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Abstract This paper studies the asymptotic behavior of the constant step Stochastic Gradient
Descent for the minimization of an unknown function F , defined as the expectation of a non convex,
non smooth, locally Lipschitz random function. As the gradient may not exist, it is replaced by a
certain operator: a reasonable choice is to use an element of the Clarke subdifferential of the random
function; another choice is the output of the celebrated backpropagation algorithm, which is popular
amongst practioners, and whose properties have recently been studied by Bolte and Pauwels [8]. Since
the expectation of the chosen operator is not in general an element of the Clarke subdifferential BF
of the mean function, it has been assumed in the literature that an oracle of BF is available. As a first
result, it is shown in this paper that such an oracle is not needed for almost all initialization points
of the algorithm. Next, in the small step size regime, it is shown that the interpolated trajectory
of the algorithm converges in probability (in the compact convergence sense) towards the set of
solutions of the differential inclusion 9x “ ´BF pxq. Finally, viewing the iterates as a Markov chain
whose transition kernel is indexed by the step size, it is shown that the invariant distribution of the
kernel converge weakly to the set of invariant distribution of this differential inclusion as the step
size tends to zero. These results show that when the step size is small, with large probability, the
iterates eventually lie in a neighborhood of the critical points of the mean function F .
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1 Introduction

In this work, we study the asymptotic behavior of the constant step Stochastic Gradient Descent
(SGD) when the objective function is neither differentiable nor convex. Given an integer d ě 1 and
a probability space pΞ,T , µq, let f : Rd ˆΞ Ñ R, px, sq ÞÑ fpx, sq be a function which is assumed to
be locally Lipschitz, generally non-differentiable and non-convex in the variable x, and µ-integrable
in the variable s. The goal is to find a local minimum, or at least a critical point of the function
F pxq “

ş

fpx, sqµpdsq “ Efpx, ¨q, i.e., a point x‹ such that 0 P BF px‹q, where BF is the so-called
Clarke subdifferential of F . It is assumed that the function f is available to the observer along with a
sequence of independent Ξ-valued random variables pξkqkPN on some probability space with the same
probability law µ. The function F itself is assumed unknown due to, e.g., the difficulty of computing
the integral Efpx, ¨q. Such non-smooth and non-convex problems are frequently encountered in the
field of statistical learning. For instance this type of problem arises in the study of neural networks
when the activation function is non-smooth, which is the case of the commonly used ReLU function.

We establish the weak convergence of SGD to the set of (Clarke) critical points of F . Our main
contributions are:

– We investigate the constant step size regime, whereas most works address the vanishing step size
regime.

– We study an oracle-free version of SGD, which does not require to have access to the Clarke
subgradient of the unknown function F .

To that end, our main hypotheses is that the function F is Whitney stratifiable. We also need to posit
that the sequence of iterates is bounded in probability. Boundedness assumptions are quite standard
in stochastic approximation, we nevertheless provide sufficient conditions: first, it holds when F is
assumed coercive and smooth outside an arbitrary compact set; second, it naturally holds in the case
of projected SGD i.e., when the iterates are projected onto some compact set. The convergence of
the projected SGD is as well addressed in the paper.

We say that a sequence of random variables pxnqnPN on Rd is a SGD sequence with step size
γ ą 0 if, with probability one,

xn`1 “ xn ´ γ∇fpxn, ξn`1q (1)

for every n such that the function fp¨, ξn`1q is differentiable at point xn, where ∇fpxn, ξn`1q rep-
resents the gradient w.r.t. the variable xn. When fp¨, ξn`1q is non-differentiable at xn, the update
equation xn Ñ xn`1 is left undefined. The practioner is free to choose the value of xn`1 accord-
ing to a predetermined selection policy. Typically, a reasonable choice is to select xn`1 in the set
xn ´ γBfpxn, ξn`1q, where Bfpx, sq represents the Clarke subdifferential of the function fp¨, sq at the
point x. When such a policy is used, the resulting sequence will be referred to as a Clarke-SGD
sequence. In fact, our study extends to the case where xn`1 is chosen in the set xn ´ γGfp¨,ξn`1q

,
where Gfp¨,ξn`1q

is a generalized subdifferential of fp¨, ξn`1q in Norkin’s sense [24] (we refer to such
a sequence as a Norkin-SGD sequence). The Clarke subdifferential is a special case of generalized
subdifferential.

An alternative used by practioners is to compute the derivative using the automatic differentiation
provided in popular API’s such as Tensorflow, PyTorch, etc. i.e., for all n,

xn`1 “ xn ´ γafp¨,ξn`1q
pxnq (2)

where ah stands for the output of the automatic differentiation applied to a function h. We refer to
such a sequence as an autograd sequence. This approach is useful when fp¨, sq is a composition of
matrix multiplications and non-linear activation functions, of the form

fpx, sq “ `pσLpWLσL´1pWL´1 ¨ ¨ ¨σ1pW1Xsqqq, Ysq , (3)

where x “ pW1, ¨ ¨ ¨ ,WLq are the weights of the network represented by a finite sequence of L
matrices, σ1, ¨ ¨ ¨ , σL are vector-valued functions, Xs is a feature vector, Ys is a label and `p¨, ¨q is
some loss function. In such a case, the automatic differentiation is computed using the chain rule of
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function differentiation, by means of the celebrated backpropagation algorithm. When the mappings
σ1, ¨ ¨ ¨ , σL, `p¨, Ysq are differentiable, the chain rule indeed applies and the output coincides with
the gradient. However, the chain rule fails in case of non-differentiable functions. The properties
of the map ah are studied in the recent work [8]. In general, ahpxq may not be an element of the
Clarke-subdifferential Bhpxq. It can even happen that ahpxq ‰ ∇hpxq at some points x where h is
differentiable. However, the set of such peculiar points is proved to be Lebesgue negligible. As a
consequence, if the initial point x0 is chosen random according to some density w.r.t. the Lebesgue
measure, an autograd sequence can be shown to be a SGD sequence in the sense of Equation (1)
under some conditions. The aim of this paper is to analyze the asymptotic behavior of SGD sequences
in the case where the step γ is constant.

About the literature. In the nonsmooth and non convex case, the convergence of SGD has
been studied in [13] and [12] using the concept of generalized differentiability [24], and assuming a
Sard-like condition on the critical set. More recently, using a differential inclusion (DI) approach, the
papers [10] provide a similar result under the additional assumption that the objective function is
Whitney-stratifiable (see also [21], in the particular case of subdifferentially regular functions). These
papers make two major hypotheses on the algorithm under study, which we avoid in this paper.

The first major hypothesis in the above papers if the fact that the step size is vanishing, i.e., γ
is replaced with a sequence pγnq that tends to zero as nÑ 8. From a theoretical point of view, the
vanishing step size is convenient because, under various assumptions, it allows to demonstrate the
almost sure convergence of the iterates xn to the set

Z :“ tx P Rd : 0 P BF pxqu (4)

of critical points of F . However, in practical applications such as neural nets, a vanishing step size is
rarely used because of slow convergence issues. In most computational frameworks, a possibly small
but nevertheless constant step size is used by default. The price to pay is that the iterates are no
longer expected to converge almost surely to the set Z but to fluctuate in the vicinity of Z as n is
large. In this paper, we aim at establishing a result of the type

@ε ą 0, lim sup
nÑ8

Ppdpxn,Zq ą εq ÝÝÝÑ
γÓ0

0, (5)

where d is the Euclidean distance between xn and the set Z. Although this result is weaker than in
the vanishing step case, constant step stochastic algorithms can reach a neighborhood of Z faster
than their decreasing step analogues, which is an important advantage in the applications where
the accuracy of the estimates is not essential. Moreover, in practice they are able to cope with non
stationary or slowly changing environments which are frequently encountered in signal processing,
and possibly track a changing set of solutions [5,19].

The second important difference between the present paper and the papers [21,10] lies in the
algorithm under study. In these papers, the iterates are supposed to satisfy the inclusion

xn`1 ´ xn
γn`1

P ´BF pxnq ` ηn`1 (6)

for all n, where pηnq is a martingale increment noise w.r.t. the filtration pσpx0, ξ1, . . . , ξnqqně1. Under
the assumption that γn Ñ 0 as nÑ 8, the authors of [21,10] prove that almost surely, the continuous
time linearly interpolated process constructed from a sequence pxnq satisfying (6) is a so-called
asymptotic pseudotrajectory [4] of the Differential Inclusion (DI)

9xptq P ´BF pxptqq , (7)

that will be defined on R` “ r0,8q. Heuristically, this means that a sequence pxnq satisfying (6)
shadows a solution to (7) as n tends to infinity. This result is one of the key ingredients to establish
the almost sure convergence of xn to the set Z. Unfortunately, a SGD sequence does not satisfy the
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condition (6) in general (setting apart the fact that γ is constant). To be more precise, consider a
Clarke-SGD sequence as defined above. For all n, xn`1 “ xn ´ γBfpxn, ξn`1q, which in turn implies

xn`1 ´ xn
γ

P ´EBfpxn, . q ` ηn`1 ,

where pηnq is a martingale increment noise sequence, and where EBfpx, . q represents the set-valued
expectation

ş

Bfpx, sqdµpsq. The above inclusion is analogous to (6) in the case where BF pxq “
EBfpx, ¨q for all x i.e., if one can interchange the expectation E and the Clarke subdifferential operator
B. Although the interchange holds if e.g., the functions fp¨, sq are convex (in which case Bfpx, sq would
coincide with the classical convex subdifferential), one has in general BEfpx, ¨q Ă EBfpx, ¨q and the
inclusion can be strict [9, Proposition 2.2.2]. As a consequence, a Clarke-SGD sequence does not
admit the oracle form (6) in general. For such a sequence, the corresponding DI reads

9xptq P ´EBfpxptq, . q , (8)

but unfortunately, the flow of this DI may contain spurious equilibria (an example is provided in
the paper). In [21] the authors restrict their analysis to regular functions [9, §2.4], for which the
interchange of the expectation and the subdifferentiation applies. However, this assumption can be
restrictive, since a function as simple as ´|x| is not regular at the critical point zero. The issue of the
absence of interchange between the expectation and the Clarke subdifferential was addressed in [12]
using the notion of generalized differentiability. In this work, the convergence is established towards
the set of zeroes of the generalized subdifferential of F . However, this set can be substantially larger
than the set Z of critical points.

A second example where the oracle form of Equation (6) does not hold is given by autograd
sequences. Such an example is studied in [8], assuming that the step size is vanishing and that ξ
takes its values over a finite set. It is proved that the autograd sequence is an almost sure asymp-
totic pseudotrajectory of the DI 9xptq P ´Dpxptqq, for some set-valued map D which is shown to be
a conservative field with F as a potential. Properties of conservative fields are studied in [8]. In
particular, it is proved that D “ t∇fu Lebesgue almost everywhere. Despite this property, the DI
9xptq P ´Dpxptqq substantially differs from (7). Again, the set of equilibria may be strictly larger than
the set Z of critical points of F .

We finally mention the paper [27], which studies an inertial version of SGD in the vanishing step
size regime. Similarly to [21,10] and contrary to the present paper, the author assumes the oracle
form of Equation (6). The almost sure convergence is established, under the rather weak assumption
that F is differentiable in Norkin’s generalized sense.

