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Abstract— In this paper, we survey recent mathematical
results devoted to the study of the mutual information of MIMO
channels in the case where transmit and receive antennas
converge to ∞ at the same rate.

We express the different results in a unified framework and
the emphasis is put on non-asymptotic deterministic approx-
imations of the mutual information, asymptotic limits (when
existing) and Rician correlated channels.

I. INTRODUCTION

It is well-known that the mutual information of a MIMO
channel is given by

C(ς2) = E log det

(

I +
HnH

∗
n

ς2

)

where ς2 is the variance of an additive corrupting noise
and the N × n matrix

√
nHn = (Hn

ij) represents the
complex gain between transmit and receive antennas. In
his seminal paper [10], Telatar has proved that in the case
where the entries of the matrix are i.i.d. centered Gaussian
random variables with variance σ2

n
, the mutual information

properly normalized, i.e. Cn(ς2) = C(ς2)
N

converges toward a
deterministic quantity involving Marčenko-Pastur probability
distribution in the case where N

n
→ c > 0. Telatar relied

on Marčenko-Pastur’s theorem from the theory of Large
Random Matrices. Of importance is the fact that the mu-
tual information of the channel grows proportionally to the
number of emitting antennas (or receiving ones since their
ratio is assumed to be constant).

The question soon arised to extend these results to more
realistic models, especially to those models where the en-
tries of the matrix are no longer independent and have a
covariance function of the form:

cov(Hn
ij , H

n
i′j′) =

a(i− i′)b(j − j′)

n

where f and g are two given functions. Such results, based on
an extensive use of the Stieltjes transform f of a probability
measure µ:

f(z) =

∫

R+

µ(dλ)

λ− z
,
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de Moulon, 3 rue Joliot-Curie 91192 Gif Sur Yvette Cedex, France.
walid.hachem@supelec.fr

P. Loubaton is with IGM LabInfo, UMR 8049, Institut Gaspard Monge,
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have been developed by Chuah et al. in [2], relying on results
by Girko [4].

Relying on replica methods, Moustakas et al. [9] have been
able to compute an equivalent of the mean and the variance
of 1

N
log det

(

I +
HnH∗

n

ς2

)

(the variance being of order 1
N2 ).

We shall survey all this line of results and present recent
results [8] where an equivalent of the mutual information is
computed in the case where the covariance of Yn is of a
general form

cov(Hn
ij , H

n
i′j′ ) =

κ(i− i′, j − j′)

n

and in the case where Hn is no longer centered, i.e. Hn =
Zn +Bn where Bn is deterministic and E(Zn) = 0. Such a
case is known as the Rician channel.

In the sequel, we deal with the following model of non-
centered random matrices with a variane profile:

Σn = Yn +An

where Σn, Yn and An are N × n random matrices. Matrix
Yn has a variance profile, i.e. the entries of Yn = (Y n

ij )

have the form Y n
ij =

σij(n)√
n
Xn

ij , the Xn
ij being independent

and identically distributed (0, 1) complex circular gaussian
(denoted CN(0, 1)) random variables. Matrix An is assumed
to be deterministic. Otherwise stated, Σn = Yn +An where
EYn = 0 and EΣn = An.

In Section II, we survey mutual informations results in
the case where Σn is centered, that is in the case where
An = 0. Non-asymptotic formulas are given for a general
variance profile σ(n)

ij and asymptotic formulas are provided
in the case where the variance profile is the sampling of a
continuous function, i.e. σ(n)

ij = σ(i/N, j/n).
In Section III, the general case is adressed. Non-

asymptotic formulas for the mutual information are provided
while no asymptotic formulas are given. In fact,

As will be shown in Section V (based on [6]), the case of
a Gaussian matrix Zn with correlated entries is very close to
the case of a matrix Yn with a variance profile. The intuitive
equivalence Yn ≈ FNZnF

∗
n where Fp = (F p

j1,j2
)0≤j1,j2<p

is the p× p Fourier matrix:

F p
j1,j2

=
1√
p

exp 2iπ

(

j1j2
p

)

(1)

is fully explained.
An important case, both practically and theoretically (com-

putations are heavily simplified), is when the variance profile
is separable, i.e.

