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Abstract

This paper is devoted to the study of the performance of the Linear Minifigan-Square Error receiver for
(receive) correlated Multiple-Input Multiple-Output systems. By thedman matrix theory, it is well-known that the
Signal-to-Noise Ratio (SNR) at the output of this receiver behavessyically like a Gaussian random variable as
the number of receive and transmit antennas convergecto at the same rate. However, this approximation being
inaccurate for the estimation of some performance metrics such as therrBit Rate and the outage probability,
especially for small system dimensions,dtial. proposed convincingly to assume that the SNR follows a generalized
Gamma distribution which parameters are tuned by computing the firstdsyeeptotic moments of the SNR. In this
article, this technique is generalized to (receive) correlated chanmels;lased-form expressions for the first three
asymptotic moments of the SNR are provided. To obtain these resultsgamamatrix theory technique adapted to
matrices with Gaussian elements is used. This technique is believed to be, @ffiplent, and of broad interest in
wireless communications. Simulations are provided, and show that tipeg®d technique yields in general a good
accuracy, even for small system dimensions.

Index Terms. Bit Error Rate, Correlated channels, Gamma approximatiange random matrices, Minimum

Mean Square Error, Multiple-Input Multiple-Output, Ougagrobability, Signal-to-Noise Ratio.

I. INTRODUCTION

Since the mid-nineties, digital communications over Madilnput Multiple Output (MIMO) wireless channels
have aroused an intense research effort. It is indeed wellvk since Telatar's work [1] that antenna diversity
increases significantly the Shannon mutual information afireless link; In rich scattering environments, this
mutual information increases linearly with the minimum rbenof transmit and receive antennas. Since the findings
of [1], a major effort has been devoted to analyse the stgisff the mutual information. Such an analysis has
strong practical impacts: For instance, it can providerimi@tion about the gain obtained from scheduling strategies
[2]; it can be used as a performance metric to optimally $elex active transmit antennas [3], etc.
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The early results on MIMO channels mutual information coned channels with centered independent and
identically distributed entries. It is of interest to stuthe statistics of this mutual information for more pradtica
(correlated) MIMO channels. In this course, many works ldisthed the asymptotic normality of the mutual
information in the large dimension regime for the so calle@récker correlated channels [4], [5], for general
spatially correlated channels [6] and for general varigoredile channels [7].

Another performance index of clear interest is the Signdlldise Ratio (SNR) at the output of a given receiver.
In this paper we focus on one of the most popular receiveraghathe linear Wiener receiver, also called LMMSE
for Linear Minimum Mean Squared Error receiver. In this @it anoutageevent occurs when the SNR at the
LMMSE output lies beneath a given threshold. One purposéisfgaper is to approximate the associated outage
probability for an important class of MIMO channel modelsiother performance index associated with the SNR
is the Bit Error Rate (BER) which will be also studied herein.

Outage probability approximations has been provided irmeevorks for various channels, under very specific
technical conditions (in the case where the Moment Gemgratunction (MGF) [8] or the probability density
function [9] have closed form expressions; when a first omdgransion of the probability density function can be
derived [10]; in the more general case where the moment geéngrfunction can be approximated by using Padé
approximations [11]; etc.). All these results deal with @fie situations where the statistics of the SNR could be
derived for finite system dimensions.

Alternatively, by making use of large random matrix theanye can study the behavior of the SNR in the asymptotic
regime where the channel matrix dimensions grow to infifiity. fairly general channel statistical models, it is then
possible to prove the convergence of the SNR to deterntinstiues and even establish its asymptotic normality
(see for instance [12], [13]). However, this Gaussian axipration is not accurate when the channel dimensions
are small. This is confirmed in.g.[14] where it is shown that the asymptotic BER based on the &dussian
approximation is significantly smaller than the empiricstimate. A more precise approximation of the BER or the
outage probability is expected if one chooses to approxniad SNR probability distribution with a distribution
1) which is supported bR (indeed, a Gaussian random variable takes negative valhie$ g not realistic), 2)
which is adjusted to the first three moments of the SNR instédatie first two moments needed by the Gaussian
approximation.

