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Abstract
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I. INTRODUCTION

High data rate transmission over Rayleigh fading channels requires the use of appropri-
ate diversity schemes. These schemes aim at transmitting various replicas of the emitted
signal, which when appropriately combined by the receiver, allow to enhance the signal to
noise ratio. Recently, Giraud and Belfiore [1], [2], and then Boutros and Viterbo [3] intro-
duced an attractive new diversity scheme called signal space diversity. In particular,
contribution [3| describes a modulation scheme depicted in figure 1, in which the input
symbol stream is serial to parallel converted, then the resulting K-dimensional symbol
vector s(n) (a white vector process with E (s(n)s”(n)) = Ix) is multiplied by an isomet-
ric N x K matrix Wy (i.e. WEWy = Ig) where N > K. This N-dimensional vector
Wys(n) is parallel to serial converted, and the corresponding generated data stream is
sent across a non selective Rayleigh fading channel. After serial to parallel conversion, the

N—dimensional received vector y(n) can be written as:
y(n) = Hy(n)Wys(n) + n(n) (1)

where n(n) is an white additive Gaussian noise such that £ (n(n)n(n)”) = oIy, and
where Hy(n) = diag([h1(n), ..., hy(n)]) is the N x N diagonal complex matrix bearing
on its diagonal the channel gains. The role of matrix Wy is to introduce diversity so that
it allows to transmit each component of s(n) over a duration N times longer than if Wy
were reduced to Iy.

Note that the model proposed for describing the system is broad enough to capture a
multiplicity of transmission schemes. These include:

o Multi-Carrier CDMA (MC-CDMA) downlink transmissions [4][5]. In this case, the
elements of s(n) represent K different streams of symbols destined to K different users,
N coincides with the number of sub-carriers, and each column of Wy represents the code
allocated to each user. Vector Wys(n) is sent to an OFDM modulator, and equation (1)
represents the signal received after guard interval suppression and Fourier transformation.
In the frequency domain, the received N x 1 vector signal can be seen as resulting from
a transmission over N parallel flat fading channels. Diagonal entries of Hy(n) represent

the frequency domain channel gains for data frame n.
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« Precoded OFDM [6] or Spread OFDM [7] in a single user context. In this case, matrix
Wy acts as a means for spreading each component of s(n) over all carriers. This increases
the overall frequency diversity of the modulator, so that deeply attenuated carriers can
still be recovered by taking advantage of the sub-bands enjoying a high Signal to Noise
Ratio.

An important problem lies in the choice of the amount of redundancy introduced by

linear precoding, i.e. the ratio K/N, and also in the choice of matrix Wy. [1] and [3]
considered the case where K/N = 1, i.e. Wy is unitary. They assumed the entries of
Hy(n) independent and identically distributed, and proposed to derive an upper bound
of the error probability for the Maximum Likelihood (ML) detector of s(n). They discov-
ered that, at least for high Signal to Noise Ratios, Wy has to be chosen in such a way
that the minimum so-called L—distance product of the constellation {Wys;, 7 € '}, where
{si,1 € I} denotes the set of possible values taken by vector s(n), be maximum. But the
optimization of the coefficients of Wy is hardly trivial and entails the use of sophisticated
mathematical tools from algebraic number theory. Moreover, the high computational cost
of the ML detector prevents its use in practical contexts.
Actually, due to its lower complexity, MMSE detection is often preferred. In our context,
the SINR (Signal to Interference plus Noise Ratio) is a natural figure for evaluating the
MMSE detector performance. For reasons related to calculus, the analysis will be con-
ducted in the asymptotic regime (N — oo, K — o0, % — a < 1). We note that this is
especially relevant in the precoded OFDM case since in usual wireless OFDM systems, a
high number of carriers (> 64) are involved.

The output of the MMSE detector is §(n) = [31(n),...,3x(n)]’ and is given by ([8]) :

s(n) = E(s(my?(n) (Byn)y(n) " yn)

Each component §(n) of §(n) is corrupted by the effect of both the thermal noise and
by the "multi-user interference” due to the contributions of the other users {s;(n)};z. It
has been shown in [9], and recently in [10], that this additive noise can be considered as
Gaussian when K and N are large enough. Therefore, the Signal to Interference plus Noise

Ratio (SINR) at the output of each component of the MMSE detector characterizes entirely
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the performance of the modulation scheme equipped with a MMSE receiver. Several
papers [11][12][13] have recently analyzed the behavior of the SINR at the output of the
MMSE detector in the case where the entries of Wy are independent and identically
distributed random variables (to be referred to in the sequel as the i.i.d. case) and the
matrix Hy(n) is reduced to Iy and the various users can have different powers. In this
case, it has been shown that this SINR converges almost surely toward a well defined
deterministic value which does not depend on the particular realization of Wy. These
results have been used by several authors to better understand the performance of the
chosen transmitter/receiver chain. In particular, Biglieri et al. [14] and Shamai et al.
[15] showed how to use these results to find the optimum value of the parameter a via
the analysis of the system throughput. We also note that [16] considered the case where
the columns of Wy are independent and identically distributed N dimensional random
vectors uniformly distributed on the unit sphere of CV.

In this paper, we also study the behavior of the SINR at the output of the MMSE
detector assuming that Wy is a random matrix and take benefit of the corresponding
results to discuss the choice of a. However, we address the case where Wy is isometric.
In the sequel, this will be called the isometric case. The choice of an isometric spreading
matrix is usual in systems where synchronization is ensured like signal space diversity
systems or precoded OFDM or downstream MC-CDMA systems, since it provides much
better results than the choice of an i.i.d. matrix. Moreover, we stress on the fact that in
our models, matrix Hy(n) is not reduced to identity. To our knowledge, the problem we
address here has not been considered in previous works.

From a technical stand point, the i.i.d. case study of [13] leans on mathematical results
that concern the ”limiting distribution of eigenvalues” of some large random matrices with
independent and identically distributed entries (see e.g. [17]). As for the isometric case,
a considerably more involved material will be needed. The results given here rely on the
so-called free probability theory initially developed by D. Voiculescu [18] in order to solve
deep problems of operator algebras classification. At the end of the eighties, Voiculescu
realized that this theory could also be used to analyze the eigenvalue distribution of sums

or products of certain independent large random matrices. This will be the starting point
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of our analysis. Note that Evans and Tse already introduced free probability theory in
[12].