σn
ij = αn

i β
n
i



(we shall soon drop superscript n). Particular attention will
be devoted to the case of Rician channel, i.e. An 6= 0.

II. THE CENTERED CASE

In this section, we take An = 0 that is Σn = Yn. As a
major consequence of this assumption, the normalized mu-
tual information 1

N
E log det

(

IN + ΣΣ∗

ς2

)

converges toward
a deterministic limit in the case where the variance profile
is the sampling of a continuous function (see Assumption
(A-1) and Theorem 2.3).

We introduce the following notations:

Dj = diag
(

σ2
ij , 1 ≤ i ≤ N

)

, T = diag(Ti, 1 ≤ i ≤ N),

D̃i = diag
(

σ2
ij , 1 ≤ j ≤ n

)

, T̃ = diag(T̃j , 1 ≤ j ≤ n)

where both T and T̃ are defined by the following system of
N + n equations.

Theorem 2.1 (see [8]): Consider the following system of
N + n equations:

Ti(z) =
−1

z(1 + 1
n
TrD̃iT̃ (z))

, 1 ≤ i ≤ N,

T̃j(z) =
−1

z(1 + 1
n
TrDjT (z))

, 1 ≤ j ≤ n

then this system admits a unique solution (T, T̃ ) among the
class of diagonal matrices such that Ti(z) and T̃j(z) are
Stieltjes transforms of probability measures.

Theorem 2.2 (see [8]): Denote by C̄n(ς2) the quantity

C̄n(ς2) = − 1

N

N
∑

i=1

log ς2Ti(−ς2)−
1

N

n
∑

j=1

log ς2T̃j(−ς2)

− ς2

Nn

∑

i = 1 : N

j = 1 : n

σ2
ijTi(−ς2)T̃j(−ς2)

Then the following holds true:
1

N
E log det

(

IN +
ΣΣ∗

ς2

)

− C̄n(ς2) −−−−→
n→∞

0.

Of interest is the case where the convergence of C̄n(ς2)
occurs. This is the aim of next assumption and next theorem.

Assumption A-1: The variance profile is the sampling of
a continuous function:

σ
(n)
ij = σ

(

i

N
,
j

n

)

(2)

where σ(x, y) is continuous.
Theorem 2.3: Assume now that (A-1) holds and consider

the following functional equation:

k(u, z) =
1

−z +
∫ 1

0
σ2(u,t)

1+c
R

1

0
σ2(x,t)k(x,z)dx

dt
.

This equation admits a unique solution in the class of
functions k such that

1) z 7→ k(u, z) is the Stieltjes transform of a probability
measure,

2) [0, 1] 3 u 7→ k(u, z) is continuous.

We denote kς(u) = k(u,−ς2). The following convergence
holds true:

C̄n(ς2) −−−−→
n→∞

C∗(ς2)

where C∗(ς2) is given by the following formula

C∗(ς2) = −
∫ 1

0

log kς(u) du

− 1

c

∫ 1

0

log

(

1

ς2(1 + c
∫ 1

0 σ
2(x, u)kς(x)dx)

)

du

−
∫

[0,1]2

σ2(x, y)kς(x)

1 + c
∫ 1

0 σ
2(u, y)kς(u)du

dx dy

Mathematical details are provided in [7] and [8].
III. THE GENERAL CASE

In the general case, that is when An 6= 0 one cannot
expect the convergence of the empirical distribution of the
eigenvalues of ΣnΣ∗

n in the case where An 6= 0. Only very
specific cases can be studied ([3], [7]) in a fully asymptotic
perspective. However, one can still compute a deterministic
approximation as in Theorem 2.2.