In this line of thought, Li, Paul, Narasimhan and Cioffi [15pposed to use alternative parameterized distributions
(Gamma and generalized Gamma distributions) whose pagasn@te set to coincide with the asymptotic moments
of the output SNR. This approach was derived for (transmityedated channels and asymptotic moments were
provided for the special case of uncorrelated or equicatedl channels. For the general correlated channel case,
only limiting upper bounds for the first three asymptotic nemts were provided. Based on Random Matrix Theory
and especially on the Gaussian mathematical tools elagbnaf4] and further used in [16], we derive closed-form
expressions for the first three moments, generalizing the&k wb [15] to a general (receive) correlated channel.
Using the generalized Gamma approximation, we provideedidesrm expressions for the BER and numerical

approximations for the outage probability.
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Paper organization
In section II, we present the system model and derive the SkifRession. Then we review in section Il the
Generalized Gamma approximation before providing the asgtic central moments in the next section. Finally,

we discuss in the last section the simulation results.

Il. SYSTEM MODEL AND SNREXPRESSION

We consider an uplink transmission system, in which a bas@stequipped byV correlated antennas detects
the symbols of a given user of interest in the presencl ahterfering users. ThéV dimensional received signal
writes:

r =Xs+n,

wheres = [sq, - ,sK]T is the transmitted complex vector signal with sike+ 1 satisfyingEss* = I, and

Y is the N x (K + 1) channel matrix. We assume that this matrix writes as

1 1 1
3 =—Uv>2WP2,
VK
where® a N x N Hermitian nonnegative matrix that captures the correfatit the receiveP = diag (po, - - , px)
is the deterministic matrix of the powers allocated to thiéedént users an@V = [wy,--- ,wg] (wy being the

kth column) is aV x (K + 1) complex Gaussian matrix with centered unit variance (stedjdindependent and
identically distributed (i.i.d) entries. To detect symbBgland to mitigate the interference caused by users., K,

the base station applies the LMMSE estimator, which mingsithe following metric:
g = mhinE Ih*r — so|? .

Lety = \/%‘I’%Wo, then it is well known that the LMMSE estimator is given by:
g=(ZX" +ply) "y,

Writing the received vector = sgy + ry, Wheresgy is the relevant term ang,, represents the interference plus
noise term, the SNR at the output of the LMMSE estimator i®giby : 3x = \g*y\2 JE |g*rin\2. Plugging the

expression of given above into this expression, one can show that the SNRs given by:
1 o -1
Br=y* <1,(\II%WPW*\IJé + pIN> Y,

with P = diag (p1,- - ,pK) and W = [wi, -+ ,wgk]. Let ¥ = UDU* be a spectral decomposition &. Then,

O writes:

—1
1 1 g 1
Br = %OW;;UD% (KDzU*WPW*UDz +pIN> D U*w, |

—1
PO i 1 1o 1 1
= —z'D? ( —D2ZDZ"D2 +1 D=z
K" (Kp i ) ’

where:z = U*w, (resp.Z = U*VNV) is aN x 1 vector with complex independent standard Gaussian er{tesg.

N x K matrix with independent Gaussian entries).
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Under appropriate assumptions, it can be proved thatadmits a deterministic approximation & N — oo,
the ratio being bounded below by a positive constant andebgva finite constant. Furthermore, its fluctuations
can be precisely described under the same asymptotic refpme full and rigorous computation based on random
matrix theory, see [13]). As it will appear shortly, a det@ristic approximation of the third centered moment of

Ok is needed and will be computed in the sequel.

[1l. BIT ERRORRATE AND OUTAGE PROBABILITY APPROXIMATIONS
A. A quick reminder of the generalised Gamma distribution

Recall that if a random variabl& follows a generalized gamma distributi@®(«, b, £), wherea and b are

respectively referred to as the shape and scale paramttens,
EX =ab, var(X)=ab® and E(X —EX)® = (£+1)ab® .

The probability density function (pdf) of the generalizeadr@ma distribution with parameters;,(p, £) does not
have a closed form expression but its MGF(s) writes [17]:
£-1 .
exp(g 1( (1 - bfs) ¢ )) if £>1,
M(s)= (1—sb)™*, s<3 if&=1,
exp(72((1 - bfs)% —-1)) if&>1.