This paper is structured as follows. In section II, we precise the way we generate the
random isometric valued matrices under consideration. Then, we present our main result
(theorem 1), which asserts that the SINR at the output of the MMSE detector converges
almost surely to a deterministic value. At the end of this section, an asymptotic result for
the i.i.d. case is also given for the purpose of comparison. In section III, we confirm by
simulations the fact that our asymptotic analysis allows to predict the performance of the
MMSE detector for relatively small values of N. Section IV starts with the evaluation of
the whole system throughput (see [14]) with respect to a for a fixed allocated bandwidth.
The purpose of this computation is to determine the optimal amount of redundancy that
should be spent on the linear precoder in a system where linear precoding is combined with
convolutional encoding. This analysis is sustained by a performance comparison between
the linearly precoded system and a system equipped with a classical convolutional forward
error correcting code in addition to linear precoding, the overall coding rate being the same
for both systems. We shall confirm by practical examples the fact that the redundancy
trade-off between linear precoding (through the choice of ) and coding (through the choice
of the rate of the convolutional code) can be given a priori by the throughput analysis. This
discussion was motivated by the recent paper [6]. Section V and section VI contain the
most technical part of the paper. As we believe that free probability theory is an important
and promising tool, we propose to give in section V a comprehensive introduction to its
most important aspects concerning our purpose. In section VI, we show how to apply an
important lemma of [19] (also used in [12]) to our particular situation, and finally use the
almost sure asymptotic freeness result presented in the recent monograph [20] to prove

theorem 1.

II. MAIN RESULT
A. Hypotheses and Preliminary Properties

In this subsection, we first precise the properties of matrix Wy and of the diagonal

entries of Hy(n). Since the time index n is not relevant in the following, we simply omit
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it. Therefore, equation (1) can be re-written as:
y =HyWpys+n. (2)

In the following, we assume that
A1l: Hy = diag([hy, .., hy]) has identically distributed centered random diagonal entries.
|h;|? is supposed to have a probability density p(¢) with finite moments of all orders.

We set E(|h;]?) = 1, so that o2 defined by E(nnf’) = 021y represents the inverse of
the SNR at the receiver input. As a typical example, if the coefficients {h;};,—1 . n are

~t which corresponds

complex Gaussian® (resulting in a Rayleigh fading), then p(t) = e
to a x? distribution with two degrees of freedom. It is important to notice that random
variables {h;};,—1 n are not assumed to be independent. However, we assume that the
following assumption holds:

A2: for each [ > 1,

N
1
NliIEOO I ; \hi|? = E(hi|*) almost surely. (3)

Assumption A2 implies some kind of asymptotic independence between the random vari-
ables h; and h; if |i — j| — oo. This hypothesis is quite realistic in the context of
signal-space diversity schemes or in precoded OFDM systems if large size interleavers/de-
interleavers are inserted in the scheme represented in figure 1. Interleavers are needed
in precoded OFDM systems because without interleaving, the coefficients (hy)g=1__n co-
incide with the values taken by the transfer function h(e*™/) of a multi-path Rayleigh
fading channel at frequencies UCN;D, k=1,...,N. If the number of paths remains fixed
when N — oo, the sequence (hy)r—1,.. n depend on a finite number of independent random
variables, and the hypothesis A2 cannot of course be fulfilled. However, in such a context,
the tools developed in this paper can still be applied, but the main results have a different

form. The reader is referred to [21] for more details.

We now explain how the random matrix Wy is generated. For this purpose, some

notations and definitions need to be introduced. Denote by U the multiplicative group

!By a complex Gaussian random variable, we mean a complex random variable whose real and imaginary parts

are independent Gaussian random variables having same variances.
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of N x N unitary matrices, and by ® a random N X N unitary matrix. © is said to be
Haar distributed if the probability distribution of ® is invariant by left multiplication by
constant unitary matrices 2. Since the group U is compact, this condition is known to be
equivalent to the invariance of the probability distribution of ® by right multiplication by
constant unitary matrices. In order to generate Haar distributed unitary random matrices,
let X = [z;;]i<ij<y be a N x N random matrix with independent complex Gaussian
centered unit variance entries. The unitary matrix X (X7X)~/2 is Haar distributed. To

see this, notice that for each constant unitary matrix U,
UX(X7X)"1/2 = UX((UX)HUX) Y2,

Since the probability distribution of X and UX coincide, matrices X(X#X)~1/2 and
UX((UX)#UX) /2 have the same distribution. The above equality thus implies that
UX(X#X)71/2 and X(X#X)~1/2 are identically distributed.

There is another way for building Haar distributed unitary matrices that will be useful
to our purpose. Instead of multiplying X by the inverse of the Hermitian square root

of XH#X, one can introduce the uniquely defined upper triangular matrix with positive

diagonal elements Q(X) defined by
XX = Q(X)"Q(X) .
The unitary matrix V(X) defined by
V(X) =XQ(X)™ (4)

is also Haar distributed. To see this, we first remark that for each constant unitary matrix
U, the probability distribution of V(X) and of V(UX) coincide. But, it is obvious that
Q(UX) = Q(X), so that UV(X) = V(UX). Therefore, the probability distribution of
V(X) and of UV(X) coincide. Remark that the columns of V(X) are obtained by a
Gram-Schmidt orthogonalization of the columns of X.

Finally, we state an interesting property of Haar distributed unitary random matrices. ©
being one such matrix, its probability distribution is also invariant under right multipli-

cation by unitary matrices, hence this distribution coincides with the distribution of P

%In other words, the probability distribution of ® coincides with the so-called Haar measure on U.
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for any permutation matrix P. This shows that the N x K isometric matrices obtained
by extracting any subset of K columns from © have the same probability distribution.
In the following, it will be assumed that

A3 : matrix Wy is generated by extracting K columns from a N x N Haar unitary

random matrix @y independent of Hy.

B. Statement of the Main Result.

Let us first recall the expression of the SINR at one of the K outputs of the MMSE
detector. Let wy be the column of Wy associated to some element of s, and Uy the
N x (K — 1) isometric matrix which remains after extracting wy from Wy. The SINR

Bwy at the output of the MMSE detector is easily shown to express as (see e.g. [13]):

Tw
W = — 5
where
Ty = WHHE (HyWyWEHE 4+ 0%1y) " Hywy (6)

Writing HNWNW]I\%HH = HNUNUﬁH% + HNWNW%H% and invoking the matrix inver-

sion lemma, we get after some simple algebra another useful expression for this SINR:
Buy = WHHE (HyUyUSHE + 6°15) " Hywy . (7)

We are now in position to state the main result of this contribution:
Theorem 1: Assume that matrices W and Hy are chosen according to assumptions
A1l to A3, and moreover, that
A4: the probability density p(t) of the random variables (|h;|*)ien has a compact support
included in the interval |0, c|, which implies that sup;cy |hi|* < ¢ < oo almost surely.
When N grows toward infinity and K/N — o < 1, the SINR Bw, at the output of a
MMSE equalizer converges almost surely to a value B that is the unique solution of the

equation

/0 at +02(1 —a)B3 + o2 p(t) dt_3+1' (®)

This theorem is proved in section VI. In order to give some insights to the reader, we just

briefly justify the result when K = N for each N, which of course implies a = 1. The
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Bw
1+ﬁ

K = N, matrix Wy is unitary, so WNWN = In. Therefore, 1, can be written as

case o = 1 is easy to handle because 7, = has a simple expression. Indeed, when

_ 2 |hk|2
Moy = Y [wnl Tl + 07 (9)

where wy , denotes the k™ component of vector wy. Using the fact that |wN,k|2 =1

N
and E(Jwy|*|wn,]?) = if £ # 1 and if k =1 (see e.g. [20]), it is rather

N+1) N+1

straightforward to show that 7, converges in the mean square sense to the quantity i

defined by

——E(7|hk|2 )—/OO ! (t) dt
= |hy|? + o2 a B t+02p

This shows that By, converges in probability to the value 3 defined by 3 = i, as ex-

J

pected. The proof of the almost sure convergence for a = 1 is a little bit more complicated,
but is a consequence of an important lemma of [19] already used in [12] (See section VI
for more details).

