ (‖H‖ + ‖H1‖)2 ,

the term ‖H‖ + ‖H1‖ is bounded, so β̃N − β̃
(1)
N → 0 almost surely.

The second step consists in proving that β̃
(1)
N − βN → 0 almost surely. Writing Π =

(I − UUH) and

Ã = Π(H−H1)
H (R + T)−1 (H−H1) ,

and adapting proposition 4 below, we get that β̃
(1)
N −p1tr(Ã)/(N−K) → 0 almost surely.

By the same argument, βN −p1tr(A)/(N−K) → 0 a.s., where A = ΠHHR−1H is given

by (17). Let us develop the expression of Ã. Looking at the expression (49) of T, one

notices that the rank of this matrix does not exceed 2M . This is because the rank of both

terms is upper bounded by the rank of H1 which is M . It is therefore possible to factor T

as T = CNDH
N , where CN and DN are N × 2M matrices. Applying the matrix inversion

lemma, we have

(R + T)−1 = R−1 − R−1C
(

I2M + DHR−1C
)−1

DHR−1

hence we can write Ã = A + X + Y, where

X = −Π(H −H1)
HR−1C

(

I + DHR−1C
)−1

DHR−1(H −H1)

and

Y = Π
(

HH
1 R−1H1 −HH

1 R−1H − HHR−1H1

)

.

X is a.s. uniformly bounded because each of its factors is, and furthermore, its rank is upper

bounded by 2M . It follows that |tr(X)|/(N − K) ≤ 2M‖X‖/(N − K) = O(1/N), thus

|tr(X)|/(N −K) → 0 a.s. One can easily show by a similar argument that |tr(Y)|/(N −
K) → 0 a.s. It results that tr(Ã)/(N −K) − tr(A)/(N −K) → 0, thus β̃

(1)
N − βN → 0

a.s., which ends the proof.
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II. Proof of Theorem 1.

A. Proof of the claims of the first step.

In order to prove theorem 1, we first establish in proposition 4 that βN

p1
− tr(A)

N−K
, where

A is defined in (17), converges to zero almost surely. The result of proposition 4 can be

seen as a generalization to the context of isometric random matrices of corollary 1 in [6].

Next, we use asymptotic freeness results to show that tr(A)
N−K

converges almost surely toward

a deterministic constant.

We first recall the following useful result of [12] and [6] :

Lemma 1: Let z be a N×1 random vector and B a N×N random matrix independent

of z. Assume that the elements of z are i.i.d. and have a unit variance and a finite eighth

order moment and that supN∈N
‖B‖ < +∞. Denote by ξN the random variable defined

by

ξN =
1

N

(

zHBz − tr(B)
)

Then,

E
(

|ξN |4
)

≤ C/N2 (52)

where C is independent of N .

We now show the following result.

Proposition 4: Assume that K/N → α when N → +∞. Then,

lim
N→+∞

(

βN

p1

− tr(A)

N −K

)

= 0 a.s. (53)

Proof: Put eN = βN

p1
− tr(A)

N−K
. In order to establish (53),it is sufficient to show that if

K/N → α, then,

E(|eN |4) = O(N−2) (54)

Indeed, if (54) holds, Markov’s inequality implies that

∀ ε > 0, P (|eN | > ε) ≤ E
(

|eN |4
)

ε4
= O(N−2) .

Therefore,
∞
∑

N=1

P (|eN | > ε) <∞
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and (53) follows from the Borel-Cantelli lemma .

We now establish (54). Recall that we have assumed that w is the column 1 of W.

eN = βN

p1
− tr(A)

N−K
is a function f1(W) of the random matrix W. Let S be the permutation

matrix exchanging column 1 with column K, and denote by W̃ the matrix W̃ = WS.

It is obvious that f1(W) = fK(W̃). Moreover, W̃ and W have the same distribution.