Contributions

– We analyze the SGD algorithm (1) in the non-smooth, non-convex setting, under realistic as-
sumptions: the step size is assumed to be constant along the iterations, and we neither assume
the regularity of the functions involved, nor the knowledge of an oracle of BF as in (6). Our
assumptions encompass Clarke SGD sequences, autograd and Norkin SGD sequences as special
cases.

– Under mild conditions, we prove that when the initialization x0 is randomly chosen with a density,
all SGD sequences coincide almost surely, irrespective to the particular selection policy used at
the points of non-differentiability. In this case, xn almost never hits a non-differentiable point of
fp¨, ξn`1q and Equation (1) actually holds for all n. Moreover, we prove that

xn`1 ´ xn
γ

“ ´∇F pxnq ` ηn`1 ,

where pηnq is a martingale difference sequence, and ∇F pxnq is the true gradient of F at xn. This
argument allows to bypass the oracle assumption of [21,10].
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– We establish that the continuous process obtained by piecewise affine interpolation of pxnq is a
weak asymptotic pseudotrajectory of the DI (7). In other words, the interpolated process converges
in probability to the set of solutions to the DI, as γ Ñ 0, for the metric of uniform convergence
on compact intervals.

– We establish the long run convergence of the iterates xn to the set Z of Clarke critical points of F ,
in the sense of Equation (5). This result holds under two main assumptions. First, it assumed that
F admits a chain rule, which is satisfied for instance if F is a so-called tame function. Second,
we assume a standard drift condition on the Markov chain (1). Finally, we provide verifiable
conditions of the functions fp¨, sq under which the drift condition holds.

– In many practical situations, the drift conditions alluded to above are not satisfied. To circumvent
this issue, we analyze a projected version of the SGD algorithm, which is similar in its principle
to the well-known projected gradient algorithm in the classical stochastic approximation theory.

Paper organization

Section 2 recalls some known facts about Clarke subdifferentials, conservative fields and differential
inclusions. In Section 3, we study the elementary properties of almost-everywhere gradient functions,
defined as the functions ϕpx, sq which coincide with ∇fpx, sq almost everywhere. Practical examples
are provided. In Section 4, we study the elementary properties of SGD sequences. Section 5 establishes
the convergence in probability of the interpolated process to the set of solutions to the DI. In
Section 6, we establish the long run convergence of the iterates to the set of Clarke critical points.
Section 7 is devoted to the projected subgradient algorithm. The proofs are found in Section 8.

2 Preliminaries

2.1 Notations

If ν, ν1 are two measures on some measurable space pΩ,Fq, ν ! ν1 means that ν is absolutely
continuous w.r.t. ν. The ν-completion of F is defined as the sigma-algebra consisting of the sets
S Ă Ω such that there exist A,B P F with A Ă S Ă B and νpBzAq “ 0. For these sets, νpSq “ νpAq.

If E is a metric space, we denote by BpEq the Borel sigma field on E. Let d be an integer.
We denote by MpRdq the set of probability measures on BpRdq and by M1pRdq :“ tν P MpRdq :
ş

}x}νpdxq ă 8u. We denote as λd the Lebesgue measure on Rd. When the dimension is clear from
the context, we denote as λ this Lebesgue measure. For a subset K Ă Rd, we denote by

MabspKq :“ tν PMpRdq : ν ! λ and supppνq Ă Ku ,

where supppνq represents the support of ν.
If P is a Markov kernel on Rd and g : Rd Ñ R is a measurable function, Pg represents the function

on Rd Ñ R given by Pgpxq “
ş

P px,dyqgpyq, whenever the integral is well-defined (the integral is
understood in the weak sense). For every measure π PMpRdq, we denote by πP the measure given
by πP “

ş

πpdxqP px, ¨q. We use the notation πpgq “
ş

g dπ whenever the integral is well-defined.
For every x P Rd, r ą 0, Bpx, rq is the open Euclidean ball with center x and radius r. The

notation 1A stands for the indicator function of a set A, equal to one on that set and to zero
otherwise. The notation Ac represents the complementary set of a set A and clpAq its closure.

2.2 Subdifferentials and Conservative Fields

A set valued map H : Rd Ñ Rd is a map such that for each x P Rd, Hpxq is a subset of Rd. We say
that H is upper semi continuous, if its graph tpx, yq : y P Hpxqu is closed in Rdˆd. For any function
F : Rd Ñ R, we denote by DF the set of points x P Rd such that F is differentiable at x. If F is
locally Lipschitz continuous, it is by Rademacher’s theorem almost everywhere differentiable. In this
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case, the Clarke’s subdifferential of F coincides with the set-valued map BF : Rd Ñ Rd given for all
x P Rd by

BF pxq “ co
!

y P Rd : DpxnqnPN P DN
F s.t. pxn,∇F pxnqq Ñ px, yq

)

,

where co stands for the convex hull [9].

We now briefly review some recent results of [8]. A set-valued map D : Rd Ñ Rd is called a
conservative field, if for each x P Rd, Dpxq is a nonempty and compact subset of Rd, D has a closed
graph, and for each absolutely continuous a : r0, 1s Ñ Rd, with ap0q “ ap1q, it holds that:

ż 1

0
min

vPDpaptqq
x 9aptq, vy dt “

ż 1

0
max

vPDpaptqq
x 9aptq, vy dt “ 0 .

We say that a function F : Rd Ñ R is a potential for the conservative field D if for every x P Rd and
every absolutely continuous a : r0, 1s Ñ Rd, with ap0q “ 0 and ap1q “ x,

F pxq “ F p0q `

ż 1

0
min

vPDpaptqq
x 9aptq, vy dt . (9)

In this case, such a function F is locally Lipschitz continuous, and for every absolutely continuous
curve a : r0, 1s Ñ Rd, the function t ÞÑ F paptqq satisfies for almost every t P r0, 1s,

d

dt
F paptqq “ xv, 9aptqy p@v P Dpaptqqq ,

that is to say, F admits a “chain rule” [8, Lemma 2]. Moreover, by [8, Theorem 1], it holds that
D “ t∇F u Lebesgue almost everywhere.

We say that a function F is path differentiable if there exists a conservative field D such that F
is a potential for D. If F is path differentiable, then the Clarke subdifferential BF is a conservative
field for the potential F [8, Corollary 2]. Another useful example of a conservative field for composite
functions is the automatic differentiation field [8, Section 5]. A broad class of functions used in
optimization are path differentiable, e.g. any convex, concave, regular or tame. A tame function is a
function defined in some o-minimal structure ([11]), they enjoy some nice stability properties such as
any elementary operation on them remain tame (e.g. composition, sum, inverse). The domain f of a
tame function admits a so-called Whitney stratification, that is to say a collection of manifolds pSiq
on each of which f is smooth with the additional property that the various gradients fit well together
(see [7] for more details). The exponential and the logarithm are tame, as well as any semialgebraic
function, an interested reader can find more on tameness and its usefulness in optimization in [17],
and more details in [11], [7] and [10].

A similar point of view on differentiation of non-smooth functions is given by the generalized
subdifferential introduced by Norkin [24]. A function F : Rd Ñ R is said to be differentiable in
a generalized sense if there is a set-valued map GF : Rd Ñ Rd such that for every x, GF pxq is
nonempty, convex, compact valued, the graph of GF is closed, and

F pyq “ F pxq ` xgpyq, y ´ xy ` opx, y, gq , with gpyq P GF pyq and lim
yÑx

sup
gPGF pyq

opx, y, gq

‖x ´ y‖ “ 0 .

As in the path-differentiable case, the class of such functions contains tame, regular and Whitney
stratifiable functions. A nice feature of this class is that, under mild conditions, it is closed with
respect to the expectation. That is to say, if f : Rd ˆ Ξ Ñ R is such that for every s P Ξ, fp¨, sq
differentiable in a generalized sense, then the same is true for F pxq :“

ş

fpx, sqµpdsq [23]. Stochastic
algorithms with decreasing steps involving the generalized subdifferential were studied in [12,27].
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2.3 Differential Inclusions

We endow the set of continuous function from R` to Rd with the metric of uniform convergence on
compact intervals of R`:

dCpx, yq “
ÿ

nPN
2´n

˜

1 ^ sup
tPr0,ns

}xptq ´ yptq}

¸

(10)

Given a set valued map H : Rd Ñ Rd, we say that x : R` Ñ Rd is a solution of the differential
inclusion

9xptq P Hpxptqq (11)

with initial condition x0 P Rd, if x is absolutely continuous, xp0q “ x0 and (11) holds for almost
every t P R`. We denote by SH : Rd Ñ CpR`,Rdq the set-valued mapping such that for every a P Rd,
SHpaq is set of solutions of (11) with x0 “ a. For every subset A Ă E, we define SHpAq “

Ť

aPA SHpaq.
If a map H has nonempty values we will say that it is upper semicontinuous if the graph of H,

tpx, yq : y P Hpxqu, is closed. In the case where H is upper semicontinuous with compact and convex
values and satisfies the condition

DK ě 0, @x P Rd, supt}v} : v P Hpxqu ď Kp1 ` }x}q (12)

then SHpaq is non empty for each a P Rd, and moreover, SHpRdq is closed in the metric space
pCpR`,Rdq,dCq [2]. The Clarke subdifferential of a locally Lipschitz function is upper semicontinuous
set valued map with nonempty compact convex values [9, Chap. 3].

3 Almost-Everywhere Gradient Functions

3.1 Definition

Let pΞ,T , µq be a probability space, where the σ-field T is µ-complete. Let d ą 0 be an integer.
Consider a function f : Rd ˆ Ξ Ñ R. We denote by ∆f :“ tpx, sq P Rd ˆ Ξ : x P Dfp¨,squ the set
of points px, sq s.t. fp¨, sq is differentiable at x. We denote by ∇fpx, sq the gradient of fp¨, sq at x,
whenever it exists.

The following technical lemma, the proof of which is provided in Section 8.1, is essential.

Lemma 1 Assume that f is BpRdq b T -measurable and that fp¨, sq is continuous for every s P Ξ.
Then ∆f P BpRdq b T , and the function ϕ0 : Rd ˆ Ξ Ñ Rd defined as

ϕ0px, sq “

"

∇fpx, sq if px, sq P ∆f
0 otherwise,

(13)

is BpRdq b T -measurable. Moreover, if fp¨, sq is locally Lipschitz continuous for every s P Ξ, then
pλ b µqp∆cf q “ 0.

Thanks to this lemma, the following definition makes sense.

Definition 1 Assume that fp¨, sq is locally Lipschitz continuous for every s P Ξ. A function ϕ :
RdˆΞ Ñ Rd is called an almost everywhere (a.e.)-gradient of f if ϕ “ ∇f λbµ-almost everywhere.

By Lemma 1, we observe that a.e.-gradients exist, since pλbµqp∆cf q “ 0. Note that in Definition 1,

we do not assume that ϕ is BpRdq b T {BpRdq-measurable. The reason is that this property is
not always easy to check on practical examples. However, if one denotes by BpRdq b T the λ b µ
completion of the σ-field BpRdqbT , an immediate consequence of Lemma 1 is that any a.e.-gradient
of f is a BpRdq b T {BpRdq-measurable function.
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3.2 Examples

Lazy gradient function. The function ϕ0 given by Equation (13) is an a.e. gradient function.