Before proceeding, let us give some additional remarks on theorem 1 :

Remark 1: It is asserted that equation (8) has a unique solution. As a matter of fact,
the left hand side of (8) is a positive decreasing function of 3 which converges to 0 when
B — +oo, while the right hand side of (8) is an increasing function of 3 which is 0 at
B =0.

Remark 2: When the measure p(t)dt is replaced by the Dirac measure (1) at point
t = 1, matrix Hy is reduced to Iy. By direct computation, the receiver output SINR
in this situation (called the Gaussian channel situation) is easily shown to be 1/0*. This
value is also given by equation (8) when p(t)dt is replaced by 6(1).

Remark 3: In the statement of theorem 1, p(¢) is assumed compactly supported.
This hypothesis is important on a technical point of view because the most powerful
results of free probability theory (in particular the asymptotic freeness of independent
large random matrices, see below) require compactly supported measures. Although the
usual probability distributions of the coefficients (h;);en, like the Rayleigh or the Rice
distributions, do not meet this requirement, this restriction is of course not very important

in practice. In particular, the use of formula (8) with p(t) = e~ (for the Rayleigh channel
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case) allows to predict quite well the performance of our precoded modulation scheme
using MMSE detection.

Remark 4: One key information provided by theorem 1 is that the SINR does not de-
pend on the particular realization of the isometric matrix sequence (Wy)yen if N — +00
and K/N — a, provided it is extracted from a Haar distributed random unitary matrix.
However, usual precoded OFDM or MC-CDMA systems use quite different precoding ma-
trices, e.g. Walsh-Hadamard matrices, which of course do not coincide with realizations
of Haar distributed random matrices. It is therefore important to check if, in practice,
the most common precoding matrices provide the same asymptotic performance than
realizations of Haar distributed random unitary matrices. When o = 1, Equation (9)
immediately shows that if matrix Wy is replaced by a deterministic isometric matrix
whose entries have the same modulus ﬁ (the Walsh-Hadamard matrices, FFT matrices
satisfy of course this condition), then 7, and thus [y, converge to the value predicted

by Theorem 1. The case a < 1 is studied by simulations in section III.

We now address the i.i.d case. In the next section, the performance of systems having
large isometric precoder matrices will be compared to the performance of systems with
i.i.d. matrices, and the impact of the precoder column orthogonality will be quantified.

Theorem 2: Assume that the entries of Wy are centered i.i.d. random variables of
variance 1/N, that assumptions A1 and A4 hold, and that A2 is replaced by A2’

A2’: for each bounded continuous function p,

o) () (o

almost surely.

Then, when N grows toward infinity and K/N — «, the SINR By, at the oulput of a

MMSE equalizer converges almost surely to a value 3, that is the unique solution of the

/0 [ S (10)

at + 026, + o2 _Bl—kl'

equation
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As this paper is essentially devoted to the isometric case, this result will be justified briefly
in the appendix. The proof is a direct consequence of corollary 1 in [12] and of the main
result of [17]. Note that « in this theorem is not restricted to [0, 1] but belongs to [0, +00].
Remark 5: Comparison with the Tse-Hanly formula. The so-called Tse-Hanly
formula for the MMSE receiver [13, formula 4] gives the asymptotic SINR value 3f for
CDMA systems with random i.i.d. codes in a flat fading channel, which in our context
amounts to h, = h for each n, or equivalently Hy = hIy. As the powers allocated to the
various components of vector s all coincide in our context, this equation is written

Gr=— (1)

« a2
Bi+1 + 2

Recall that Tse and Hanly interpreted in [13] the factor ﬁ*lﬂ as the effective interference
1

of component ¢ of s on the desired component k at the desired target SINR ;. The term

a  ~ 1 K
Bf+1 — N pBi+1
of the MMSE receiver (the term ﬁ*1+1 is multiplied by K the number of users, while the
1

coefficient % is due to the spreading gain provided by the precoder).

thus represents the total amount of multi-user interference at the output

We remark that equation (10) of theorem 2 can be rewritten

B, - / Tl (12)

It is interesting to note that the right-hand-side of (12) coincides with an averaged version

(on the square of the amplitude of the channel coefficients) of the inverse of the sum of

] 0'2

the multi-user effective interference term ] and of the term e which represents the
1

o2

[h[?

contribution of a thermal noise of variance in a flat fading channel of complex gain
h. This shows first that the diversity provided by the precoder is of course due to the
averaging on the values taken by |k in (12). More importantly, (12) also indicates that
the important concept of multi-user effective interference introduced in [13] is still relevant
if Hy is not a multiple of Iy.

Remark 6: It is clear that for each 5 > 0,

o t > t
——————p(t) dt < t) dt .
/0 at+026+02p() - /0 ozt—|—02(1—a)ﬁ+02p()

This implies that for a fixed value of a, the SINR in the i.i.d case is always less than

the SINR in the isometric case. Moreover, the performance gain induced by the use of
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isometric codes instead of i.i.d. ones grows when a grows toward 1. Conversely, the SINR
in the i.i.d case is nearly equal to the SINR in the orthogonal case if « is close to 0. It
is also interesting to note that the second term of the right-hand-side of (10) and (8) are

similar. The multi-user interference term ﬁ appears in both formulas, while the term

%, representing the effect of the thermal noise in the i.i.d. case, is multiplied in the

isometric case by 1 — a%, which is of course less than 1. In other words, for a given

target SINR of 3, an isometric precoded system corrupted by a thermal noise of variance
o? provides the same performance as an i.i.d. precoded one corrupted by a thermal noise
B_
1+
Remark 7: Case of non equal powers. In this paper, we just consider the case

o2

of variance (1 — «
where the components of s have the same power. This is because we are mainly motivated
by the study of single user precoded systems, i.e. all the components of s are to be sent to
the same user. The non equal power case is nevertheless quite relevant in the context multi-
user systems. However, the approach used in the present paper cannot be generalized to
this context because the calculation of 3 relies on the equal power assumption (see section
VI). The non equal power case requires the use of more sophisticated tools. The interested
reader is referred to [22] for more details.