Random variables fK(W̃) and fK(W) are thus identically distributed, which implies that

E|f1(W)|4 = E|fK(W)|4

Therefore, there is no restriction to assume in the proof of identity (54) that w is the

column K of W, a condition which is supposed to hold all along the proof. Finally,

E|fK(W)|4 does not of course depend of the particular way W is generated, provided it is

Haar distributed. We can therefore assume that W consists of the first K columns of the

Haar distributed random matrix V(X) obtained from a complex Gaussian i.i.d. random

matrix X through formula (7). As V(X) is obtained by a Gram-Schmidt orthogonalization

of X = [x1, . . . ,xK, . . . ,xN ] and vector w is assumed to be the column K of V(X), w can

be written as

w =
ΠxK

‖ΠxK‖ (55)

It is important to note that U depends only on vectors x1, . . . ,xK−1. Therefore, xK and

Π are independent. The expression (13) of the SINR βN becomes

βN = p1
xH

KAΠxK

‖ΠxK‖2
. (56)

Put eN = e1,N + e2,N where e1,N and e2,N are defined by

e1,N =
xH

KAΠxK

‖ΠxK‖2
− xH

KAΠxK

N −K

and

e2,N =
xH

KAΠxK

N −K
− tr(A)

N −K
=

N

N −K

1

N

(

xH
KAΠxK − tr(A)

)

.

Then, E|eN |4 ≤ 8(E|e1,N |4 + E|e2,N |4). We first use lemma 1 to show that E|e2,N |4 =

O(N−2). As U and xK are independent, A and xK are also independent. Moreover,

the spectral norm of (HUQUHHH + σ2I)−1 is uniformly bounded by 1/σ2. As ‖H‖ is
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bounded, the inequality ‖CD‖ ≤ ‖C‖ ‖D‖ implies that A is bounded. Furthermore, xK

meets the conditions of lemma 1 since it has Gaussian independent elements. This lemma

and the fact that N/(N − K) → 1/(1 − α) imply that E|e2,N |4 = O(N−2) converges

to 0 almost surely (set z = x and B = AΠ, and notice that tr(B) = tr(A)). By the

Borel-Cantelli lemma, E|e2,N |4 = O(N−2) implies that e2,N converges to 0 almost surely.

We now study the behavior of E|e1,N |4. e1,N can be written as

e1,N =

(

xH
KAΠxK

N −K

)(

N −K

‖ΠxK‖2
− 1

)

.

As e2,N converges to 0 almost everywhere,

xH
KAΠxK

(N −K)
< 2

tr(A)

(N −K)
≤ 2‖A‖ a.s.

for N large enough. The last inequality comes from the facts that for a given matrix X,

tr(X) ≤ ‖X‖ rank(X), and that the rank of A does not exceed N − K as can be seen

from the expression of this matrix. As supN∈N
‖A‖ <∞,

(

xH
KAxK

)

/ (N −K) is bounded

almost everywhere.

We now show that

E

(

N −K

‖ΠxK‖2
− 1

)4

= O(N−2).

Let U
′

be a N × (N −K + 1) isometric matrix such that Π = U
′

U
′H . Then, ‖ΠxK‖2 =

‖U′HxK‖2. As xK and U
′

are independent, U
′HxK is a (N −K+1)-dimensional complex

Gaussian random vector with covariance matrix IN−K+1. Therefore, ‖U′HxK‖2 is χ2

distributed with 2(N −K + 1) degrees of freedom. Its probability density is the function

t(N−K)

(N−K)!
e−t, and a straightforward direct computation shows that

E

(

N −K

‖ΠxK‖2
− 1

)4

= O((N −K)−2)

which coincides with O(N−2) if K/N → α. As
(

xH
KAΠxK

)

/ (N −K) is bounded almost

everywhere, we get that E|e1,N |4 = O(N−2). Putting all the pieces together, this implies

that E|eN |4 = O(N−2), and that eN converges almost surely to 0.

We now establish that tr(A)
N−K

converges almost surely toward a certain deterministic

limit. For this, we are going to show that this is the case for tr(A)
N

by using the concept

of almost sure asymptotic freeness of random matrices. We put R = UQUH , and first
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justify that R and HHH are asymptotically free almost everywhere. For this, we have first

to justify that the eigenvalue distributions of both matrices converge almost surely toward

a deterministic probability distribution. This is of course true for R, the limit distribution

of which is the measure ν = (1 − α)δ(λ) + ανp (we recall that νp is the users power

limit distribution). The eigenvalues of HHH coincide with the (|h(e2iπk/N)|2)k=0,...,N−1.