Clarke gradient function. We shall refer to as a Clarke gradient function as any function ϕpx, sq
such that

#

ϕpx, sq “ ∇fpx, sq if px, sq P ∆f ,

ϕpx, sq P Bfpx, sq otherwise.
(14)

Note that the inclusion ϕpx, sq P Bfpx, sq obviously holds for all px, sq P Rd ˆ Ξ, because ∇fpx, sq
is an element of Bfpx, sq when the former exists. However, conversely, a function ψpx, sq P Bfpx, sq
does not necessarily satisfy ψpx, sq “ ∇fpx, sq if px, sq P ∆f (see the footnote1). By construction, a
Clarke gradient function is an a.e. gradient function.

Selections of conservative fields.

Proposition 1 Assume that for every s P Ξ, fp¨, sq is locally Lipschitz, path differentiable, and is
a potential of some conservative field Ds : Rd Ñ Rd. Consider a function ϕ : Rd ˆ Ξ Ñ Rd which
is BpRdq b T {BpRdq measurable and satisfies ϕpx, sq P Dspxq for all px, sq P Rd ˆ Ξ. Then, ϕ is an
a.e. gradient function for f .

Proof. Define A :“ tpx, sq s.t. ϕpx, sq ‰ ∇fpx, squ. Applying Fubini’s theorem we have:

ż

1Apzqλ b µpdzq “

ż ż

1Appx, sqqλpdxqµpdsq “ 0 ,

where the last equality comes from the fact that for every s, Ds “ t∇fp¨, squ λ-a.e. [8, Theorem
1].

We provide below an application of Proposition 1.

Autograd function. Consider Equation (3), which represents a loss of a neural network. Although
f is just a composition of some simple functions, a direct calculation of the gradient (if it exists) may
be tedious. Automatic differentiation deals with such functions by recursively applying the chain
rule to the components of f . More formally consider a function f : Rd Ñ R that can be written as a
closed formula of simple functions, mathematically speaking this means that we can represent f by a
directed graph. This graph (with q ą d vertices) is defined through a set-valued function parentspiq Ă
t1, . . . , i ´ 1u, a directed edge in this setting will be j Ñ i with j P parentspiq. Associate to each

vertex a simple function gi : R|parentspiq|
Ñ R, given an input x “ px1, . . . , xdq P Rd we recursively

define xi “ gippxjqjPparentspiqq for i ą d and finally fpxq “ xq. For instance, if f is a cross entropy loss
of a neural network, with activation functions being ReLu or sigmoid functions, then gi are some
compositions of simple functions log, exp, 1

1`x2 , norms and piecewise polynomial functions, all
being path differentiable [8, section 6], [10, Section 5.2]. Automatic differentiation libraries calculate
the gradient of f by successively applying the chain rule (in the sense pg1 ˝ g2q

1
“ pg11 ˝ g2qg

1
2) to the

simple functions gi. While the chain rule is no longer valid in a nonsmooth setting (see e.g. [18]),
it is shown in [8, Section 5] that when the simple functions are path-differentiable, the output of
automatic differentiation (e.g. autograd in PyTorch ([25])) is a selection of some conservative field
D for f . We refer to [8] for a more detailed account. We denote by af pxq the output of automatic
differentiation of a function f at some point x.

Assume that Ξ “ N and for each s P Ξ, fp¨, sq is defined through a recursive graph of path
differentiable functions (in the machine learning paradigm fp¨, sq will represent the loss related to
one data point, while F p¨q is the average loss). By Proposition 1, the map px, sq ÞÑ afp¨,sqpxq is an
a.e. gradient function for f .

1 If a locally Lipschitz function g is differentiable at a point x, we have t∇gpxqu Ă Bgpxq but the inclusion
could be strict (the two sets are equal if g is regular at x): for example, gpxq “ x2 sinp1{xq is s.t. ∇gp0q “ 0 and
Bgp0q “ r´1, 1s. There even exist functions for which the set of x s.t. t∇gpxqu Ĺ Bgpxq is a set of full measure (see
[20, Proposition 1.9]).
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Selections of generalized subdifferentials of Norkin. Noticing that a generalized subdifferential
of a function is equal to its gradient a.e. ([23, Theorem 1.12]), the proof of the next proposition is
identical to the one of Proposition 1.

Proposition 2 Assume that for every s P Ξ, fp¨, sq is differentiable in a generalized sense, with
Gfp¨,sq : Rd Ñ Rd being its generalized subdifferential. Consider a function ϕ : Rd ˆ Ξ Ñ Rd which

is BpRdq b T {BpRdq measurable and satisfies ϕpx, sq P Gfp¨,sqpxq for all px, sq P Rd ˆΞ. Then, ϕ is
an a.e. gradient function for f .

4 SGD Sequences

4.1 Definition

Given a probability measure ν on BpRdq, define the probability space pΩ,F ,Pνq as Ω “ Rd ˆ ΞN,
F “ BpRdqbT bN, and Pν “ νbµbN. We denote by px0, pξnqnPN˚q the canonical process on Ω Ñ Rd
i.e., writing an elementary event in the space Ω as ω “ pωnqnPN, we set x0pωq “ ω0 and ξnpωq “ ωn
for each n ě 1. Under Pν , x0 is a Rd-valued random variable with the probability distribution ν,
and the process pξnqnPN˚ is an independent and identically distributed (i.i.d.) process such that the
distribution of ξ1 is µ, and x0 and pξnq are independent. We denote by F the λ b µbN-completion
of F .

Let f : Rd ˆ Ξ Ñ R be a BpRdq b T {BpRq-measurable function.

Definition 2 Assume that fp¨, sq is locally Lipschitz continuous for every s P Ξ. A sequence
pxnqnPN˚ of functions on Ω Ñ Rd is called an SGD sequence for f with the step γ ą 0 if there
exists an a.e.-gradient ϕ of f such that

xn`1 “ xn ´ γϕpxn, ξn`1q p@n ě 0q .

4.2 All SGD Sequences Are Almost Surely Equal

Consider the SGD sequence

xn`1 “ xn ´ γϕ0pxn, ξn`1q, (15)

generated by the lazy a.e. gradient ϕ0. Denote by Pγ : Rd ˆ BpRdq Ñ r0, 1s the kernel of the
homogeneous Markov process defined by this equation, which exists thanks to the BpRdq b T -
measurability of ϕ0. This kernel is defined by the fact that its action on a measurable function
g : Rd Ñ R`, denoted as Pγgp¨q, is

Pγgpxq “

ż

gpx ´ γϕ0px, sqqµpdsq. (16)

Define Γ as the set of all steps γ ą 0 such that Pγ maps MabspRdq into itself:

Γ :“ tγ P p0,`8q : @ρ PMabspRdq, ρPγ ! λu .

Proposition 3 Consider γ P Γ and ν PMabspRdq. Then, each SGD sequence pxnq with the step γ is
F {BpRdqbN-measurable. Moreover, for any two SGD sequences pxnq and px1nq with the step γ, it holds
that Pν

“

pxnq ‰ px
1
nq
‰

“ 0. Finally, the probability distribution of xn under Pν is Lebesgue-absolutely
continuous for each n P N.

Note that Pν ! λb µbN since ν ! λ. Thus, the probability Pν
“

pxnq ‰ px
1
nq
‰

is well-defined as an

integral w.r.t. λ b µbN.
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Proof. Let pxnq be the lazy SGD sequence given by (15). Given an a.e. gradient ϕ, define the SGD
sequence pznq as z0 “ x0, zn`1 “ zn ´ γϕpzn, ξn`1q for n ě 0. The sequence pxnq is F {BpRdqbN-
measurable thanks to Lemma 1. Moreover, applying recursively the property that ρPγ ! λ when
ρ ! λ, we obtain that the distribution of xn is absolutely continuous for each n P N.

To establish the proposition, it suffices to show that zn is F {BpRdq-measurable for each n P N,
and that Pνrzn ‰ xns “ 0, which results in particular in the absolute continuity of the distribution of
zn. We shall prove these two properties by induction on n. They are trivial for n “ 0. Assume they are
true for n. Recall that zn`1 “ zn´γ∇fpzn, ξn`1q if pzn, ξn`1q P A, where A P BpRdq b T is such that
pλb µqpAcq “ 0, and xn`1 “ xn ´ γ∇fpxn, ξn`1q1pxn,ξn`1qP∆f . The set B “ tω P Ω : zn`1 ‰ xn`1u

satisfies B Ă B1 YB2, where

B1 “ tω P Ω : zn ‰ xnu and B2 “ tω P Ω : pzn, ξn`1q R Au.

By induction, B1 P F and PνpB1q “ 0. By the aforementioned properties of A, the F -measurability
of zn, and the absolute continuity of its distribution, we also obtain that B2 P F and PνpB2q “ 0.
Thus, B P F and PνpBq “ 0, and since xn`1 is F -measurable, zn`1 is F -measurable.

Proposition 3 means that the SGD sequence does not depend on the specific a.e. gradient used by
the practioner, provided that the law of x0 has a density and γ P Γ . Let us make this last assumption
clearer. Consider for instance d “ 1 and suppose that fpx, sq “ 0.5x2 for all s. If γ “ 1, the SGD
sequence xn`1 “ xn ´ γxn satisfies x1 “ 0 for any initial point and thus, does not admit a density,
whereas for any other value of γ, xn has a density for all n, provided that x0 has a density. Otherwise
stated, Γ “ R`zt1u in this example.

It is desirable to ensure that Γ contains almost all the points of R`. The next proposition shows
that this will be the case under mild conditions. The proof is given in 8.2.

Proposition 4 Assume that for µ–almost every s P Ξ, the function fp¨, sq satisfies the property that
at λ–almost every point of Rd, there is a neighborhood of this point on which it is C2. Then, Γ c is
Lebesgue negligible.

This assumption holds true as soon as for µ-almost all s, fp¨, sq is tame, since in this case Rd can
be partitioned in manifolds on each of which fp¨, sq is C2 ([7]), and therefore fp¨, sq is C2 (in the
classical sense) on the union of manifolds of full dimension, and therefore almost everywhere.

4.3 SGD as a Robbins-Monro Algorithm

We make the following assumption on the function f : Rd ˆ Ξ Ñ R.

Assumption 1. i) There exists a measurable function κ : Rd ˆ Ξ Ñ R` s.t. for each x P Rd,
ş

κpx, sqµpdsq ă 8 and there exists ε ą 0 for which

@y, z P Bpx, εq, @s P Ξ, |fpy, sq ´ fpz, sq| ď κpx, sq}y ´ z}.

ii) There exists x P Rd such that fpx, ¨q is µ-integrable.

By this assumption, fpx, ¨q is µ-integrable for each x P Rd, and the function

F : Rd Ñ R, x ÞÑ

ż

fpx, sqµpdsq (17)

is locally Lipschitz on Rd. We denote by Z the set of (Clarke) critical points of F , as defined in
Equation (4).

Let pFnqně0 be the filtration Fn “ σpx0, ξ1, . . . , ξnq. We denote by En “ Er¨|Fns the conditional
expectation w.r.t. Fn, where Fn, stands for the λ b µN-completion of Fn.

Theorem 1 Let Assumption 1 holds true. Consider γ P Γ and ν P MabspRdq X M1pRdq. Let
pxnqnPN˚ be a SGD sequence for f with the step γ. Then, for every n P N, it holds Pν-a.e. that



Convergence of constant step stochastic gradient descent for non-smooth non-convex functions 11

i) F , fp¨, ξn`1q and fp¨, sq (for µ-almost every s) are differentiable at xn.
ii) xn`1 “ xn ´ γ∇fpxn, ξn`1q.

iii) Enrxn`1s “ xn ´ γ∇F pxnq.