B. BER approximation

Using Quadrature Phase Shift Keying (QPSK) constellatiwite Gray encoding [18], and assuming that the
noise at the LMMSE output is Gaussian, the BE&ssis given by:

Neauss= EQ ( \/5?)

whereQ(x) = ﬁ f;" e=*/2 4t and the expectation is taken over the distribution of the SMR Based on the

asymptotic normality of the SNR, [19] and [20] proposed te tise approximatiom;st momentiof the BER given

by:
e_t2/2dt,

1

T1st moment= E / JAe
where 3, denotes an asymptotic deterministic approximation of tre fnoment ofgx. It was shown however in
[15] that this expression is inaccurate since a Gaussiatorarvariable allows negative values and has a zero third
moment while the output SNR is always positive and has a ®oo-third moment for finite system dimensions.
To overcome these difficulties, L8t al. [15] approximate the BER by considering first that the SNRofet a
Gamma distribution with scale and shapé, these parameters being tuned by equating the first two mtsnoén
the Gamma distribution with the first two asymptotic momesftthe SNR. However, the third asymptotic moment
was shown to be different from the third moment of the Gamms&itiution which only depends on the scaland
shapeb. In light of this consideration, Let al. [15] refine this approximation and consider that the SNRofed

a generalized Gamma distribution which is adjusted by aggyithat its first three moments equate the first three
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asymptotic moments of the SNR. As expected, this approximatas proved to be more accurate than the Gamma
approximation, and so will be the one considered in this pdgext, we briefly review this technique, which we
will rely on to provide accurate approximations for the BERIautage probability.

Let E(BK), vare(Ox) and S« (8k) denote respectively the deterministic approximationshef asymptotic

central moments off. Then, the parametets « andb are determined by solving:

Eoo(Br) = ab, vare(Bx) = ab® and S..(Bx) = (£ + 1)ab?,

thus giving the following values:

(Eoo (BK))Q Valso (ﬁK) Sco (ﬁK)Eoo (ﬁK)
== =—— and {=——"———~-—1
= ar(x) T Eeelle) T T (B2
Using the MGF, one can use the following approximatipof the BER by using the following relation that holds
for QPSK constellation [21]: i
1 [z 1
=— M| ———— ) do. 1
K 77/0 < 2sin2gb> ¢ @)

Note that similar expressions for the BER exist for otherstelfations and can be derived by plugging the following

identity involving the functionQ(z) [21]:

1 (% x?
== — do
Q) T /0 P ( 2 sin? 9)

C. Outage probability approximation

into the BER expression.

Only the MGF has a closed form expression. Knowing the MGIE can compute numerically the cumulative
distribution function by applying the saddle point approation technique [22]. Denote hi((y) = log(M(y))
the cumulant generating function, lythe threshold SNR and by, the solution ofK’(t,) = y. Let wy anduy
be given by:w, = sign(t,)/2 (t,y — K(t,)) andug = t,/K”(t,). The saddle point approximate of the outage
probability is given by:

Pout = D(w) + b(wo) (1 - 1) , 2)

wo (')
where ®(z) = [* ﬁe—tzﬂ dt and ¢(z) = ﬁe—wm denote respectively the standard normal cumulative
distribution function and probability distribution furiah.
So far, we have presented the technique that will be usedninlations for the evaluation of the BER and outage
probability. This technique is heavily based on the comjniaof the three first asymptotic moments of the SNR

Ok, an issue that is handled in the next section.

IV. ASYMPTOTIC MOMENTS
A. Assumptions

Recall from Section Il the various definitiorTs, N,D,ﬁ. In the following, we assume that bofki and N go

to +o0, their ratio being bounded below and above as follows:

K K
0 < f_:liminfﬁ < £+zlimsupﬁ < oo .
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In the sequel, the notatioRr — oo will refer to this asymptotic regime. We will frequently weiD , and Dk to
emphasize the dependencefin but may drop the subscrigt as well. Assume the following mild conditions:

Assumption Al: There exist real numbeis, . < oo and dmax < 00 such that;
Sl;ép ||DK|| S dmax and Sl;;p ||]5KH S dmaxv

where||D|| and |D x| are the spectral norms @ andD.
Assumption A2: The normalized traces dD x and f)K satisfy:

o1 o1 ~
1}1{f ETr(DK) >0 and 1%f ?TT<DK> > 0.