Therefore, for each bounded continuous function φ, tr(φ(HHH))
N

can be written as

tr(φ(HHH))

N
=

∑N−1
k=0 φ(|h(e2iπk/N)|2)

N

When N → ∞, this of course converges toward
∫ 1

0
φ(|h(e2iπf)|2df , which can be written as

∫

φ(λ)dµ(λ) for a certain probability measure µ supported by the interval [0,maxf |h(e2iπf)|2].
We note in particular that the ψ-transform ψµ of µ is given by

ψµ(z) =

∫

zλ

1 − zλ
dµ(λ) =

∫ 1

0

z|h(e2iπf )|2
1 − z|h(e2iπf )|2 df (57)

We finally remark that R is unitarily invariant in the sense that for each constant N ×N

unitary matrix Θ, the probability distribution of R coincides with the probability distri-

bution of ΘHRΘ. Therefore (see [15, proposition 4.3.9]), R and HHH are asymptotically

free almost everywhere. This in particular implies that the normalized trace of every non

commutative monomial in R and HHH converges almost surely toward a deterministic

limit. The last step consists in showing that tr(A)
N

can be approximated by a linear com-

bination of such monomials. For this, we first remark that the eigenvalues of R belong

to [b, B] for each N (see assumption A2). Let f(λ) be a continuous function satisfying

f(λ) = 0 on [b, B], and f(λ) = 1 in a neighborhood of 0. Then, it is clear that I − UUH

coincides with f(R). By the Stone-Weierstrass theorem, for each ε > 0, it exists a polyno-

mial P1 for which |f(λ)−P1(λ)| < ε on [0, B]. Therefore, ‖f(R)−P1(R)‖ < ε for each N .

The spectrum of HUQUHHH + σ2I is included into [σ2, σ2 +Bmaxf |h(e2iπf)|2]. As the

function λ → 1
λ

is continuous on [σ2, σ2 + Bmaxf |h(e2iπf)|2], it also exists a polynomial

P2 such that

‖(HUQUHHH + σ2I)−1 − P2(HUQUHHH + σ2I)‖ < ε

for each N . This shows that tr(A)
N

can be approximated with an arbitrary good accuracy
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by a (finite) linear combination of terms of the form

1

N
tr
(

RkHH(HRHH + σ2I)lH
)

By expanding (HRHH + σ2I)l, it is easy to check that the above term is the normalized

trace of the value taken by a non-commutative polynomial in the indeterminates X1 and

X2 where X1 and X2 are replaced by HHH and R respectively. As R and HHH are

asymptotically free almost everywhere, the above term converges almost surely toward a

deterministic constant. This in turn shows that tr(A)
N

, and thus βN

p1
as well as βN converge

almost surely to a deterministic term.

B. Proof of the claims of the second step.

The reader may check that the proof of the first step of theorem 1 implies that for

each sequence (k(N))N≥1 of integers satisfying 1 ≤ k(N) ≤ K, then βN,k(N) and
tr(Ak(N))

N−K

have the same asymptotic behavior. Moreover,
tr(Ak(N))

N−K
converges toward a deterministic

constant. In order to justify that this constant does not depend on the sequence (k(N))N≥1,

we remark that the difference between matrix Ak(N) and

(I− WWH)HH
(

HWPWHHH + σ2IN

)−1
H

is a uniformly bounded rank 3 matrix (just use the matrix inversion lemma). Hence,
tr(Ak(N))

N−K
and

tr
(

(I − WWH)HH
(

HWPWHHH + σ2IN

)−1
H
)

N −K

have the same limit β, which is of course independent of sequence (k(N))N≥1. We now

establish relation (22). For each K, we denote by gK(x) the random process defined for

x ∈ [0, 1[ by

gK(x) = ηN,bxK+1c

where bxK + 1c represents the greatest integer less than or equal to xK + 1. It is obvious

that
∑K

k=1 ηN,k

K
=

∫ 1

0

gK(x) dx
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We denote gK(x) the deterministic function defined by

gK(x) =
pbxK+1cβ

1 + pbxK+1cβ

It is clear that
∫ 1

0

gK(x) dx =
1

K

(

K
∑

k=1

pkβ

1 + pkβ

)