Theorem 1 is important because it shows that Pν-a.e., the SGD sequence pxnq verifies

xn`1 “ xn ´ γ∇F pxnq ` γηn`1

for some random sequence pηnq which is a martingale difference sequence adapted to pFnq.

5 Dynamical Behavior

5.1 Assumptions and Result

In this section we prove that the SGD sequence pxnqnPN˚ (which is by Theorem 1, under the stated
assumptions, unique) closely follows a trajectory of a solution to the DI (7) as the step size γ tends
to zero. To state the main result of this section, we need to strengthen Assumption 1.

Assumption 2. The function κ of Assumption 1 satisfies:

i) There exists a constant K ě 0 s.t.
ş

κpx, sqµpdsq ď Kp1 ` }x}q for all x.
ii) For each compact set K Ă Rd, supxPK

ş

κpx, sq2µpdsq ă 8.

The first point guarantees the existence of global solutions to (7) starting from any initial point
(see Section 2.3).

Assumption 3. The closure of Γ contains 0.

By Proposition 4, Assumption 3 is mild. It holds for instance if every fp¨, sq is a tame function.

We recall that S´BF pAq is the set of solutions to (7) that start from any point in the set A Ă Rd.

Theorem 2 Let Assumptions 1–3 hold true. Let tpxγnqnPN˚ : γ P p0, γ0su be a collection of SGD
sequences of steps γ P p0, γ0s. Denote by xγ the piecewise affine interpolated process

xγptq “ xγn ` pt{γ ´ nqpx
γ
n`1 ´ x

γ
nq p@t P rnγ, pn ` 1qγqq .

Then, for every compact set K Ă Rd,

@ε ą 0, lim
γÑ0
γPΓ

˜

sup
νPMabspKq

Pν
`

dCpx
γ ,S´BF pKqq ą ε

˘

¸

“ 0 ,

where the distance dC is defined in (10). Moreover, the family of distributions tPνpxγq´1 : ν P
MabspKq, 0 ă γ ă γ0, γ P Γ u is tight.

The proof is given in Section 8.4.

Theorem 2 implies that the interpolated process xγ converges in probability as γ Ñ 0 to the set of
solutions to (7). Moreover, the convergence is uniform w.r.t. to the choice of the initial distribution
ν in the set of absolutely continuous measures supported by a given compact set.
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5.2 Importance of the Randomization of x0

In this paragraph, we discuss the case where x0 is no longer random, but set to an arbitrary point
in Rd. In this case, there is no longer any guarantee that the iterates xn only hit the points where
a gradient exist. We focus on the case where pxnq is a Clarke-SGD sequence of the form (14), where
the function ϕ is assumed BpRdq b T {BpRdq measurable for simplicity. By Assumption 1, it is not
difficult to see that ϕpx, ¨q is µ-integrable for all x P Rd and, denoting by Epϕpx, ¨qq the corresponding
integral w.r.t. µ, we can rewrite the iterates under the form:

xn`1 “ xn ´ γEϕpxn, ¨q ` γηn`1,

where ηn`1 “ Erϕpxn, ¨qs ´ ϕpxn, ξn`1q is a martingale difference sequence for the filtration pFnq.
Obviously, Eϕpx, ¨q P EBfpx, ¨q. As said in the introduction, we need Eϕpx, ¨q to belong to BF pxq in
order to make sure that the algorithm trajectory shadows the DI 9xptq P ´BF pxptqq. Unfortunately, the
inclusion BF pxq Ă EBfpx, ¨q can be strict, which can result in the fact that the DI 9xptq P ´EBfpxptq, ¨q
generates spurious trajectories that converge to spurious zeroes. The following example, which can
be easily adapted to an arbitrary dimension, shows a case where this phenomenon happens.

Example 1 Take a finite probability space Ξ “ t1, 2u and µpt1uq “ µpt2uq “ 1{2. Let fpx, 1q “ 2x1xď0

and fpx, 2q “ 2x1xě0. We have F pxq “ x, and therefore BF p0q “ t1u, whereas Bfp0, 1q “ Bfp0, 2q “
r0, 2s and therefore

ş

Bfp0, sqµpdsq “ r0, 1s. We see that 0 P EBfp0, ¨q while 0 R BF p0q. Furthermore,
the trajectory defined on R` as

xptq “

"

1 ´ t for t P r0, 1s
0 for t ą 1

, xp0q “ 1,

is a solution to the DI 9xptq P ´EBfpxptq, ¨q, but not to the DI 9xptq P ´BF pxptqq.

Example 2 Consider the same setting as in the previous example. Consider a stochastic gradient
algorithm of the form (1), initialized at x0 “ 0 with ϕ such that ϕp0, 1q “ ϕp0, 2q “ 0. Then, the
iterates xγn are identically zero. This shows that the stochastic gradient descent may converge to a
non critical point of F . Theorem 2 may fail unless a random initial point is chosen.

6 Long Run Convergence

6.1 Assumptions and Result

As discussed in the introduction, the SGD sequence pxnq is not expected to converge in probability
to Z when the step is constant. Instead, we shall establish the convergence (5). The “long run”
convergence referred to here is understood in this sense.

In all this section, we shall focus on the lazy SGD sequences described by Equation (15). This
incurs no loss of generality, since any two SGD sequences are equal Pν-a.e. by Proposition 3 as long
as ν ! λ. Our starting point is to see the process pxnq as a Markov process which kernel Pγ is
defined by Equation (16). Our first task is to establish the ergodicity of this Markov process under
the convenient assumptions. Namely, we show that Pγ has a unique invariant probability measure
πγ , i.e., πγPγ “ πγ , and that }Pnγ px, ¨q ´ πγ}TV Ñ 0 as n Ñ 8 for each x P Rd, where } ¨ }TV is the
total variation norm. Further, we need to show that the family of invariant distributions tπγuγPp0,γ0s

for a certain γ0 ą 0 is tight. The long run behavior referred to above is then intimately connected
with the properties of the accumulation points of this family as γ Ñ 0. To study these properties,
we get back to the DI 9x P ´BF pxq (we recall that a concise account of the notions relative to this
dynamical system and needed in this paper is provided in Section 2.3). The crucial point here is
to show, with the help of Theorem 2, that the accumulation points of tπγu as γ Ñ 0 are invariant
measures for the set-valued flow induced by the DI. In its original form, this idea dates back to the
work of Has’minskĭı [16]. We observe here that while the notion of invariant measure for a single-
valued semiflow induced by, say, an ordinary differential equation, is classical, it is probably less
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known in the case of a set-valued differential inclusion. We borrow it from the work of Roth and
Sandholm [26].

Having shown that the accumulation points of tπγu are invariant for the DI 9x P ´BF pxq, the final
step of the proof is to make use of Poincaré’s recurrence theorem, that asserts that the invariant mea-
sures of a semiflow are supported by the so-called Birkhoff center of this semiflow (again, a set-valued
version of Poincaré’s recurrence theorem is provided in [3,14]). To establish the convergence (5), it
remains to show that the Birkhoff center of the DI 9x P ´BF pxq coincides with zer BF . The natural
assumption that ensures the identity of these two sets will be that F admits a chain rule [9,7,10].

Our assumption regarding the behavior of the Markov kernel Pγ reads as follows.

Assumption 4. There exist measurable functions V : Rd Ñ r0,`8q, p : Rd Ñ r0,`8q, α :
p0,`8q Ñ p0,`8q and a constant C ě 0 s.t. the following holds for every γ P Γ X p0, γ0s.

i) There exists R ą 0 and a positive Borel measure ρ on Rd (R, ρ possibly depending on γ) such
that

@x P clpBp0, Rqq, @A P BpRdq, Pγpx,Aq ě ρpAq.

ii) supclpBp0,Rqq V ă 8 and infBp0,Rqc p ą 0. Moreover, for every x P Rd,

PγV pxq ď V pxq ´ αpγqppxq ` Cαpγq1}x}ďR. (18)

iii) The function ppxq diverges to infinity as }x} Ñ 8.

Assumptions of this type are frequently encountered in the field of Markov chains. Assumption
4–(i) states that clpBp0, Rqq is a so-called small set for the kernel Pγ , and Assumption 4–(ii) is a
standard drift assumption. Taken together, they ensure that the kernel Pγ is a so-called Harris-
recurrent kernel, that it admits a unique invariant probability distribution πγ , and finally, that this
kernel is ergodic in the sense that }Pγpx, ¨q´πγ}TV Ñ 0 as nÑ 8 (see [22]). The introduction of the
factors αpγq and Cαpγq in Equation (18) guarantees moreover the tightness of the family tπγuγPp0,γ0s

.
In Section 6.2, we provide sufficient and verifiable conditions ensuring the validity of Assumption 4

for Pγ .
As announced above, we also need:

Assumption 5. The function F defined by (17) admits a chain rule, namely, for any absolutely
continuous curve z : R` Ñ Rd, for almost all t ą 0, @v P BF pzptqq, xv, 9zptqy “ pF ˝ zq1ptq .

Assumption 5 is satisfied as soon as F is path-differentiable, for instance when F is either convex,
regular, Whitney stratifiable or tame (see [8, Proposition 1] and [7,10]).

Since Assumption 3 is satisfied as soon as fp¨, sq is tame for every s P Ξ, one can wonder if it can
be somehow coordinated with Assumption 5. Unfortunately, F is not necessarily tame even if fp¨, sq
is tame for every s P Ξ. Nonetheless, one can hope that the practical situations where fp¨, sq is tame
and F is not are rare. In particular, F will be tame as soon as Ξ is finite (hence the expectation is
just a finite sum), which is the case in many machine learning models.

Theorem 3 Let Assumptions 1-3 and 4-5 hold true. Let tpxγnqnPN˚ : γ P p0, γ0su be a collection of
SGD sequences of step-size γ. Then, the set Z “ tx : 0 P BF pxqu is nonempty and for all ν PMabspRdq
and all ε ą 0,

lim sup
nÑ8

Pν
`

dpxγn,Zq ą ε
˘

ÝÝÝÑ
γÑ0
γPΓ

0. (19)

6.2 On Assumption 4

In this paragraph, we provide sufficient conditions under which Assumption 4 hold true. A simple
way to ensure the truth of Assumption 4-(i) is to add a small random perturbation to the function
ϕ0px, sq. Formally, we modify algorithms described by Equation (15) and (21), and write

xn`1 “ xn ´ γϕ0pxn, ξn`1q ` γεn`1
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where pεnq is a sequence of centered i.i.d. random variables of law µd, independent from tx0, pξnqu,
and such that the distribution of ε1 „ µd has a continuous and positive density on Rd. The Gaussian
case ε1 „ N p0, aIdq where a ą 0 is some small variance is of course a typical example of such a
perturbation.

Consider now a fixed γ and denote by rP the Markov kernel induced by the modified equation.

Proposition 5 Let Assumption 2 hold true. Then, for each R ą 0, there exists ε ą 0 such that

@x P clpBp0, Rqq, @A P BpRdq, rP px,Aq ě ε λpA X clpBp0, 1qqq,

Thus, Assumption 4-(i) is satisfied for rP .

We now turn to the assumptions 4-(ii) and 4-(iii).