Remark 8: Case where a > 1. Theorem 2 remains valid when o > 1. Although not
intuitive, the use of a N x K precoder with K > N may improve the performance in the
i.i.d. case for low values of the signal to noise ratio (see e.g. [15] in the context of a frequency
flat fading channel). Of course, the case a > 1 does not make sense in the isometric case.
However, instead of using a precoding matrix which columns are orthogonal, one may
use if o > 1 a matrix Wy x whose rows are orthogonal. In this context, we model the
precoding matrix Wy g as a random matrix obtained first by extracting N rows from a
Haar distributed unitary K x K matrix, and second by multiplying the resulting matrix

by the scaling factor a'/?

. Therefore, Wy g satisfies
WNyKW]I\_{K = OzIN (13)

The scaling factor a in (13) normalizes the power allocated to each component of s.

Derivation of the MMSE output SINR in the asymptotic regime is similar to the case
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where a = 1. To be precise, as Wy g W . = aly, ny, is given by

||
O (14
As in the case o = 1, it is easy to check that r,, converges to 77 defined by

_ |hk|2 /oo t
= E e
] (alhk|g+a2) Neranp=: p(t) di

Therefore, the SINR 3 converges toward the unique solution of the equation

B _ [Tt
B+1_/0 at+02p(t)dt

In the section IV devoted to the choice of a, we show that in contrast with the i.i.d. case,

it is not relevant to use fat precoding matrices in the Haar distributed case, even for low

signal to noise ratios.

III. NUMERICAL ILLUSTRATION

In this section, we first study in a more precise manner the influence of o on the
theoretical asymptotic SINR as well as on the bit error rate (BER) in a scenario where no
convolutional encoding is implemented. These results will then be confirmed by simulation.
Symbols for all users have their values in a QPSK constellation. The channel is assumed
to be a Rayleigh fading channel, in other words p(t) = e~*. Although this hypothesis
does not meet the technical assumption A4, we shall nevertheless make use of formulas
(8) and (10) to predict the asymptotic performances of our precoded systems. Except for
figure 7, diagonal entries of Hy are independent, this assumption being justified when
large size interleaver and de-interleaver are inserted at the transmitter side and receiver
side respectively.

Let

be the so-called exponential integral function. For a Rayleigh fading channel, equations

(8) and (10) will have the following forms:
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Isometric case. Put r = (0%(1 — a)B + 0?)/a. The SINR 7 is solution of :

af3
B+1

l—re Eir)= (15)

+00 g—u
0 u+x

This is deduced from equation (8): writing Ej(x) = e™* du, we have:

t o0 t .
— p(t) dt = — e
at + o%(1 — a)f + o2 o at+o*(l—a)f+o?

1 o -t
_ (1 . / _° dt)
0 52(1-a)B+0? +1

<1 B c*(1—a)B+ o> 6702(1—3)@02&(02(1 — )3+ 02)>

l— o

a a
Equation (15) follows.

i.i.d. case. Put r = (0(f; +1))/a. After a computation similar to that of the isometric

case, the resulting SINR 3 is solution of :

1 —re By(r) = B_(fl . (16)

As the contribution of the noise and of the multi-user interference at the output of
large MMSE detectors can be considered as Gaussian [9], it is standard to associate to
each asymptotic SINR the asymptotic BER given by Q(v/SINR). We recall that Q(z) =
(1/v/2r) [ e=t/24t.

Figures 2 and 3 show the BER in the isometric case and in the i.i.d. case respectively for

a=1, %, and i. The BER in the Gaussian channel case (i.e. Hy = Iy) is also represented
since, as can easily be shown (see equation (8)), it represents the asymptotic performance
when a — 0. We notice that there is an important performance gap between systems with

a = 1 and systems with a = % This gap is clearly reduced when we pass from a = % to

a=1

In order to verify the practical relevance of these evaluations, we also represent exper-
imental results obtained by numerical simulations for N = 256 in the context of a single
user precoded system : by single user system, we mean that all the components of s are
to be sent to the same user. In this context, the empirical BER is of course obtained by

averaging the errors over the K components of s. Although the chosen matrix size IV is not
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extremely large, we observe that the theoretical curves match quite well the experimental
ones for both isometric and i.i.d. cases.

If we now compare figure 2 to figure 3, we notice that isometric precoding outperforms
significantly i.i.d. precoding. Moreover, the results are in accordance with remark 6 in
the sense that the performance gap between these two types of precoding is significant for

a = 1, while for a = 7, it is less than 1 dB. In order to compare more precisely isometric to

1
1’
SINRiia

SINR,_ = In dB) of i.i.d. precoders

ii.d. precoding, we represent in figure 4 the SINR loss (
with respect to isometric ones for various values of a.

As pointed out earlier, we plotted in figure 6 the BER of the MMSE receiver when a
Walsh-Hadamard precoder is used. Here N = 256 and K = 64, 128 and 256, and asymp-
totic theoretical plots are also given for comparison. A relatively close match between the
two types of curves is observed. One must not conclude however that theoretical results
obtained with Haar isometric matrices predict the performance of the Walsh-Hadamard
codes. We simply notice that isometric Haar precoders can do as well as standard Walsh
Hadamard codes in terms of BER.

The influence of N on the system’s performance is shown in figure 5. It can be noticed
here that for N = 128, asymptotic analysis is fairly precise. It is interesting to evaluate also
the pertinence of this analysis in situations where channel gains at different frequencies are
correlated. Regarding this point, only the mild condition A2 need be satisfied. However,
when channel gains are correlated, one can expect that larger values of N are needed to
attain the asymptotic regime. In figure 7, a correlated channel model is generated by
filtering in the frequency domain a Gaussian i.i.d. sequence with a first order transfer
function 1/(1 — az™!). When a = 0.9, channel gains are highly correlated and figure 7

shows a performance degradation for N = 128. When a = 0.6, there is nearly no difference

in performance with the case where channel gains are independent.

IV. CHOICE OF «

In this section, we tackle the problem of finding the value of o that maximizes the
system’s throughput. As said above, the purpose of this analysis is to determine the
amount of redundancy that should be spent on the linear precoder. The need for an

optimum « can be justified intuitively. On the one hand, at fixed bandwidth, choosing «
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close to 1 or even greater than 1 (see remark 8) allows to use small rate error correcting
codes but the effect of the "multi-user interference” significantly decreases the SINR at the
output of the MMSE detector. On the other hand, a small value of a increases the SINR at
the output of the MMSE detector, but higher rate error correcting codes are then needed.
Biglieri et al. [14] and Shamai et al. [15] have already used the spectral efficiency as a tool
for answering the coding versus spreading issue in uplink CDMA with random i.i.d codes.
They have shown in particular that a non-negligible amount of spreading should be spent
when using MMSE receivers if f,—‘; is large enough while a should be chosen greater than
1 for % < 3dB. We look for an extension of such a result to the case where random Haar
matrices are used. a < 1 as well as a > 1 (see again remark 8) will be considered.

In the context of this paper, the throughput is the total number of bit/s/Hz that
can be reliably transmitted with our precoded system equipped with a MMSE receiver.
Our throughput analysis will be confirmed by simulations. Practical convolutional coding
schemes of rates R(«v) are considered with rates satistying aR(a) = 1/2 for different values

of a.