By the very definition of the concept of limit distribution, it therefore turns out that

lim
K→∞

∫ 1

0

gK(x) dx =

∫

λβ

1 + λβ
dνp(λ)

In order to show (22), it is thus sufficient to establish that

lim
K→∞

∫ 1

0

gK(x) dx = lim
K→∞

∫ 1

0

gK(x) dx (58)

almost surely. As βN,bxK+1c converges almost surely to β when N → ∞, it is clear that for

each x ∈ [0, 1[, limK→∞(gK(x)−gK(x)) = 0 almost surely. In other words, the probability

of the event G(x) = {(gK(x) − gK(x))does not converge to 0} is equal to 0, i.e.,

E
[

1G(x)

]

= 0

where 1G(x) represents the set indicator function of the event G(x). Integrating on [0, 1]

this identity with respect to x, and using the Fubini theorem yields to

E

[
∫ 1

0

1G(x) dx

]

= 0

The random variable f defined by

f =

∫ 1

0

1G(x) dx

is thus equal to 0 almost surely. We now use the following identity :
∫ 1

0

|gK(x) − gK(x)| dx =

∫ 1

0

1{gK(x)−gK(x)→0} |gK(x) − gK(x)| dx (59)

+

∫ 1

0

1G(x) |gK(x) − gK(x)| dx

As |gK(x) − gK(x)| ≤ 2, the Lebesgue dominated convergence theorem implies that the

first term of the right hand side of (59) converges to 0. As for the second term, it is less

that 2f , and is thus equal to 0. This in turn establishes (22).
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III. Justification of eq. (29).

In this section, we justify equation (29) in the case where code vectors (wk)k=1,...,K are

Gaussian. Notice that it should be possible to release the Gaussian assumption by using

the results of [18, Chap. 16]. For each k, matrix Hk is circulant, and can thus be written

as Hk = FDkF
H . We recall that F is the N × N Fourier matrix which (p, q) entry is

Fp,q = 1√
N
e2iπpq/N for (p, q) ∈ {0, . . . , N − 1}, and Dk is the diagonal matrix with entries

(hk(e
2iπl/N )l=0,...,N−1. Thanks to the Gaussian character of the code vectors, it is possible

to replace matrix Hk by the diagonal matrix Dk in order to evaluate the asymptotic SINR

of user 1. The non asymptotic SINR β1,N associated to this user in the uplink is now given

by

β1,N = wH
1 DH

1 (
K
∑

k=2

Dkwkw
H
k DH

k + σ2I)−1D1w1

For each k, the entries of vector Dkwk are independent, the entry l having a variance

equal to 1
N
|hk(e

2iπl/N )|2 for l = 0, . . . , N − 1. Therefore β1,N behaves asymptotically as

1

N

N−1
∑

l=0

|h1(e
2iπl/N )|2

(

(
K
∑

k=2

Dkwkw
H
k DH

k + σ2I)−1

)

l,l

.

It is possible to analyze the asymptotic behavior of the diagonal terms of (
∑K

k=2 Dkwkw
H
k DH

k +

σ2I)−1 by using the results of [18, Chap.7], and thus to evaluate the limit of β1,N . Let

(φl(z))l=0,...,N−1 and (ψj(z))j=1,...,K be the functions in the class of Stieltjes transforms

uniquely defined by the system of equations

φl(z) = −z +
1

N

K
∑

k=1

|hk(e
2iπl/N )|2 1

ψk(z)

ψj(z) = 1 +
1

N

N−1
∑

n=0

|hj(e
2iπn/N)|2 1

φn(z)
. (60)

Then, the lth diagonal term of (
∑K

k=2 Dkwkw
H
k DH

k + σ2I)−1 has the same asympptotic

behavior than 1
φl(−σ2)

. Therefore, we have

β1,N − 1

N

N−1
∑

l=0

|h1(e
2iπl/N )|2 1

φl(−σ2)
→ 0
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in probability. Similarly, the non asymptotic SINR βk,N of user k is such that