Proposition 6 Assume that there exists R ě 0, C ą 0, and a measurable function β : Ξ Ñ R` such
that the following conditions hold:

i) For every s P Ξ, the function fp¨, sq is differentiable outside the ball clpBp0, Rqq. Moreover, for
each x, x1 R clpBp0, Rqq, }∇fpx, sq ´∇fpx1, sq} ď βpsq}x ´ x1} and

ş

β2dµ ă 8.
ii) For all x R clpBp0, Rqq,

ş

}∇fpx, sq}2µpdsq ď Cp1 ` }∇F pxq}2q.
iii) lim}x}Ñ8 }∇F pxq} “ `8.
iv) Function F is lower bounded i.e., inf F ą ´8.

Then, it holds that

PγF pxq ď F pxq ´ γp1 ´ γKq1}x}ą2R}∇F pxq}
2
` γ2K1}x}ą2R ` γK1}x}ď2R (20)

for some constant K ą 0. In particular, Assumptions 4-(ii) and 4-(iii) hold true.

We finally observe that this proposition can be easily adapted to the case where the kernel Pγ is
replaced with the kernel rP of Proposition 5.

7 The Projected Subgradient Algorithm

In many practical settings, the conditions of Proposition 6 that ensure the truth of Assumptions 4–
(ii) and 4–(iii) are not satisfied. This is for instance the case when the function f is described by
Equation (3) with the mappings σ` at the right hand side of this equation being all equal to the
ReLU function. In such situations, it is often pertinent to replace the SGD sequence with a projected
version of the algorithm. Given an a.e.-gradient ϕ of the function f and a non empty compact and
convex set K Ă Rd, a projected SGD sequence pxγ,Kn q is given by the recursion

xγ,K0 “ x0, xγ,Kn`1 “ ΠKpx
γ,K
n ´ γϕpxγ,Kn , ξn`1qq , (21)

where ΠK stands for a Euclidean projection onto K. Our purpose is to generalize Theorem 2 to this
situation. This generalization is not immediate for several reasons. First, the projection step is likely
to introduce spurious local minima. As far as the iterates (21) are concerned, the role of differential
inclusion (7) is now played by the differential inclusion:

9xptq P ´BF pxptqq ´NKpxptqq , (22)

where NKpxq stands the normal cone of K at point x. The set of equilibria of the above differential
inclusion coincides with the set

ZK :“ tx P Rd : 0 P ´BF pxq ´NKpxqu ,

which we shall refer to as the set of Karush-Kuhn-Tucker points. A second theoretical difficulty is
related to the fact that Proposition 3 does no longer hold. Indeed, it can happen x0 has a density,
but the next iterates xγ,Kn don’t. The reason is that xγ,Kn generally has a non zero probability to be



Convergence of constant step stochastic gradient descent for non-smooth non-convex functions 15

in the (Lebesgue negligible) border of K, that is, clpKqz intpKq, where clpKq and intpKq respectively
stand for the closure and the interior of K.

We shall focus here on the case where K “ clpBp0, rqq with r ą 0. We shall use Πr, x
γ,r
n , Nr as

shorthand notations for ΠclpBp0,rqq, x
γ,clpBp0,rqq
n , and NclpBp0,rqq respectively. In this case Nrpxq “ t0u

if ‖x‖ ă r, Nrpxq “ tλx : λ ě 0u if ‖x‖ “ r and Nrpxq “ H otherwise.
We make the following assumption.

Assumption 6. For every x P Rd, the law of ϕ0px, ξq, where ξ „ µ, is absolutely continuous relatively
to Lebesgue.

Assumption 6 is much stronger than Assumption 3. Indeed, it implies that the distribution of
xγ,rn ´ γϕpxγ,rn , ξn`1q is always Lebesgue-absolutely continuous. It is useful to note though that
Assumption 6 holds upon adding at each step a small random perturbation to ϕ0 as in Section 6.2
above.

In order to state our first result in this framework, we need to introduce some new notations. We
let Sprq :“ tx : ‖x‖ “ r, x P Rdu be the sphere of radius r. By [15, Theorem 2.49], there is a unique
measure2 %1 on Sp1q such that for any positive function f : Rd Ñ R, we have:

ż

fpxqλdpdxq “

ż 8

0

ż

Sp1q
fprθqrd´1%1pdθqλ

1
pdrq . (23)

We define the measure %r on Sprq as %rpAq “ %1pA{rq for each Borel set A Ă Sprq. We denote as Mr

the set of measures ν “ ν1 ` ν2, where ν1 P Mabs and ν2 ! %r. For a set C Ă Rd we define Mr
pCq

as the measures in Mr that are supported on C. Notice that MabspCq ĂMr
pCq.

The next proposition, which is proven in the same way as Proposition 3, shows that for almost
every r ą 0, all projected SGD sequences are almost surely equal.

Proposition 7 Let Assumption 6 hold true. Then, for almost every r ą 0, @ν PMr, each projected
SGD sequence pxγ,rn q is F {BpRdqbN-measurable. Moreover, for any two projected SGD sequences
pxγ,rn q and pyγ,rn q, it holds that Pν rpxγ,rn q ‰ pyγ,rn qs “ 0. Finally, under Pν , for every n P N, the
probability distribution of xγ,rn is in Mr.

By Proposition 7 we can focus on the lazy projected SGD sequence:

xγ,rn`1 “ Πrpx
γ,r
n ´ γϕ0px

γ,r
n , ξn`1qq . (24)

We define its associated kernel

P rγ gpxq “

ż

gpΠrpx ´ γϕ0px, sqqqµpdsq . (25)

The next two theorems are analogous to Theorems 1 and 2.

Theorem 4 Let Assumptions 1 and 6 hold. Then for almost every r ą 0 , @ν PMr, for every n P N
it holds Pν-a.e.

i) F , fp¨, ξn`1q and fp¨, sq (for µ-a.e. s) are differentiable at xγ,rn .
ii) xγ,rn`1 P x

γ,r
n ´ γ∇fpxγ,rn , ξn`1q ´ γNrpΠrpx

γ,r
n ´ γ∇fpxγ,rn , ξn`1qqq.

Theorem 5 Let Assumptions 1–2 and 6 hold true. Denote xγ,r the piecewise affine interpolated
process:

xγ,rptq “ xγ,rn ` pt{γ ´ nqpxγ,rn`1 ´ x
γ,r
n q p@t P rnγ, pn ` 1qγqq .

Then, for almost every r ą 0, for every compact set K Ă clpBp0, rqq,

@ε ą 0, lim
γÑ0

˜

sup
νPMrpKq

Pν
`

dCpx
γ,r,S´BF´Nr

pKqq ą ε
˘

¸

“ 0 .

Moreover, for any γ0 ą 0, the family of distributions tPνpxγ,rq´1 : ν PMr
pKq, 0 ă γ ă γ0u is tight.

2 As it is clear from Equation (23) we can see pλ1, %1q as a polar coordinates representation of the Lebesgue
measure λd.
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We compare Theorems 1 and 2. First, because of the projection step (and with the help of
Assumption 6), the law of the n-th iterate is no longer in Mabs, but in Mr. Second, the continuous
counterpart of Equation (21) is now the differential inclusion (22) Note that, if the solutions of the
DI (7) that start from K all lie in clpBp0, rqq, then the set of these solutions coincides with the set
of solutions of the DI (22) that start from K.

The analysis of the convergence of the iterates in the ”long run” is greatly simplified by the
introduction of the projection step. Compared to Assumption 4, we only assume the existence of a
small set for P rγ , the drift condition of the form 4-(ii)–(iii) is then automatically satisfied, thanks to
the projection step (see Section 8.5).

Assumption 7. There is R ą 0 and γ0 ą 0 such that for every γ P p0, γ0s there is ργ such that
Assumption 4-(i) hold for pR, ργq (note that R is independent of γ here).

As shown in Section 6.2, Assumption 7 holds upon adding to ϕ0 a small random perturbation.

Theorem 6 Let Assumptions 1-2 and 5–7 hold. Let tpxγ,rn qnPN˚ : γ P p0, γ0su be a collection of
projected SGD sequences of step-size γ. Then, for almost every 0 ă r ď R, the set Zr “ tx : 0 P
BF pxq `Nrpxqu is nonempty and for all ν PMr and all ε ą 0,

lim sup
nÑ8

Pν
`

dpxγ,rn ,Zrq ą ε
˘

ÝÝÝÑ
γÑ0

0. (26)

Theorem 6 is analogous to Theorem 3. Notice that, since Mabs ĂMr, x0 can still be initialized
under a Lebesgue-absolutely continuous measure. On the other hand, as explained in the beginning
of this section, due to the projection step, the iterates, instead of converging to Z, are now converging
to the set of Karush-Kuhn-Tucker points related to the DI (22).

8 Proofs

8.1 Proof of Lemma 1

By definition, px, sq P ∆f means that there exists dx P Rd (the gradient) s.t. fpx ` h, sq “ fpx, sq `
xdx, hy ` op‖h‖q. That is to say px, sq belongs to the set:

č

εPQ

ď

δPQ

č

0ă‖h‖ďδ

"

py, sq :

ˇ

ˇ

ˇ

ˇ

fpy ` h, sq ´ fpy, sq ´ xdx, hy

‖h‖

ˇ

ˇ

ˇ

ˇ

ă ε

*

. (27)

In addition, using that fp¨, sq is continuous, the above set is unchanged if the inner intersection over
0 ă ‖h‖ ď δ is replaced by an intersection over the h s.t. 0 ă ‖h‖ ď δ and having rational coordinates
i.e., h P Qd. Define:

∆1f :“
č

ε1PQ

ď

dPQd

č

εPQ

ď

δPQ

č

0ă‖h‖ďδ
hPQd

"

px, sq :

ˇ

ˇ

ˇ

ˇ

fpx ` h, sq ´ fpx, sq ´ xd, hy

‖h‖

ˇ

ˇ

ˇ

ˇ

ă ε ` ε1
*

(28)

By construction, ∆1f is a measurable set. We prove that ∆1f “ ∆f . Consider px, sq P ∆f and let dx
be the gradient of fp¨, sq at x. By (27) for all ε P Q, there is a δ P Q such that:

px, sq P
č

hďδ,hPQd

"
ˇ

ˇ

ˇ

ˇ

fpx ` h, sq ´ fpx, sq ´ xdx, hy

h

ˇ

ˇ

ˇ

ˇ

ă ε

*

For any ε1 ą 0, choose d1 P Qd such that
∥∥d1 ´ dx∥∥ ď ε1. Using the previous inclusion, for all ε, there

exists therefore δ P Q s.t.

px, sq P
č

hďδ,hPQd

"ˇ

ˇ

ˇ

ˇ

fpx ` h, sq ´ fpx, sq ´ xdq, hy

h

ˇ

ˇ

ˇ

ˇ

ă ε ` ε1
*
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which means ∆f Ă ∆1f . To show the converse, consider px, sq P ∆1f . Let pε1kq be a positive sequence

of rationals converging to zero. By definition, for every k, there exists dk P Qd s.t. for all ε, there
exists δkpεq, s.t. for all (rational) h ď δkpεq,

ˇ

ˇ

ˇ

ˇ

fpx ` h, sq ´ fpx, sq ´ xdk, hy

h

ˇ

ˇ

ˇ

ˇ

ă ε ` ε1k . (29)

Moreover, one may choose δkpεq ď δ0pεq. Inspecting first the inequality (29) for k “ 0, we easily

obtain that the quantity fpx`h,sq´fpx,sq
h is bounded uniformly in h s.t. 0 ă }h} ď δ0pεq. Using this

observation and again Equation (29), this in turn implies that pdkq is a bounded sequence. There
exists d P Rd and s.t. dk Ñ d along some extracted subsequence. Now consider ε ą 0 and choose k
such that ‖dk ´ d‖ ă ε

2 and ε1k ă
ε
2 . For all h ď δkpε{2q,

ˇ

ˇ

ˇ

ˇ

fpx ` h, sq ´ fpx, sq ´ xd, hy

h

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

fpx ` h, sq ´ fpx, sq ´ xdk, hy

h

ˇ

ˇ

ˇ

ˇ

` ‖d ´ dk‖ ă ε

This means that d is the gradient of fp¨, sq at x, hence ∆1f Ă ∆f . Hence, the first point of the
Lemma 1 is proved.