A. Throughput analysis.

The throughput v (o, 0?) is defined by
¥ (a, 02) =aC (a, 02)
where C'(a, 6?) is solution of the equation
C (o, 0%) = log, (1 + SINR(a, 0%)) (17)

It is understood that £}, /Ny = (Co?)™1, see [8] for more details.

We compare the throughput of the current systems to the maximum of the throughput
in the Gaussian (non-fading) channel case, which is of course reached for « = 1. This
upper bound will be called the Gaussian channel bound in the following. It obviously
coincides with the capacity of the standard Gaussian channel. Capacity of the Rayleigh
fading channel is also plotted.

In figure 9, E},/Np is fixed to 10 dB and we plot the throughput versus a in the

Haar distributed and in the i.i.d. code matrices cases. We confirm that Haar precoding
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outperforms i.i.d. precoding. The performance gap becomes clear when o > 0.3 3.

In figure 10, E}, /Ny is fixed to 2 dB and we plot the throughput versus « for Haar
distributed and for i.i.d. code matrices. In contrast with the case where £,/N, = 10 dB,
the optimum value of « in the i.i.d. case is greater than 1. Note however that the gain
between o = 1 and the optimum value of « is not significant. In contrast, the throughput
in the Haar distributed case is optimum for o = 1.

This observation is confirmed in Figure 8 which shows the behavior of the optimum
value of a (i.e. for which the throughput is maximum) with respect to E,/N, for both
Haar distributed (a <1 and a > 1) and i.i.d. cases. In the Haar distributed case, figure
8 shows that nearly no redundancy should be spent on the precoder to maximize the

throughput. In contrast, in the i.i.d case, a significant amount of redundancy is needed

By _

~> = 10dB, the optimum value of a is 0.63.
0

when % > 4dB. For instance, at

In figure 11, we represent the optimum (w.r.t. «) throughput versus £, /Ny in the
isometric and i.i.d case. At % = 15dB, 5.3bit/s/Hz can be reliably transmitted using a
random isometric spreading matrix (o = 0.95) while only 3.2bit/s/Hz can be transmitted
using a random i.i.d spreading matrix (o = 0.68). Notice that the Rayleigh channel
capacity for this value of 5—2 is 7 bit/s/Hz.

We also represent in figure 12 the throughput for different values of « (1,1%,%, %) in
the isometric case. The Gaussian non-fading channel capacity is also represented. One

can notice that for % < a < 1, little can be gained by optimizing «.

B. Performance of practical coding schemes.

Our throughput analysis is sustained in this part by simulations. The input bit stream
is first serial to parallel converted to produce K sub-streams (see figure 1). Each sub-
stream is convolutionnally encoded with a code of rate R and time interleaved. It is
assumed that the same code is used for each sub-stream. The resulting bits of sub-stream

k are then mapped onto a QPSK constellation to produce component k of symbol vector

3As it can be easily shown, the throughput of i.i.d and Haar precoders converges as o — oo to the same value.

|h|?
VIRI2+ g
No

Expanding the term (17) and considering the first term of the Taylor series of (17) together with equation (10)

= log2(e). This result can be obtained by noting that 0—12 = 2B

It is solution of the equation Fj)2 -

yields the result.
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s to be processed by the precoding matrix Wy. It is assumed that a soft-output Viterbi
algorithm is used at the receiver to decode the transmitted bits. The same decoder is
applied on each component of vector s and processes the real and imaginary part of each
component of the de-interleaved output §(n) of the MMSE detector. We note that we
encode each bit sub-stream by the same code independently in order to implement a rea-
sonably simple Viterbi decoder (to be in accordance with the low computational cost of a
MMSE detector). Otherwise the metrics calculation could not be processed on a per com-
ponent basis due to the inter-component noise correlations introduced by the application
of the MMSE equalizer on the received samples. This would exponentially increase the
number of states of the Viterbi algorithm trellis. Note that Schramm et .al [23] conducted

a similar analysis in the case of uplink CDMA with i.i.d random spreading.

In our simulations, different values of a (1, 1%, %, %) are considered and each of them is
associated to a convolutional code of rate R(«). In order to compare the corresponding
systems at fixed spectral efficiency, we assume that aR(a) = % for each a. Figure 13 illus-
trates the performance of the various coded schemes in the isometric case. Our throughput
analysis is in accordance with figure 12 in the sense that the best results are obtained for
a =~ 1. Figure 14 compares the performance of the i.i.d case for the same values of «.
The value % provides significantly better performance in accordance with the throughput

analysis of figures 9 and 8 in the i.i.d. case.

In summary, we have observed in this section that :

e In a system designed with Haar distributed precoding matrices, the optimum trade-
off between the redundancy of the linear precoder and the rate of the convolutional encoder
favors values of a close to 1.

e On the other hand, in the i.i.d. case, non negligible spreading redundancy is needed.

« Random isometric precoders optimized w.r.t. a outperform optimized i.i.d. precoders

significantly in terms of throughput.

V. BACKGROUND ON FREE PROBABILITY THEORY.

This section aims at introducing some useful notions relative to free probability theory.

The interested reader is referred to the comprehensive introduction to this theory in [24].
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A more thorough development is given in [18] and in the nice monograph [20].

A. Algebraic Context

Definition 1: A noncommutative probability space is a couple (A, ¢) where A is a
non commutative unital algebra (i.e., an algebra having a unit denoted by 1) over C and
¢ : A — Cis a linear functional such that ¢(1) = 1.

When ¢ satisfies ¢(ab) = ¢(ba) it is called a trace. As it will appear below, the role of ¢
can be compared to that of expectation in classical probability theory.

Definition 2: Let (A, ¢) be a noncommutative probability space. In the context of
free probability, a random variable is an element a of A. The distribution of a is the linear
functional p, on C[X], the algebra of complex polynomials in one variable, defined by
pu(P) = 6 (P(a).

In particular, the distribution of a non commutative random variable a is characterized
by its moments, i.e. by the sequence (¢(a*))ren. We note that in certain practical cases,
the distribution of a non commutative random variable is associated to a real probability
measure [, (see e.g. the example below) in the sense that ¢(a*) = [, t*dua(t) for each

k € N. In this case, the moments of all orders of y, are of course finite.

B. An Ezample of a Noncommutative Probability Space

We shall consider N x N random matrices whose entries are defined on some com-
mon probability space (meant in the classical sense) and have all their moments finite.
The noncommutative probability space is obtained by associating to the algebra of these

matrices the functional
N

1 1
™(X) = B (tr(X)) = + Z_; E(x;) (18)
which is obviously a trace. This space will be denoted by (Ay, 7n). Suppose X is a random
matrix with real (random) eigenvalues A;, ..., Ay. The real random measure
LN
H= Nzé(&) (19)
i=1

is called empirical eigenvalue distribution of X. The k™ moment of this probability mea-

sure is +tr(X") = L3V AF. The distribution px of X is defined by the fact that its

i
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action on each monomial X* of C[X] is given by
LN
Px(Xk) = N(Xk) = N(Z E()\f))

i=1
This distribution is of course associated to the probability measure pux defined by
| X
[ Fdux(v = (30 EGO)
i=1

for each bounded continuous function.