B. Asymptotic moments computation

In this section, we provide closed form expressions for tis fiiree asymptotic moments. We shall first introduce
some deterministic quantities that are used for the contiputaf the first, second and third asymptotic moments.
Proposition 1: (cf. [4]) For every integer’ and anyt > 0, the system of equations i, 5)
~ -1

I %T&ﬁK(IHaK]SK)fl,

admits a unique solutioﬁdK(t), SK(t)) satisfyingdg () > 0, o (t) > 0.
Let T and T be theN x N andK x K diagonal matrices defined by:

T = (I+t5}<D>_1 and T — (I+t5K]5)_1.

Note that in particulard = L TrDT ands = +TrDT. Define alsoy andy asy = + TrD*T? andy = & TrD>T?.

Finally, replacet by % and introduce the following deterministic quantities:

Y Y
0k = - ( — + 1) :
K P>\ p® — 77
2 3 3 ~ o~
v = —F2 [TrD3T3 - L DT
K (p* =77) p

As usual, the notation - = O(8x) means thatvx (85 )~ is uniformly bounded ag — oo. Then, the first three
asymptotic moments are given by the following theorem:
Theorem 1:Assuming that the matricd® andD satisfy the conditions stated #1 andA2, then the following

convergences hold true:

1) First asymptotic moment [12], [13]:
6—K:(’)(1) and E(ﬁK> —6—K—>0,
p

2) Second asymptotic moment [12], [13]:

2
Qx =0(1) and KE(ffE()) —0% —— 0,
0
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3) Third asymptotic moment:

vk =0(1) and K°E (ff; ~E <ff;)>3 —vg — 0.
The two first items of the theorem are proved in [13] (bewar the notations used in this article are the same
as those in [4] and slightly differ from those used in [13]jo&f of the third item of the theorem is postponed to
the appendix.
Remark 1:0ne can note that the third asymptotic moment is of odéK ~2). This is in accordance with the
asymptotic normality of the SNR, where the third momentyoK (3x — E(8k)) will eventually vanish, as this
guantity becomes closer to a Gaussian random variable. ¥owies value remains significant for small dimension

systems.

V. SIMULATION RESULTS

In our simulations, we consider a MIMO system in the uplinkedtion. The base station is equipped with
receiving antennas and detects the symbols transmittedpaytigular user in the presence &f interfering users.
We assume that the correlation matiik is given by ¥ (i, j) = \/%a“*ﬂ with 0 < a < 1. Recall thatP is the
matrix of the interfering users’ powers. We d@t(up to a permutation of its diagonal elements) to:

5_ diag([4P 5P]) if K=2
diag[P P 2P 4P]) if K =4
where P is the power of the user of interest. F&f = 27 with 3 < p < 5, we assume that the powers of

the interfering sources are arranged into five classes aslhile V. We investigate the impact of the correlation

TABLE |

POWER CLASSES AND RELATIVE FREQUENCIES

Class 1 2 3 4 5
Power P 2P 4P 8P 16P
Relative frequency| 1/8 | 1/4 | 1/4 | 1/8 | 1/4

coefficienta on the accuracy of the asymptotic moments when the input SN\§ti to15dB for N = K (Fig. 1)
and N = 2K (Fig. 2). In these figures, the relative error on the estinhditest three moments*f“’jf”‘| ( poo and

1 denote respectively the asymptotic and empirical momesitdepicted with respect to the correlation coefficient
a. These simulations show that when the number of antennamsali, the asymptotic approximation of the second
and third moments degrades for large correlation coeffisién close to one). Despite these discrepanciesafor
close tol, simulations show that the BER and the outage probabiliyvezll approximated even for small system
dimensions. Indeed, Figure 3 shows the evolution of the ecahiBER and the theoretical BER predicted by (1)
versus the input SNR for different values @f K and V. In Figure 4, the saddle point approximate of the outage

probability given by (2) is compared with the empirical ome.both Figures 3 and €000 channel realizations
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have been considered, and in Fig. 4, the input SNR has beda $&tdB. These figures show that even for small
system dimensions, the BER is well approximated for a widegeaof SNR values. For high SNR values, the
proposed approximation tends to underestimate the bit eate. This tends to show that one should go beyond
the first three moments and take into account higher orderentsito estimate more accurately the BER at high
SNR. The outage probability is also well approximated ekéepsmall values of the SNR threshold that are likely

to be in the tail of the asymptotic distribution.