Denoting as ei the ith canonical vector of Rd, the ith-component rϕ0si in Rd of the function ϕ0

is given as

rϕ0px, sqsi “ lim
tÑ0

fpx ` tei, sq ´ fpx, sq

t
1∆f px, sq,

and the measurability of ϕ0 follows from the measurability of f and the measurability of 1∆f .
Finally, assume that fp¨, sq is locally Lipschitz continuous for every s P Ξ. From Rademacher’s

theorem [9, Ch. 3], fp¨, sq is almost everywhere differentiable, which reads
ş

p1´ 1∆f px, sqqλpdxq “ 0.
Using Fubini’s theorem,

ş

RdˆΞp1 ´ 1∆f px, sqq λpdxq b µpdsq “ 0, and the last point is proved.

8.2 Proof of Proposition 4

The idea of the proof is to show that for almost every γ and s we have that gs,γpxq :“ px ´
γ∇fpx, sqq1∆f px, sq is almost everywhere a local diffeomorphism.

In order to prove that we define for each px, sq P Rd ˆ Ξ the pseudo-hessian Hpx, sq P Rdˆd as

Hpx, sqi,j “ lim sup
tÑ0

x∇fpx ` tej , sq1∆f px ` tej , sq ´∇fpx, sq, eiy
t

1∆f px, sq .

Since it is a limit of measurable functions, H is BpRdq bT measurable, and if fp¨, sq is two times
differentiable at x then Hpx, sq is just the ordinary hessian. Now we define lpx, s, γq “ detpγHpx, sq´
Idq if every entry in Hpx, sq is finite, and lpx, s, γq “ 1 otherwise, it is a BpRdqbT bBpR`q measurable
function (as a sum of two measurable functions). By the inverse function theorem we have that if
fp¨, sq is C2 at x and if detpγHpx, sq ´ Idq ‰ 0, then gs,γp¨q is a local diffeomorphism at x. Therefore
lpx, s, γq ‰ 0 implies either the latter or fp¨, sq is not C2 at x (or both).
Let λd, λ1 denote Lebesgue measures respectively on Rd and R`, we have by Fubini’s theorem:

ż

1lpx,s,γq“0λ
d
pdxq b µpdsq b λ1pdγq “

ż

λd b µptpx, sq : lpx, s, γq “ 0uqλ1pdγq

“

ż ż ż

1lpx,s,γq“0λ
1
pdγqλdpdxqµpdsq

“ 0 ,

where the last equality comes from the fact that for px, sq fixed lpx, s, γq “ 0 only if 1{γ is in the
spectrum of Hpx, sq which is finite. Therefore we have a Γ a set of full measure in R` such that
for γ P Γ we have λd b µptpx, sq : lpx, s, γq “ 0uq “ 0. Once again applying Fubini’s theorem we get
that for almost every s P Ξ we have tx : gs,γp¨q is a local diffeomorphism at xuq is of λd-full measure
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(since for each s, fp¨, xq is almost everywhere C2). Finally, for A Ă Rd, γ P Γ and ν PMabspRdq, we
have

νPγpAq “ ν b µptpx, sq : gs,γpxq P Auq ď λd b µptpx, sq : gs,γpxq P Auq ,

and by Fubini’s theorem,

λd b µptpx, sq : gs,γpxq P Auq “

ż

λdptx : gs,γpxq P Auqµpdsq

“

ż

λdptx : gs,γpxq P A and fp¨, sq is C2 at xuqµpdsq

“

ż

λdptx : gs,γpxq P A and gs,γp¨q is a local diffeomorphism at xuqµpdsq .

Now by separability of Rd there is a countable family of open neighborhoods pViqiPN such that for
any open set O we have O “

Ť

jPJ Vj . The set of x where gp¨, s, γq is a local diffeomorphism is an
open set, hence

tx : gs,γpxq P A and gs,γp¨q is a local diffeomorphism at xu “
ď

iPI

Vi X tx : gs,γpxq P Au .

Since an image of a null set by a diffeomorphism is a null set we have

λdptx : gs,γpxq P Au X Viq “ 0 .

Hence, νPγpAq “ 0, which proves our claim.

8.3 Proof of Theorem 1

Take ν ! λ and a SGD sequence pxnqnPN, let S1 Ă Rd be the set of x for which ∇fpx, sq exists for
µ- almost every s, i.e.,

S1 :“

"

x P Rd :

ż

Ξ
p1 ´ 1∆f px, sqq µpdsq “ 0

*

.

When Assumption 1 holds, Rademacher’s theorem, lemma 1 and Fubini’s theorem imply that
S1 P BpRdq and λpRdzS1q “ 0. Hence, for µ-a.e. s we have fp¨, sq differentiable at x0, and since
ξ1 „ µ, fp¨, ξ1q is differentiable at x0. Now by Rademacher’s theorem again, the set S2 Ă Rd where F
is differentiable satisfies λpRdzS2q “ 0, therefore F is differentiable at x0. Moreover, with probability
one x0 is in S1XS2. Define Apxq :“ ts P Ξ : px, sq R ∆f u. By Assumption 1, }∇fpx, ¨q} is µ-integrable.
Moreover, for all x P S1 X S2 and all v P Rd

x

ż

∇fpx, sq1∆f px, sqµpdsq, vy “
ż

ΞzApxq
x∇fpx, sq, vyµpdsq

“

ż

ΞzApxq
lim

tPR˚Ñ0

fpx ` tv, sq ´ fpx, sq

t
µpdsq

“ lim
tPR˚Ñ0

ż

Ξ

fpx ` tv, sq ´ fpx, sq

t
µpdsq

“ lim
tPR˚Ñ0

F px ` tvq ´ F pxq

t
“ x∇F pxq, vy

where the interchange between the limit and the integral follows from Assumption 1 and the dom-
inated convergence theorem. Hence, ∇F pxq “

ş

∇fpx, sq1∆f px, sqµpdsq for all x P S1 X S2. Now
denote by νn the law of xn. Since we assumed that ν0 ! λ, it holds that Pνpx0 P S1 X S2q “ 1.
Therefore, with probability one,

x1 “ x11S1XS2
px0q “ px0 ´ γ∇fpx0, ξ1qq1S1XS2

px0q “ x0 ´ γ∇fpx0, ξ1q .

Thus, x1 is integrable whenever x0 is integrable, and E0px1q “ x0 ´ γ∇F px0q. Since by Assumption
ν1 ! λ we can iterate our argument for x2 and then for all xn and the conclusions of Theorem 1
follow.
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8.4 Proof of Theorem 2

We want to apply [6, Theorem 5.1.], and therefore verify its assumptions [6, Assumption RM]. In
order to fall in its setting we first need to rewrite our kernel in a more appropriate way. As BF
takes nonempty compact values, it admits a measurable selection ϕpxq P BF pxq [1, Lemma 18.2 and
Corollary 18.15]. Take γ P Γ , a SGD sequence pxγnq and notice that by Theorem 1 it is Pν almost
surely always in DF X S1, where S1 is the set of x where ∇fpx, sq exists for µ-a.e. s. Therefore its
Markov kernel can be equivalently defined as:

P 1γpx, gq :“ 1DFXS1
pxqPγpx, gq ` 1pDFXS1q

cpxqgpx ´ γϕpxqq .

Now we can apply [6, Theorem 5.1.] with hγps, xq “ ´p1DFXS1
pxq∇F pxq ` 1pDFXS1q

cpxqϕpxqq (note
that it is independent of s) and we have hpx, sq P Hpx, sq “ Hpxq :“ ´BF pxq. As we show next, [6,
Assumption RM] now easily follows.
First, it is immediate from the general properties of the Clarke subdifferential that the set-valued map
´BF is proper and uppersemicontinuous with convex and compact values, hence the assumption (iii)
of [6, Assumption RM]. Assumption (ii) is immediate by the uppersemicontinuity of ´BF . Moreover,
we obtain from Assumption 2 that there exists a constant K ě 0 such that

}BF pxq} ď Kp1 ` }x}q.

Thus, S´BF is defined on the whole Rd, and S´BF is closed in pCpR`,Rdq,dq (see [2]), hence as-
sumption (v). Finally, assumption (vi) comes from Assumption 2.

We remark that although, [6, Theorem 5.1] deals with a family of measures pPaqaPK, the proofs
remain unchanged when we consider pPνqνPMabspKq.

8.5 Proof of Theorems 3 and 6

Both theorems are proved in the same way. In the following Qγ will denote either Pγ and in this
case H will denote ´BF , or Qγ “ P rγ and H “ ´BF ´Nr. The proof will be done in three steps:

– Lemma 2: Qγ has a unique invariant probability distribution πγ , with πγ P Mabs if Qγ “ Pγ
and πγ PMr otherwise, moreover Qγ is ergodic in the sense of the Total Variation norm.

– Lemma 3: The family tπγuγPp0,γ0s
is tight.

– Proposition 9: The accumulation points of tπγuγPp0,γ0s
as γ Ñ 0 are invariant for the DI 9x P Hpxq.

Before stating Lemma 2, we recall a general result on Markov processes. Let Q : RdˆBpRdq Ñ r0, 1s
be a Markov kernel on Rd. A set B Ă Rd is said to be a small-set for the kernel Q if there exists a
positive measure ρ on Rd such that Qpx,Aq ě ρpAq for each A P BpRdq, x P B.

Proposition 8 Assume that B is a small set for Q. Furthermore, assume that there exists a mea-
surable function W : Rd Ñ r0,8q that is defined on Rd and bounded on B, and a real number b ě 0,
such that

QW ďW ´ 1 ` b1B . (30)

Then, Q admits a unique invariant probability distribution π, and moreover, the ergodicity result

@x P Rd, }Qnpx, ¨q ´ π}TV ÝÝÝÝÑ
nÑ8

0 (31)

holds true.

Indeed, by [22, Theorem 11.3.4], the kernel Q is a so-called positive Harris recurrent, meaning
among others that it has a unique invariant probability distribution. Moreover, Q is aperiodic, hence
the convergence (31), as shown by, e.g., [22, Theorem 13.0.1].
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Lemma 2 Assume that either Assumptions 4-(i) 4-(ii) hold if Qγ “ Pγ or Assumption 7 holds and
r ď R if Qγ “ P rγ , then for every γ P p0, γ0s, the kernel Qγ admits a unique invariant measure πγ .
Moreover,

@x P Rd,
›

›Qnγ px, ¨q ´ πγ
›

›

TV
ÝÝÝÝÑ
nÑ8

0. (32)

Finally, if Qγ “ Pγ , assumptions of Theorem 1 hold true and γ P Γ then πγ is absolutely continuous
w.r.t. the Lebesgue measure. If Qγ “ P rγ and assumptions of Theorem 4 hold true, then πγ PMr.