βk,N − 1

N

N−1
∑

l=0

|hk(e
2iπl/N )|2 1

φl(−σ2)
→ 0

in probability. Therefore, equation (60) leads to ψj(−σ2) ' 1 + βj,N , so that

1

φl(−σ2)
' 1

σ2 + 1
N

∑K
k=1

|hk(e2iπl/N )|2
1+βk,N

and therefore

β1,N ' 1

N

N−1
∑

l=0

|h1(e
2iπl/N )|2

σ2 + 1
N

∑K
k=1

|hk(e2iπl/N )|2
1+βk,N

. (61)

Therefore, the asymptotic SINRs (βk,uplink)k=1,...,K are such that

β1,uplink ' 1

N

N−1
∑

l=0

|h1(e
2iπl/N )|2

σ2 + 1
N

∑K
k=2

|hk(e2iπl/N )|2
1+βk,uplink

IV. Proof of Proposition 3

In order to prove Proposition 3, we first justify that γN converges almost surely toward

a certain deterministic constant γ. We define matrix B by

B = (I − UUH)HH

(

HHH +
σ2

K
N
p
I

)−1
(

HUQUHHH + σ2I
)

(

HHH +
σ2

K
N
p
I

)−1

H

Using again Proposition 4, it is easily seen that

lim
N→+∞

γN − tr(B)

N −K
= 0

almost surely. The fact that γN converges almost surely to a constant γ is shown as in

the proof of the first step of Theorem 1 (use that matrices HHH and R = UQUH are

asymptotically free almost everywhere, and that γN can be approximated by the trace of

non commutative polynomials of HHH and R).

We now show that the above mentioned limit γ satisfies (42). For this, we remark that

γN and γ are bounded almost surely. Therefore, the Lebesgue dominated convergence

theorem implies that E|γN − γ|2 → 0 when N → +∞. This implies that

lim
N→+∞

E |E(γN |w) − γ|2 = 0.
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Therefore, we get that

γ = lim
N→+∞

E(γN |w)

where the limit is understood in the least mean square sense. In order to evaluate E(γN |w),

we prove the following lemma.

Lemma 2: The following property holds :

E(UQUH |w) =

∑K
k=2 pk

N − 1
(I − wwH) (62)

Proof. As relation (62) only depends on the statistical properties of the Haar distribution,

we can choose the way W is generated, provided it is obtained by extracting K columns

from a Haar distributed unitary matrix. We first generate a Haar distributed N × N

random unitary matrix Θ̃N,N = (w(n), Θ̃N,N−1), i.e. w is the first column of Θ̃N,N . Let

ΘN−1,N−1 be a (N − 1)× (N − 1) Haar distributed random unitary matrix independent

from Θ̃N,N . Then, it is easily seen that the N ×N matrix ΘN,N defined by

ΘN,N =
[

w, Θ̃N,N−1ΘN−1,N−1

]

is Haar distributed. We then define U as the matrix obtained by extracting columns 2 to

K of ΘN,N . If U represents the first (K − 1) columns of ΘN−1,N−1, then,

U = Θ̃N,N−1U

It is clear that the conditional expectation of UQUH given Θ̃N,N is equal to

Θ̃N,N−1E
(

UQU
H
)

Θ̃
H

N,N−1

But, using the properties of the Haar distribution, it is easily seen that two different entries

of U are decorrelated, while their second order moments all coincide with 1
N−1

. From this,

we get immediately that

E(UQU
H

) =

∑K
k=2 pk

N − 1
IN−1

Therefore, the conditional expectation of UQUH given Θ̃N,N is equal to
∑K

k=2 pk

N − 1
Θ̃N,N−1Θ̃

H

N,N−1 ,

which coincides with
∑K

k=2 pk

N−1
(IN − wwH). This only depends on w, so that this identity

implies (62).

This shows (42) and completes the proof of Proposition (3).
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Fig. 1. Optimal Wiener Filter in isometric and i.i.d. cases
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Fig. 2. Theoretical and empirical performance of the optimal and sub-optimal Wiener filters, α = 1
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Fig. 3. Theoretical and empirical performance of the optimal and sub-optimal Wiener filters, α = 1
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Fig. 4. Comparison of optimal and sub-optimal Wiener filters
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Fig. 5. Performance of the various power classes with optimal and sub-optimal Wiener filters
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