Assumption A-2: We assume that the N ×n matrix An =
(An

ij) whose columns (an
k )1≤k≤n and rows (ãn

` )1≤`≤N sat-
isfies

sup
n≥1

max
k,`

(‖an
k‖, ‖ãn

` ‖) < +∞ (3)

where ‖ · ‖ stands for the Euclidean norm.
Theorem 3.1 (see [8], see also [5]): Assume that (A-2)

holds and let An be a N × n deterministic matrix. The
deterministic system of N + n equations:

ψi(z) =
−1

z
(

1 + 1
n
Tr D̃iT̃ (z)

) for 1 ≤ i ≤ N, (4)

ψ̃j(z) =
−1

z
(

1 + 1
n
TrDjT (z)

) for 1 ≤ j ≤ n, (5)

where

Ψ(z) = diag(ψi(z), 1 ≤ i ≤ N), (6)
Ψ̃(z) = diag(ψ̃j(z), 1 ≤ j ≤ n), (7)

T (z) =
(

Ψ−1(z) − zAΨ̃(z)A∗
)−1

, (8)

T̃ (z) =
(

Ψ̃−1(z) − zA∗Ψ(z)A
)−1

. (9)

admits a unique solution (ψ1, . . . , ψN , ψ̃1, . . . , ψ̃n) in the
class of the functions which are Stieltjes transforms.
In the sequel, we denote by Ψς = Ψ(−ς2) and by Ψ̃ς =
Ψ̃(−ς2).

Theorem 3.2: Denote by C̄n(ς2) the quantity

C̄n(ς2) =
1

N

N
∑

i=1

log det

[

Ψ−1
ς

ς2
+AΨ̃ςA

∗
]

+
1

N
log det

Ψ̃−1
ς

ς2

− ς2

Nn

∑

i = 1 : N

j = 1 : n

σ2
ijTi(−ς2)T̃j(−ς2) (10)



Then the following holds true:
1

N
E log det

(

IN +
ΣΣ∗

ς2

)

− C̄n(ς2) −−−−→
n→∞

0.

Mathematical details are provided in [8].

IV. THE GENERAL CASE (REVISITED)
In this section, we assume that the variance profile σ(n)

ij

is separable:
Assumption A-3: The variance profile σ(n)

ij is assumed to
be separable, i.e.:

σ
(n)
ij = did̃j ; 1 ≤ i ≤ N, 1 ≤ j ≤ n.

As we shall see, Assumption (A-3) induces major simplifi-
cation over the system of N + n equations of Theorem 3.1
since the system is reduced to 2 equations in this case (in
accordance with [9] for instance). Denote by

D = diag(di, 1 ≤ i ≤ N)

D̃ = diag(d̃j , 1 ≤ j ≤ n)

Theorem 4.1 (see [8]): Assume that (A-3) holds and con-
sider the following system of equations






















δ(z) = 1
n

Tr
[

D
(

−z(I +Dδ̃) +A(I + D̃δ)−1AT
)−1

]

δ̃(z) = 1
n

Tr
[

D̃
(

−z(I + D̃δ) +AT (I +Dδ̃)−1A
)−1

]

.

Then this system admits a unique solution in the class of
Stieltjes transforms of positive measures µ and µ̃ such that
µ(R+) = 1

n
TrD and µ̃(R+) = 1

n
TrD̃.

We can now define properly the related quantities T, T̃ ,Ψ
and Ψ̃ as:

Ψ(z) = − (I + δ̃D)−1

z
, Ψ̃(z) = − (I + δD̃)−1

z
(11)

T (−z) =
(

−z(1 + δ̃D) +A(I + δD̃)−1A∗
)−1

(12)

T̃ (−z) =
(

−z(1 + δD̃) +A(I + δ̃D)−1A∗
)−1

(13)

and accordingly their evaluations at the point z = −ς2: Ψς ,
Ψ̃ς , Tς and T̃ς .