Proof. By the inequality (18), the kernel Pγ satisfies an inequality of the type (30), namely, PγV ď
V ´ αpγqθ ` Cαpγq1}x}ďR, for some θ, C ą 0. Similarly, under Assumption 7 and r ď R, we have
that for every x P clpBp0, rqq:

P rγ px,Aq “ Pγpx,Π
´1
r pAqq ě ργpΠ

´1
r pAqq ,

that is to say clpBp0, rqq is a small set for P rγ . Inequality of the type Assumption 4-(ii)–(iii) then
hold for e.g. C “ r, αpγq “ 1, V “ ‖x‖ ` r1‖x‖ąr and p “ ‖x‖.

Consider the case where Qγ “ Pγ , to prove that πγ is absolutely continuous w.r.t. the Lebesgue
measure, consider a λ-null set A. By the convergence (32), we obtain that for any x P Rd, Pnγ px,Aq Ñ
πγpAq. Now take ν ! λ. By Proposition 3, we have that νPnγ ! λ. Hence, by the dominated
convergence theorem,

0 “ νPnγ pAq “

ż

Pnγ px,Aqνpdxq Ñ

ż

πγpAqνpdxq “ πγpAq .

If Qγ “ P rγ we obtain the same result with the help of Proposition 7.

Lemma 3 Let either Assumptions 4-(i) – 4-(iii) hold if Qγ “ Pγ or Assumption 7 hold and r ď R
if Qγ “ P rγ . Let πγ be the invariant distribution of Qγ . Then, the family tπγ : γ P p0, γ0su is tight.

Proof. If Qγ “ P rγ then the family πγ is supported by clpBp0, rqq and is, therefore, tight. Otherwise
we iterate (18), to obtain:

n
ÿ

k“0

Qk`1
γ V ď

n
ÿ

k“0

QkγV ´ αpγq
n
ÿ

k“0

Qkγp ` Cpn ` 1qαpγq .

Therefore, since 0 ď QkγV ă `8 we have:

αpγq
n
ÿ

k“0

Qkγp ď V ` Cpn ` 1qαpγq .

For a fixed M ą 0 we will bound now πγpp ^Mq. Since πγ is an invariant distribution for Qγ , we
have πγP

k
γ “ πγ . Hence, we have:

πγpp ^Mq “
1

n ` 1

n
ÿ

k“0

πγQ
k
γpp ^Mq ď

1

n ` 1

n
ÿ

k“0

πγpQ
k
γp ^Mq

ď πγ

ˆ„

V

pn ` 1qαpγq
` C



^M

˙

.

Letting n Ñ `8, by the dominated convergence theorem we obtain πγpp ^Mq ď πγpC ^Mq. And
therefore by monotone convergence theorem πγppq ď C.
Fix now ε ą 0, there is a K ą 0 such that C

K ď ε, and by coercivity of p there is r ą 0 such that:

πγp‖x‖ ą rq ď πγpp ą Kq ď
C

K

where the last bound comes from Markov’s inequality. This concludes the proof.
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The next proposition will show that any accumulation point of πγ is an invariant measure for
the set-valued flow induced by the DI 9xptq P Hpxptqq, first we introduce some definitions. Define
the shift operator Θt : CpR`,Rdq Ñ CpR`,Rdq by Θtpxq “ xpt ` ¨q, and the projection operator
p0 : CpR`,Rdq Ñ Rd by p0pxq “ xp0q. Then, we have the following definition (see [26] for details):

Definition 3 We say that π P MpRdq is an invariant distribution for the flow induced by the DI
9xptq P Hpxptqq, if there is ν PMpCpR`,Rdqq, such that:

i) supp ν P SHpRdq,
ii) νΘ´1

t “ ν,
iii) νp´1

0 “ π.

Proposition 9 Let Assumptions 1–3 and 4 hold true. Denote by πγ the unique invariant distribu-
tion of Pγ . Let pγnq be a sequence on p0, γ0s X Γ s.t. γn Ñ 0 and πγn converges narrowly to some
probability measure π. Then, π is an invariant distribution for the flow induced by 9xptq P ´BF pxptqq.

Similarly, under Assumptions 1–2 and 6–7, for r ď R, denoting πγ the unique invariant dis-
tribution of P rγ , if πγn Ñ π, then π is an invariant distribution for the flow induced by 9xptq P
´BF pxptqq ´Nrpxptqq.

Proof. Consider the case where Qγ “ Pγ . The proof essentially follows [6, section 7.]. Fix an ε ą 0
and write πn instead of πγn for simplicity. By Lemma 3 we have a compact K such that πnpKq ą 1´ε,

we thus can define the conditional measures πKn pAq :“ πnpAXKq
πnpKq

. Moreover, we have πKn PMabspKq,

therefore we can apply Theorem 2 and get that there is a compact set C of CpR`,Rdq such that

Pπ
K
γn
,γnX´1

γn pCq ě 1 ´ ε. Now we have

Pπn,γnp¨q “
ż

Rd
Pa,γnp¨qπnpdaq ě

ż

K
Pa,γnp¨qπnpdaq ě πnpKqPπ

K
n ,γnp¨q ,

hence
Pπγn ,γnX´1

γn pCq ě πnpKqPπ
K
γn
,γnX´1

γn pCq ě p1 ´ εq
2 .

Since ε is arbitrary this proves the tightness of vn :“ Pπγn ,γnX´1
γn . Take πn Ñ π and vn Ñ v P

MpCpR`,Rdqq. We now prove that v is an invariant distribution for the flow induced by the DI
associated to ´BF (see Definition 3.)
We have πn “ vnp

´1
0 , by continuity of p0. Thus, π “ vp´1

0 . Therefore, we have (iii) of Definition 3.
Let η ą 0. By weak convergence of vn,

vptx P CpR`,Rdq : dpx,S´BF pRdqq ď ηuq ě lim sup
n

vnptx P CpR`,Rdq : dpx,S´BF pRdqq ď ηuq

and

vnptx P CpR`,Rdq : dpx,S´BF pRdqq ď ηuq ě vnptx P CpR`,Rdq : dpx,S´BF pKqq ă ηuq

ě πnpKqPπ
K
γn
,γnpdpXγn ,S´BF pKqq ă ηq

ě p1 ´ εqPπ
K
γn
,γnpdpXγn ,S´BF pKqq ă ηq .

The last term converges to 1´ε, by Theorem 2, and by weak convergence we have vptx P CpR`,Rdq :
dpx,S´BF pRdqq ě ηuq ě p1´εq, now letting η Ñ 0, by monotone convergence we have vpS´BF pRdqqq ě
1 ´ ε which proves (i) of Definition 3. Finally, the second point of Definition 3 is shown just like in
[6, section 7.].

The proof of the case Qγ “ P rγ is substantially the same under straightforward adaptations.

After some definitions we recall an important result about the support of a flow-invariant measure.
The limit set Lf of a function f P CpR`,Rdq is

Lf “
č

tě0

fprt,8qq,
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and the limit set LSHpaq of a point a P Rd for SH is

LSHpaq “
ď

xPSHpaq

Lx.

A point a P Rd is said SH-recurrent if a P LSHpaq. The Birkhoff center BCSH of SH is the closure of
the set of its recurrent points:

BCSH “

!

a P Rd : a P LSHpaq

)

.

In [14] (see also [3]), a version of Poincaré’s recurrence theorem, well-suited for our set-valued evo-
lution systems, was provided:

Proposition 10 Each invariant measure for SH is supported by BCSH .

With the help of Proposition 10 we can finally prove Theorem 3.

Proof. Take γ P Γ , ε ą 0 and pxγnq an associated SGD sequence. We have by (31):

lim sup
nÑ8

Pν
“

distpxγn,Zq ą ε
‰

“ πγptx P Rd : dpx,Zq ą εuq .

Now take any sequence γi Ñ 0 with γi P Γ , and πγi the associated invariant distribution, we know
from Lemmas 3-9 that we can extract a subsequence such that πγi Ñ π, with π an invariant measure
for the evolution system S´BF . Therefore by weak convergence we have:

lim
iÑ`8

πγiptx P R
d : dpx,Zq ą 2εuq ď lim

iÑ`8
πγiptx P R

d : dpx,Zq ě εuq

ď πptx P Rd : dpx,Zq ě εuq,

where the last line comes from the Portmanteau theorem. We show that suppπ Ă S, and therefore
the last term is equal to zero, which concludes the proof. To that end, we make use of Proposition 10,
that shows that each invariant measure of S´BF is supported by BCS´BF . Thus, it remains to show
that BCS´BF “ Z (which at the same time will ensure us that Z is nonempty). It is obvious that
Z Ă BCS´BF . To show the reverse inclusion, take a P LS´BF paq. Then, there exists a solution x to the
differential inclusion such that xp0q “ a and a P Lx. But under Assumption 5 it holds ([10, lemma
5.2]) that } 9xptq} “ }B0F pxptqq} almost everywhere, and, moreover,

@t ě 0, F pxptqq ´ F pxp0qq “ ´

ż t

0
}B0F pxpuqq}

2du.

Therefore xptq “ a for each t ě 0, thus, a P S. Observing that Z is a closed set (since BF is
graph-closed, see [9, Proposition 2.1.5]), we obtain that BCS´BF “ Z.

Similarly, take γi Ñ 0 and and pxγi,rn q the associated projected SGD sequences. After an extrac-
tion we get that πγi Ñ π, with π an invariant measure for the flow S´BF´Nr

and:

lim
γiÑ0

lim sup
nÑ8

Pν
“

distpxγi,rn ,Zrq ą 2ε
‰

ď πptx P Rd : dpx,Zrq ą εuq .

Taking a P LS´BF´Nr paq
, and x a solution to the associated differential inclusion with xp0q “ a,

we get under Assumption 5 [10, Lemma 6.3.] that ‖ 9xptq‖ “ mint‖v‖ : v P BF pxptqq `Nrpxptqqu, and
moreover,

@t ě 0, F pxptqq ´ F pxp0qq “ ´

ż t

0
‖ 9xpuq‖2 du .

That is to say xptq “ a and a P Zr, which finishes the proof.
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8.6 Proof of Proposition 5

Denote as ρ the probability distribution of the random variable γε1. By assumption, ρ has a con-
tinuous density that is positive at each point of Rd. We denote as f this density. Let θx be the
probability distribution of the random variable Z “ x ´ γϕ0px, ξ1q, which is the image of µ by the
function x ´ γϕ0px, ¨q. Our purpose is to show that

Dε ą 0, @x P clpBp0, Rqq, @A P BpRdq, pθx b ρq rZ ` γη1 P As ě ε λpA X clpBp0, 1qqq.

Given L ą 0, we have by Assumption 2 and Markov’s inequality that there exists a constant K ą 0
such that

θx rZ R clpBp0, Lqqs ď
K

L
p1 ` }x}q.