C. The Joint Distribution

The notion of distribution introduced in definition 2 can be generalized to the case of

multiple random variables. Let a; and as be two random variables in a noncommutative

?

the form X,L.kllXi’Z2 .. .XZZ”, where for all j, i; € {1,2} , k; > 1 and i; # i;41. The algebra

probability space (A, ¢). Consider noncommutative monomials in two indeterminates, of

C(X1, X3) of noncommutative polynomials with two indeterminates will be the linear span
of 1 and these noncommutative monomials. The joint distribution of a; and as is the linear

functional on C(Xy, X5) satisfying

p C(X1, Xo) o C
XPXE X e p(XPX[E LX) = (aftal? . al)

i1 Vig * i
More generally, denote by C(X;|i € {1,...,1}) the algebra of non commutative polyno-
mials in [ variables, which is the linear span of 1 and noncommutative monomials of the
form XikllXi’z2 .. .Xi’i” where k; > 1 and 4 # 12, 42 # i3, ..., in_1 7 iy are less than or
equal to /. The joint distribution of the random variables {a;}icq1,..n in (4, ¢) is the

linear functional:

p  CX;lied{l,....I}) — C
XPxk X e p(XPX[E LX) = ¢(alta® . afm)

i1 12 in

(20)

In short, the joint distribution of the noncommutative random variables {ai}ie{l,..., s

completely specified by their joint moments.
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D. Freeness

Definition 3: Let (4, ¢) be anoncommutative probability space. A family {A;}ic1,..ny

of unital subalgebras of A is called free if ¢(ajas...a,) = 0 for all n-uples (aq,...,a,)
verifying:
(i) a; € Ay, for some i; < I and 4y # ia, 12 # 3, -+, Gn-1 7 In.

(ii) ¢(a;) =0forall j=1,...,n.

A family of subsets of A is free if the family of unital subalgebras generated by each one of
them is free. Random variables ay, ..., a, are free if the family of subsets {{a1},...,{a,}}
is free.

Notice that in the statement of condition (i), only two successive random variables in the
argument of ¢(ajasy...a,) belong to two different subalgebras. This condition does not
forbid the fact that, for instance, i; = 3. Note in particular that if a; and ay belong to two
different free algebras, then ¢(ajazaias) = 0 whenever ¢(a;) = ¢(az) = 0. This relation
cannot of course hold if a; and as are two real valued independent random variables (in the
classical sense) and if ¢ coincides with the classical mathematical expectation operator.
Therefore, freeness cannot be considered as a noncommutative generalization of indepen-
dence because algebras generated by independent random variables in the classical sense

are not free.

Let us make a simple computation involving freeness. A; and As being two free sub-
algebras in A, any two elements a; and as of A; and A, respectively can be written as

a; = ¢(a;)1 + aj, so ¢(aj) = 0. Now

P(araz) = ¢ ((#(a1)l + a}) (p(az)l + ay)) = ¢(a1)p(az)

in other words, the expectations of two free random variables factorize. By decomposing a
random variable a; into ¢(a;)1+al, the principle of this computation can be generalized to
the case of more than two random variables and/or to the case of higher order moments,
and one can check that noncommutativity plays a central role there.

Proposition 1 ([24]) Let {A;}icqr,...1y be free subalgebras in (A, ¢) and let {ay, ... a,} C
A be such that for all j = 1,...,n, one has a; € Ay, i; < 1. Let 11 be the partition of
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{1,....,n} associated to the equivalence relation j = k < i; = iy (i.e. the r.vs. a; are
gathered together according to the free algebras to whom they belong) . For each partition
of {1,....n}, let ¢ = [ qji,..iver O(a;, - .. a;,.). There exists universal coefficients c(m,II)

n<..<jgr

such that

olay...a,) = Z c(m, 1),

n<Il
where "m < I17 stands for "m is finer than 117,

One consequence of this proposition is that given a family of free algebras {Ai}ie{l,.__, n in
A, only restrictions of ¢ to the algebras A; are needed to compute ¢(ay,...,a,) for any
ay,...,a, € A such that for all j = 1,...,n, one has a; € A;;, i; < I. The problem of
computing explicitly the universal coefficients (7, IT) has been solved using a combinatorial

approach.

E. Free Multiplication

Let p and v be two compactly supported probability measures on [0, 00]. Then [20],
it always exists two free random variables a; and as in some noncommutative probability
space (A, ¢) having their distributions associated to p and v respectively. One can see
that the distribution of the random variable a;as depends only on i and on v. The reason
for this is the following: definition 2 says that distribution of a;a» is fully characterized by
the moments ¢ ((ajaz)™). To compute these moments, we would just need the restriction
of ¢ to the algebras generated by {a;} and {as}, in other words, ¢ ((a1a2)™) depends on
the moments of a; and a, only. It can be shown that the distribution of a;a, is associated
to a probability measure called free multiplicative convolution of the distributions p and
v of these variables. It is denoted by p X v and is compactly supported on [0, co] ([18, p.
30]) . Multiplicative free convolution is commutative, and moments of u X v are related
in a universal manner to the moments of p and to those of v. It happens that direct
computation of the moments of a multiplicative free convolution is hardly practicable. It
is feasible on the other hand using tools of analytic function theory. By the use of the
so-called S-transform introduced in [25], multiplicative free convolution is converted into
a mere multiplication of power series:

Proposition 2: Given a probability measure p on R with compact support, let 1,,(2)
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be the formal power series defined by

@)= [ dut = [ 2 dute) (21)

k>1

Let x,, be the unique function analytic in a neighborhood of 0, satisfying

Xp(Yu(2)) = 2 (22)

for |z| small enough. Let

1+ 2
— -

Su(z) = Xu (2) (23)

S, is called the S-transform of p, and the S-transform S, x, of WX v is given by

Suxy = SuSy -

There is also a result in the same vein for additive free convolution. It will not be needed

in this paper but the interested reader is referred to [18].

F. Free Probability and Random Matrices

Voiculescu discovered very important relations between free probability theory and
random matrix theory. Random matrices are typical noncommutative random variables as
can be seen in the example in paragraph V-B. In [26], it is shown that certain independent
matrix models exhibit asymptotic free relations.

Definition 4: Let {XN,Z-}Z-E{L”_J} be a family of random N x N matrices that belong
to the noncommutative probability space (Ay, 7n) defined in paragraph V-B. Their joint
distribution is said to have a limit distribution p on C(X;|i € {1,...,1}) as N — oo if

p(XE Xy = Tim oy (XR, LX)

—00

for any noncommutative monomial in C(X;|i € {1,...,1}).