Theorem 4.2: The statement of Theorem 3.2 remains valid
with T, T̃ ,Ψ and Ψ̃ given by (11), (12) and (13).

V. FROM INDEPENDENCE TO STATIONARITY: THE CASE
OF GAUSSIAN MATRICES

We now turn to the relation between random matrices
based on a Gaussian stationary field and matrices with
independent entries and a variance profile.

Assumption A-4: Consider the N×n matrix whose entries
are given by

Zn
j1j2

=
1√
n

∑

(k1,k2)∈Z2

h(k1, k2)U(j1 − k1, j2 − k2),

where h is a deterministic complex summable sequence and
(U(j1, j2); (j1, j2) ∈ Z

2) is a sequence of CN(0, 1) random
variables.

Such a matrix is a good model for a Gaussian stationary
field since every entry Zn

j1j2
is complex gaussian, centered

and
cov(Zn

j1j2
, Zn

j′
1
j′
2
) =

κ(j1 − j′1, j2 − j′2)

n

where

κ(j1, j2) =
∑

(k1,k2)∈Z2

h(k1, k2)h
∗(k1 − j1, k2 − j2)

Consider on the other hand the N×n matrix Yn = (Y n
j1,j2

)
where

Y n
j1,j2

=
Φ
(

j1
N
, j2

n

)

√
n

Xj1,j2 (14)

where the (Xj1,j2) are i.i.d. CN(0, 1) random variables and

Φ(t1, t2) =
∑

(`1,`2)∈Z2

h(`1, `2)e
2πi(`1t1−`2t2) (15)

The similar asymptotic behavior of the spectral measure
of ZnZ

∗
n and YnY

∗
n are part of the folklore of the digital

communication literature. We give here a formal justification
to this fact, based on [6], and extend Theorem 3.2 to the case
of matrices with Gaussian stationary entries. The following
holds true:

Theorem 5.1 (see [6]): Let Hn = Zn + Bn where Bn

satisfies (A-2) and Zn satisfies (A-4). Then the conclusions
of Theorems 3.1 and 3.2 remain valid with the following
slight modifications:

Dj = diag

{

|Φ|2
(

i

N
,
j

n

)

; 1 ≤ i ≤ N

}

;

D̃i = diag

{

|Φ|2
(

i

N
,
j

n

)

; 1 ≤ j ≤ n

}

;

A = F ∗
NBFn.

where Φ is given by (15) and FN and Fn are Fourier matrices
defined by (1). Moreover,

1

N
E log det

(

I +
HH∗

ς2

)

− C̄n(ς2) −−−−→
n→∞

0,

where C̄n(ς2) is given by (10).

Elements of proof
The proof of Theorem 5.1 relies on two main components.
1) A periodization scheme popular in signal processing.

We introduce the matrix Z̃n = (Z̃n
j1j2

) where

Z̃n
j1j2

=
1√
n

∑

(k1,k2)∈Z2

h(k1, k2)

× U ((j1 − k1) mod N, (j2 − k2) mod n) ,

and mod denotes modulo. The main interest of matrix
Z̃n comes from the fact that it can be fully decorrelated
by Fourier multiplication:

F ∗
N Z̃nFn = Yn,

where Yn is defined by (14).



2) The second element is an inequality due to Bai [1]
involving the Lévy distance L between distribution
functions:

L4(FAA∗

, FBB∗

)

≤ 2

N2
Tr(A−B)(A −B)∗Tr(AA∗ +BB∗),

where FAA∗ denotes the empirical distribution func-
tion of the eigenvalues of the matrix AA∗. This in-
equality turns out to be perfectly suited to evaluate
the difference between the spectrum of matrices ZnZ

∗
n

(resp. (Zn +Bn)(Zn +Bn)∗) and Z̃nZ̃
∗
n (resp. (Z̃n +

Bn)(Z̃n +Bn)∗)
Mathematical details are provided in [6].
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