Thus, taking L large enough, we obtain that @x P clpBp0, Rqq, θx rZ R clpBp0, Lqqs ă 1{2. Moreover,
we can always choose ε ą 0 is such a way that fpuq ě 2ε for u P clpBp0, L ` 1qq, by the continuity
and the positivity of f on the compact clpBp0, L ` 1qq. Thus,

pθx b ρq rZ ` γη1 P As “

ż

A
du

ż

Rd
θxpdvq fpu ´ vq

ě

ż

AXclpBp0,1qq
du

ż

clpBp0,Lqq
θxpdvq fpu ´ vq

ě 2ε

ż

AXclpBp0,1qq
du

ż

clpBp0,Lqq
θxpdvq

ě ε λpA X clpBp0, 1qqq.

8.7 Proof of Proposition 6

By Lebourg’s mean value theorem [9, Theorem 2.4], for each n P N, there exists αn P r0, 1s and
ζn P BF punq with un “ xn ´ αnγ∇fpxn, ξn`1q1∆f pxn, ξn`1q, such that

F pxn`1q “ F pxnq ´ γxζn,∇fpxn, ξn`1qy1∆f pxn, ξn`1q,

and the proof of this theorem (see [9, Theorem 2.4] again) shows that un can be chosen measurably
as a function of pxn, ξn`1q.

In the following, for the ease of readability, we make use of shorthand (and abusive) notations of
the type 1}x}ą2Rx∇F pxq, ¨ ¨ ¨y to refer to x∇F pxq, ¨ ¨ ¨y if }x} ą 2R and to zero if not. We also denote
∇fpxn, ξn`1q as ∇fn`1 to shorten the equations. We write

F pxn`1q “ F pxnq ´ γ1}xn}ď2Rxζn,∇fn`1y1∆f pxn, ξn`1q

´ γ1}xn}ą2Rxζn ´∇F pxnq,∇fn`1y ´ γ1}xn}ą2Rx∇F pxnq,∇fn`1y.

We shall prove that

EnF pxn`1q ď F pxnq ´ γ1}xn}ą2R}∇F pxnq}
2
` γK1}xn}ď2R

` γ2K1}xn}ą2R

ˆ

p1 ` }∇F pxnq}q
´

ż

}∇fpxn, sq}2 µpdsq
¯1{2

`

ż

}∇fpxn, sq}2 µpdsq
˙

(33)

where the constant K ą 0 is an absolute finite constant that can change from line to line in the
derivations below. To that end, we write

F pxn`1q “ F pxnq ´ γ1}xn}ď2R1}un}ďRxζn,∇fn`1y1∆f pxn, ξn`1q

´ γ1}xn}ď2R1}un}ąRxζn,∇fn`1y1∆f pxn, ξn`1q

´ γ1}xn}ą2R1}un}ďRxζn ´∇F pxnq,∇fn`1y

´ γ1}xn}ą2R1}un}ąRx∇F punq ´∇F pxnq,∇fn`1y

´ γ1}xn}ą2Rx∇F pxnq,∇fn`1y (34)
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We start with the second term at the right hand side of this inequality. Noting from Assumption 2
that

1}un}ďR}ζn} ď sup
}x}ďR

}BF pxq} ď sup
}x}ďR

ż

}Bfpx, sq}µpdsq ď sup
}x}ďR

ż

κpx, sqµpdsq ď K,

we have
γ1}xn}ď2R1}un}ďR|xζn,∇fpxn, ξn`1qy| ď γK1}xn}ď2R}∇fn`1},

and by integrating with respect to ξn`1 and using Assumption 2 again, we get that

γ1}xn}ď2REnr1}un}ďR|xζn,∇fn`1y1∆f pxn, ξn`1q|s ď γK1}xn}ď2R. (35)

Using Assumption 2, the next term at the right hand side of (34) can be bounded as

γ1}xn}ď2R1}un}ąR|xζn,∇fn`1y1∆f pxn, ξn`1q|

ď γ1}xn}ď2R1}un}ąR}∇F punq} }∇fn`1}

ď γ1}xn}ď2RK p1 ` }xn} ` γ}∇fn`1}q }∇fn`1}

ď γK1}xn}ď2R

´

1 ` }∇fn`1} ` γ}∇fn`1}
2
¯

,

which leads to

γ1}xn}ď2REnr1}un}ąR|xζn,∇fn`1y1∆f pxn, ξn`1q|s ď γK1}xn}ď2R (36)

by using Assumption 2.
We tackle the next term at the right hand side of (34). Fix a x‹ R clpBp0, Rqq. By our assumptions

it holds that each x R clpBp0, Rqq,

}∇fpx, sq} ď }∇fpx‹, sq} ` βpsq}x ´ x‹} ď β1psqp1 ` }x}q,

where β1p¨q is square integrable thanks to Assumption 2. Since

ż

β1psq2µpdsq “

ż 8

0
µrβ1p¨q ě

?
t s dt ă 8,

it holds that µrβ1p¨q ě 1{t s “ otÑ0pt
2
q. Using triangle inequality, we get that

1}xn}ą2R1}un}ďR “ 1}xn}ą2R1}xn´αnγ∇fn`1}ďR ď 1}xn}ą2R1}∇fn`1}ěp}xn}´Rq{γ

ď 1}xn}ą2R1β1pξn`1qě
}xn}´R

γp1`}xn}q

ď 1}xn}ą2R1β1pξn`1qě
R

γp1`2Rq
.

Using this result, we write

γ1}xn}ą2R1}un}ďR|xζn,∇fn`1y| ď Kγ1}xn}ą2R1}un}ďR}∇fn`1}

ď Kγ1}xn}ą2R}∇fn`1}1β1pξn`1qě
R

γp1`2Rq

Consequently,

γ1}xn}ą2REnr1}un}ďR|xζn,∇fn`1y|s ď γK1}xn}ą2R

´

ż

}∇fpxn, sq}2 µpdsq
¯1{2

µrβ1p¨q ě K{γs1{2

ď γ2K1}xn}ą2R

´

ż

}∇fpxn, sq}2 µpdsq
¯1{2

. (37)

Similarly,

γ1}xn}ą2R1}un}ďR|x∇F pxnq,∇fn`1y| ď γK1}xn}ą2R}∇F pxnq} }∇fn`1}1β1pξn`1qě
R

γp1`2Rq
,
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thus,

γ1}xn}ą2REn
”

1}un}ďR|x∇F pxnq,∇fn`1y|

ı

ď γ2K1}xn}ą2R}∇F pxnq}
´

ż

}∇fpxn, sq}2 µpdsq
¯1{2

.

(38)
We have that ∇F is Lipschitz outside clpBp0, Rqq. Thus, the next to last term at the right hand side
of (34) satisfies

γ1}xn}ą2R1}un}ąR|x∇F punq ´∇F pxnq,∇fn`1y| ď γ2K1}xn}ą2R}∇fn`1}
2,

and we get that

γ1}xn}ą2R1}un}ąREn r|x∇F punq ´∇F pxnq,∇fn`1y|s ď γ2K1}xn}ą2R

ż

}∇fpxn, sq}2µpdsq. (39)

Finally, we have

´ γ1}xn}ą2REn rx∇F pxnq,∇fn`1ys “ ´γ1}xn}ą2R}∇F pxnq}
2. (40)

Inequalities (35)–(40) lead to (33).

Using Assumption (iii) of Proposition 6, Inequality (33) leads to Inequality (20). The validity of
Assumptions 4-(ii) and 4-(iii) can then be checked easily.

8.8 Proof of Proposition 7

The next Lemma is the key ingredient in the proofs of Section 7.

Lemma 4 Assume that fp¨, sq is locally Lipschitz continuous for every s P Ξ. Then for λ1bλdbµ-
almost all pr, x, sq with r ą 0, it holds that pΠrpxq, sq P ∆f . For λ1 b λd-almost all pr, xq with r ą 0,
it holds that Πrpxq P DF .

Proof. Our first aim is to show that

ż

1∆cf
pΠrpxq, sqλ

1
pdrq b λdpdxq b µpdsq “ 0 . (41)

First, note by Fubini’s theorem that

0 “

ż

1∆cf
px, sqλdpdxq b µpdsq “

ż

ΞˆR`

ż

Sp1q
1∆cf

prθ, sqrd´1%1pdθq µ b λ
1
pds ˆ drq , (42)

that is to say, %ptθ : prθ, sq P ∆f uq “ 0 for µ b λ1 almost every ps, rq with r ą 0. Decompose
Equation (41) as

ż

1∆cf
pΠrpxq, sq λ

1
pdrq b λdpdxq b µpdsq

“

ż

1‖x‖ěr1∆cf pΠrpxq, sq λ
1
pdrq b λdpdxq b µpdsq `

ż

1‖x‖ăr1∆cf px, sq λ
1
pdrq b λdpdxq b µpdsq.

Since for each s, fp¨, sq is differentiable almost everywhere, we have by Fubini’s theorem:

ż

1‖x‖ăr1∆cf px, sq λ
1
pdrq b λdpdxq b µpdsq “ 0.
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Similarly,
ż

1‖x‖ěr1∆cf pΠrpxq, sq λ
1
pdrq b λdpdxq b µpdsq

“

ż

1‖x‖ěr1∆cf

´ rx

‖x‖ , s
¯

λ1pdrq b λdpdxq b µpdsq

“

ż

R`

ż

ΞˆR`

ż

Sp1q
1r1ěr1∆cf

pr1θ, sqpr1qd´1%pdθq µ b λ1pds ˆ drq λ1pdr1q

“ 0 ,

with the last equality coming from Equation (42). Hence (41). The second statement can be proven
along similar lines.

Consider r ą 0 such that the conclusion of Lemma 4 hold. Then the almost sure equality of all
projected SGD sequence is proven in the same way as in Proposition 3. We can therefore consider
the lazy projected SGD sequence xγ,rn`1 “ Πrpx

γ,r
n ´ γϕ0px

γ,r
n , ξn`1qq. By Assumption 6 the law of

xγ,r
n`1{2

:“ xγ,rn ´ γϕ0px
γ,r
n , ξn`1q is Lebesgue-absolutely continuous. Take A a borel set of Rd such

that λpAq “ %rpAq “ 0. Then

Ppxγ,rn`1 P Aq ď Ppxγ,r
n`1{2

P Aq ` P

¨

˚

˝
r
xγ,r
n`1{2∥∥∥xγ,rn`1{2

∥∥∥ P A
˛

‹

‚
.

The first term is equal to zero by Lebesgue-absolutely continuity of the law of xγ,r
n`1{2

. For the second

term we write:

P

¨

˚

˝
r
xγ,r
n`1{2∥∥∥xγ,rn`1{2

∥∥∥ P A
˛

‹

‚
“

ż

pr1qd´1
1Aprθq%pdθqλ

1
pdr1q “

ż

pr1qd´1%rpAqλ
1
pdr1q “ 0 ,

which finishes the proof.

8.9 Proof of Theorems 4 and 5

Noting that the law of xγ,rn ´ γϕ0px
γ,r
n , ξn`1q is Lebesgue-absolutely continuous by Assumption 6,

the first point of Theorem 4 comes from Lemma 4. The second point comes upon noticing that
Πrpxq ´ x P ´NrpΠrpxqq.

Theorem 5 is proved in the same way as Theorem 2, by applying [6, Theorem 5.1.] with hps, xq “
´∇F pxq ´ 1{γpx ´ γ∇fpx, sq ´ Πrpx ´ γ∇fpx, sqqq P ´∇F pxq ´ Nrpx ´ γ∇fpx, sqq and Hpxq “
Hps, xq “ ´BF pxq ´Nrpxq.
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