Consider the particular case where I = 1 (we denote Xy ; by X to simplify the notations),
and assume Xy has real eigenvalues and that the distribution of Xy has a limit distribution
p. Then, for each k > 0,

p(X*) = lim [ dux (1) (24)
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where px, is the measure associated to the distribution of Xy.
Remark 9: If p is associated to a compactly supported probability measure p, the
convergence of the moments of ux, to the moments of p expressed by (24) implies that

the sequence (px, )ven converges weakly to p, i.e.

[ 10 ~ tim_ [ fodux, 0 (25)

for each continuous bounded function f(t) (see e.g. [27]). *

Definition 5: The family {Xy,;}icq1,...r; of random matrices in (Ay, 7y) is said to be
asymptotically free if the two following conditions are satisfied:

(1) For every integer i € {1,...,1}, Xy, has a limit distribution on C[X;].

(ii) For every family of integers {iy,...,i,} in {1,..., I} verifying ¢y # i, ... 0, 1 #

in, and for every family of polynomials { P, ..., P,} in one indeterminate verifying
Jim 7y (P;(Xyy,)) =0forj=1,...,n (26)
we have

lim 7y (H Pj(XN,Z-j)> -0. (27)
(i) and (ii) are together equivalent to t}i; 1two following conditions: the family {Xx;} has
a joint limit distribution that we denote by p on C(X;|i € {1,...,I}), and the family
of algebras {C[X;]}icq1,..n is free in the noncommutative probability space (C(X;|i €
{1,...,1}),p).
The kind of asymptotic freeness introduced by Hiai and Petz is more useful for our purpose
because it deals with almost sure convergence under the normalized classical matrix traces
instead of convergence under the functionals 7y. Following [20], the family {Xyi}icq,..1}
in (A, 7y) is said to have a (non random) limit p almost everywhere if

, 1
p(XF .. X[ = lim Ntr(Xﬁ}’il . X%‘Zn) a.s.

N—o0

for any noncommutative monomial in C(X; |7 € {1,...,1}). In the case where N =1

and Xy has real eigenvalues, if the almost sure limit distribution of X is associated to a

“Convergence of moments implies weak convergence if the function z — J e®Zdu(t) is analytic in a neighborhood

of 0, a condition which is clearly met is p is compactly supported.
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compactly supported probability measure pu, this condition means that

[ i = g~ 3 ) o

for each continuous bounded function f(¢). In other words, the empirical eigenvalue dis-

tribution of X converges almost surely in distribution to the measure pu.

The family {Xny;}ticqi,..,rp in (Ay, 7y) is said to be asymptotically free almost every-
where if for every i € {1,..., I}, Xy, has a non random limit distribution on C[.X;] almost
everywhere, and if the condition (i) above is satisfied with 7y() replaced by tr()/N in
equations (26) and (27) and the limits there are understood as almost sure limits. These
conditions imply in particular that {Xy;} has a non random limit distribution almost
everywhere on C(X; |i € {1,...,I}).

The first concrete random matrix models exhibiting asymptotic freeness were given in [26).
We now give [20, proposition 4.3.9] a useful asymptotic freeness theorem

Theorem 3: Let Dy and Ex be N x N Hermitian random matrices, and let ©
be a Haar distributed unitary random matriz independent from Dy and Ey. Assume
that the empirical eigenvalue distributions of Dy and of Ex converge almost surely to-
ward compactly supported probability distributions. Then, the family {Dy, @NENG%} 18

asymptotically free almost everywhere as N — oo.

G. An Application Example

Assume that Hy and Wy satisfy the assumptions Al to A4 formulated in section
I1. Put Dy = HYHy, and denote by dv(t) = p(t)dt the compactly supported probability
distribution of the diagonal entries of this matrix. As relation (3) holds, the empirical
eigenvalue distribution of Dy converges weakly almost everywhere to the probability dis-
tribution v.
Wy is obtained by extracting K columns from a N x N Haar distributed random unitary
matrix © . Without loss of generality, this matrix can be written as Wy = @ yEy, where
the N x N matrix Ey has the structure Ey = diag([1,...,1,0,...,0]) with tr(Ey) = K.

Assume that K/N — a <1 when N — oo. Then, the empirical eigenvalue distribution of
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Ey converges to = ad(1) 4+ (1 — «)d(0). Conditions of theorem 3 are satisfied and then
the family {HRHy , WyWE = OyEyOI} is asymptotically free.

This allows to derive the almost sure limit eigenvalue distribution of WyWEHEH .
To see this, denote by p the a.s. limit distribution of {WxWX HEHy} in C(X;, X3). In
particular, for each k € N,

. 1 ,
(X X)") = Tim <tr(WyWIHTHN)Y) (28)

Distributions of the monomials X7 and X, are associated to the compactly supported mea-
sures p and v respectively. As X7 and X, are free, the distribution of X; X5 is associated
to the measure pXv. As v is also compactly supported, (28) and remark 9 imply that
the empirical eigenvalue distribution of WyWXHEHy converges weakly to X v. The
easiest way to evaluate pu X v consists in using the fact that the S-transform of p X v is
the product of the S-transform of p by the S-transform of v. Let us precise this using the
same notations as in proposition 2. It is obvious that the function v,(z) associated to p

there is given by

After a simple calculation, we get that its inverse x,(z) is given by

z
Xu(2) = a+z
From S,x, = 5,5, and equation (23), we have
1+ 2z
l2) = ()
We infer that
_ _ 14+ dumu(2)
2= X (Y (2)) = — o (o) (Yumw(2))
and hence
o+ %&/(2))
W) =WV |\ R —— . 29
bul?) = b ot ads (29)

Therefore, the function ,x,(2), which in principle, characterizes the measure p X v, is

obtained by solving equation (29).
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VI. PrROOF OF THEOREM 1.

In this section, we assume A1l to A4 and establish theorem 1. The easy case a = 1
has already been considered in section II, so we just concentrate on the case where a@ < 1.
We first recall the following useful result of [19] and [12] :

Lemma 1: Let zy be a N x 1 random vector and By a N x N random matrix
independent of zy. Assume that the elements of zy are centered i.i.d. random variables
with unit variance and a finite eighth order moment and that supyey |Bn|| < 400 where
| || denotes the spectral norm (this spectral norm is said uniformly bounded). Denote by

&n the random variable defined by

é.N = % (ZgBNZN — tI‘(BN))
Then,
E (en]!) < C/N? (30)

where (' is independent of N.

Using lemma 1, 3, in the i.i.d. case can be evaluated immediately : wy and
Fy — HY (HyUNUSHE +0°1y) " Hy (31)

are independent. Therefore, By, and %tr (Fx) have the same asymptotic behavior. This,
in conjunction with the results of [17], allows to evaluate the limit of the SINR. Details
are given in the appendix.

The main technical problem encountered in the case where Wy is isometric follows
from the observation that, in contrast with the i.i.d. case, wy and Uy are no more
independent. Therefore, wy and H% (H ~yU NU%H% +0°1 N)_l H are not independent.

It is however possible to show that (3, and

ot (I — Uy U HA (HyUyUTHY 4 6°1y) " Hy(Iy — UNUﬁ))

have the same behavior. This result can be used to address the more general case where the

components of s have different powers (see [22] for more details). The equal power context

of the present paper permits actually to use a simpler method . Instead of studying Sy,

5We thank one of the reviewers for having suggested the idea of the present approach.
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we rather consider the asymptotic behavior of 7y, given by equation (6) and related to

Bwy by equation (5). The idea here is to remark that the K x K matrix Ay defined by
Ay = WHHE (HyWyWEIHEY + 0%1y) " Hy Wy (32)

is unitarily invariant, thanks to the fact that Wy is extracted from a Haar distributed
random unitary matrix. Let Qx be a K x K Haar distributed unitary matrix inde-
pendent of Wy and Hy. Then, Ay and QgANQK have the same distribution. Let
ex =10,...,0,1,0,...,0]% be the K x 1 column selection vector such that wy = W yey,
and denote by wyg the vector 2xex. Then, because Ay and QgANQ & have the same
distribution, so do 7w, = ek Ayex and W Aywr = ek QL ANQxer. In particular, the
following identity holds :

4
=F

4
=L

4

1
Nwn — _tr(AN)

E
K

1 1
ngNwK — ?tr(QgANQK) ngNwK — ?tr(AN)

(33)

It is known ([20]) that vector wy is uniformly distributed on the unit sphere of CX| and
can therefore be written as wi = F&5 for some complex N(0,1x) K—dimensional random
vector, where A stands for the normal distribution. Put fy = wﬁANw K — %tr(A ~) and

write fN = fl,N + fQ’N where fLN and fQ’N are defined by

XgANXK XII?ANXK

=" T K

and

1
f2,N - E (XgANXK — tI‘(AN))

Then, E|fx]* < 8(E|fin]* + Elfon|*). We first use lemma 1 to show that E|fon|* =
O(N%). As Wy, Hy and xg are independent, Ay and xg are also independent. More-
over, the spectral norm of (HyWyWEHE +021N)_1 is uniformly bounded by 1/02.
As ||Hyl| is uniformly bounded, the inequality ||[CDJ|| < ||C| |[|D|| implies that Ay is
uniformly bounded. Furthermore, xx meets the conditions of lemma 1 since it has
Gaussian independent elements. This lemma and the fact that % — « imply that
E|fon|* = O(N7?) (replace N by K, zy by xx and By by Ay). By the first Borel-

Cantelli Lemma, E|faon|* = O(N™2) implies that fo y converges to 0 almost surely.
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Let us now study the behavior of E|fLN|4. fi,n can be written as

le _ (XgANXK) ( K _ 1)
’ K Ixx|]? '

As fo n converges to 0 almost surely,

X%ANXK 2tr(AN)
K K

<2||An]| as.

for N large enough. The last inequality comes from the facts that for a given matrix X,
tr(X) < || X| rank(X), and that the rank of A y does not exceed K. As supyey [|An|| < o0,
(x[FAnxg) /K is bounded almost everywhere.

|Ixx||? is x? distributed with 2K degrees of freedom. Its probability density is the function
Ke_t, and a straightforward computation shows that

| E <|L — 1)4 =0O(K?)

% |?
which is O(N7?) if K/N — a.
As (xjfAnxr) /K is bounded almost everywhere, we get that F| fi y|* = O(N~?). Putting
all the pieces together, this implies that E|fy|* = O(N?), and that fy converges almost
surely to 0.
Using equation (33), we get immediately the following result :

Proposition 3: Assume that K/N — a when N — +o00. Then,

i tI‘(AN)
N _13_100 Thw K
It remains to study the asymptotic behavior of tr(Ay)/K, which coincides with the be-

=0 as. (34)

havior of

1 1
— lim Ntr((HNWNWﬁH{Vf+a2IN)—1HNWNWﬁH%) :

o N—oo
For this, we use the results and keep the notations of subsection V-G. It is shown there
that the empirical eigenvalue distribution, denoted here dfy, of W yWXHEH y converges

weakly almost surely to the compactly supported measure p X v. But, the eigenvalues of

HyWyWEHE of course coincide with the eigenvalues of WyWXHIH y. Therefore,

1 t
i (HyWyWHHY + 0’Ly) 'HyWyWHIHY) = / o don(t) . (35)
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The function ¢(t) = t/(t + 02) is continuous and bounded for ¢ > 0. Therefore, 7y,
converges almost surely toward 77 defined by

7= l/ ! dpuRu(t) .

a ) t+o?

This shows that Gy, = IT;N converges almost surely toward 3 =75/(1 —7).
WN
Equation (29) gives an expression for v,x,, which is related to p X v by (21). It can
be easily checked from this last equation that

_ 1 1
n= _a ¢M|Z|V(_§) .

Replacing in (29), we have after some simple manipulations

_aB o (_ a
1+73 %( 02(1+B(1—a))> '

The result is obtained after developing 1, according to (21) and replacing dv(t) by p(t) dt.

APPENDIX
I. SKETCH OF THE PROOF OF THEOREM 2.

In this appendix, we briefly justify theorem 2. Recall that the SINR (3, is given by
ﬁwN = W]%FNWN
where Fy is defined in (31). This matrix can also be written
Fy = (UyUR +?HyHEDH .

Using assumption A4, it is easily seen that supy ||Fy|| < co. As wy and Fy are inde-

tT‘(FN)

pendent, lemma 1 implies that By, — =%

converges to 0 almost surely when N — oc.

N)

In order to evaluate the behavior of %, we use the results of [17]. We first recall

that if p is a probability measure, its Stieltjes transform is the function m,(z) defined by

i (2) = / du(t)

t—z

Assumption A2’ implies that the empirical eigenvalue distribution of (HyHZY)™! converges

1

weakly to the distribution of random variable EL

i.e. the measure v defined by dv(t) =
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%dt. The results of [17] immediately imply that the empirical eigenvalue distribution of
UyUL + o?2(HyHI) ™! converges weakly almost surely to a probability measure v whose
Stieltjes transform m.,(z) is defined by the equation

(@) =m (2= o) (36)

(1+m,(2)

As moreover the eigenvalues of Uy U% + o(HyHE) ! are greater than d = — > 0 (recall
that ¢ is the upper bound of the |h;|?), the measure v is carried by [d, oo]. The function
t — 1/t is bounded and continuous on [d,00]. The weak convergence of the empirical
eigenvalue distribution of UyU®X + o?(HyHI)™! thus implies that
tr(F 1
i TE) L
d

N—oxo N

almost surely. Therefore, the SINR converges almost surely to [ doo % d~(t), which coincides

with m.(0). Equation (10) follows directly from relation (36).

s(i) y(0) $(i)

hy ni
~%—0 -
—| Precoding ‘é ‘é > Wiener [
- | matrix equalization| :
Wy
- e ¢
hy  ny

Fig. 1. System Model
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