APPENDIX |

PROOF OFTHEOREM 1

In the sequel, we shall heavily rely on the results and tepies developed in [4]. In the sequé), andD are
respectivelyN x N and K x K diagonal matrices which satis#l andA2, Z is a N x K matrix whose entries

are i.i.d. standard complex Gaussid,is a N x K matrix defined by:
X =D?ZD> .

We shall often writeX = [x1, - - - , xx] where thex;’s areX's columns. We recall hereafter the mathematical tools

that will be of constant use in the sequel.

A. Notations
Define the resolvant matriid by:
b~ -1 t -1
H-= (KDzzDZ*D2 +IN> = (KXX* +IN> .
We introduce the following intermediate quantities:
1 1 o
B(t) = gTr(DH), at) = ETr(DIEH) and f=p—-a.

Matrix f{(t) = diag (71,--- ,7k) is a K x K diagonal matrix defined by:

~ ~ —1

RU):(I+umﬂDK) .
Leta = %Tr(f)f{). Then, matrixR(t) = diag (r1,--- ,7n) IS @ N x N matrix defined by:

R(t) = (I+ta(t)D)~ .

B. Mathematical Tools

The results below, of constant use in the proof of Theoremam, e found in [4].
1) Differentiation formulas :
OH,, t t

X, -~ F (X"H];, Hyi = =5 [xjH]| Hy;. 3)
OHp, t t
X = By Hg = (] (4)
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2) Integration by parts formula for Gaussian functionals:Let ® be aC' complex function polynomially

bounded together with its derivatives, then:

~ [0 @(X)}
E[X;;®(X)] = d;d,;E . 5
X0 = | 225 ®
3) Poincaré-Nash inequalityLet X and ® be as above, then:
N K 2 2
~ 0P(X) 09(X)
Var(q)(X)) a i=1 j=1 dZd]E U 6Xij " ‘ 8Xij (6)

4) Deterministic approximations and various estimations:
Proposition 2: Let (A i) and(Bx) be two sequences of respectivélyx N and K x K diagonal deterministic
matrices whose spectral norm are uniformly boundedinthen the following hold true:

1 1 _ 1 ~ 1 ~ _
Z Tr(AR) = —Tr(AT) + O(K 2, = Ti(BR) = = Ti(BT) + O(K 2.

Proposition 3: Let (A k), (Bx) and(C) be three sequences dfx N, K x K andN x N diagonal deterministic

matrices whose spectral norm are uniformly bounded’inConsider the following functions:

B(X) = %Tr <AHX]?{X ) W(X) = %Tr (AHDHX]?{X )

Then,

1) the following estimations hold true:

var ®(X), var ¥(X), var(3) and var (;{TrAHCH> are O(K™?%).

2) the following approximations hold true:

E[3(X)] = %Tr (DTB) %Tr (ADT) + O(K ), )
E[¥(X)] = ﬁ (I;Tr (ﬁTB) Tr(AD?T?) — %ﬂ (152T2B) Tr(ADT)) +O(K™2), (8)

1 11 .
E—Tr [AHDH] = m?Tr(ADTz) + O(K~?). 9)

Proofs of Propositions 2 and 3 are essentially provided jnlfdthe same vein, the following proposition will be
needed.

Proposition 4: Let (A k), (Bx) and(Cg) be three sequences dfx N, K x K and N x N diagonal deterministic
matrices whose spectral norm are uniformly bounded’inConsider the following function:

1 XBX*
¢(X) = --Tr | CHAHAH

Thenvar p(X) = O(K~?) andvar (+ TrAHAHAH) = O(K~?) .
Proof of Proposition 4 is essentially the same as the pro#froposition 3-1). It is provided for completeness and

postponed to appendix II.
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10

C. End of proof of Theorem 1

We are now in position to complete the proof of Theorem 1. fdhe notations of [4], the SNR writes:
t 1 1
Br = %Z*Dfﬂ(t)mz,

wheret = %. Hence, the third moment is given by:

3 3
E(Bx —EBk)® = (t?:z E (z*D%HD%z—ETrDH) ,
3 3
- (t??? E (' D!HD*7 - hDH + T'DH ~ ET:DH)
(tP0)® [ (- eyt 3 ealor 1 2
- B |E (z D:HD?z — TrDH) +3E (z D:HD?z — TrDH) (TrDH — ETrDH)

+3E (z*D%HD%z - TrDH) (TyDH — ETYDH)? + E (TrDH — IETrDH)3] ,

_ (tpo)® E( NSt 3 el el 2
- - |E('D!HDz —TrDH) +3E (z D:HD?z — TrDH) (TrDH — ETrDH)
+E (T'DH — ETrDH)ﬂ (10)

In order to deal with the first term of the right-hand side dd)(Inotice that ifM is a deterministic matrix anst

is a standard Gaussian vector, then:
E (x*Mx — TrM)* = Te(MP)E (|as 2 —1)°
(such an identity can be easily proved by considering thetsgdedecomposition oM). Hence,

ETr (DH)*E (2112 — 1)°,

3
E (z*D%HD%z _ TrDH)

2ETr (DHDHDH) .
The second term of the right-hand side of (10) is uniformlyifaed inK. Indeed:

2
3E (z*D%HD%z - Tr(DH)) = 3E(|Zu[? - 1)’ TTDHDH (TrDH — ETyDH),

< 3+/var (T'TDHDH)/var (TrDH)

which is O(1) according to Proposition 3. It remains to deal WR{TrDH — ETrDH)?, which can be proved to
be uniformly bounded i using concentration results for the spectral measure aformnmatrices [23] (see also

[15, eq.(86)-(87)], where details are provided). Consatijyewe end up with the following approximation:

3 .
K’E (Bx —Efk)® = (“;2) E(|Z)* - 1)SIETTDHDHDH +0 (K™

which is deterministic but still depends on the distribotmf the entries via the expectation operdforThe rest of

the proof is devoted to provide a deterministic approxiorabf ETr (DHDHDH) depending ony, 4, T and T.
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11

Note thatH = I — £ HXX", thus:

[HDHDH|,, = [HDHD] [HDHDH

XX*}
pp

K
[HDHD] Z [HDHDHx;] X,,;. (11)

Let us deal with the second term of (11). We have:

N
1 - 1 -
¢ [HDHDHx;| X,; = - > 'E ([HDHDH]pk ijij) :

Using the integration by part formula (5), we get:

E [HDHDHx;] X,;

pJj

b3 K
k=1
N N
. — O [Hypodgdy, Hpr, Hyy
> dyd;6(p — k)E [HDHDH], +dedE X > [Hpe E&DTZ d ,
Lm=1 kj

. t
d,d,;E[HDHDH| - Z did;dy, ngE[ o7 [Hx;) HqumHmk}
k,4,m=1

N
> dididpdeR [ X5 Hyp [HX;], Hyn Honi
k,{,m=1
t

Z dkdd d/E[ péHim [HX]] Hkk]-
kZm 1

dyd;E[HDHDH],, — %J]E [[Hx,], X, Tr (DHDHDH) |

f%dﬂ@ {[HDij]meTr (DHDH)] - %L—E [[HDHDij]pXT,jTr (DH)] .

Substituting in the last terrr;lgTrDH :5 +a whereE: 0 — «a, we get:

E [HDHDHx;] X,;

Therefore, we have:

- t - .
~ d,d,;E[HDHDH], — —d,E {[ij]p X, Tr (DHDHDH)}
—%@E [[HDij]pXTjTr (DHDH)} —td;E {[HDHDij}pXm— ﬁ}

~td;E |[HDHDHx;], X, o.

- - - ¢ .
(1+tad;) E [HDHDHx;], X,;] = d,d;E[HDHDH],, - —E [[F1x;], X,;d, T [DHDHDH]|

April 30, 2009
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DRAFT



12

Multiplying the right hand and the left hand sides by= we get:

1+td’

E[HDHDHx] X,; = #d,d,E[HDHDH] - %@E [[F1x;], X,;d, T [DHDHDH] |
- %@@E [[HDij]pXT)jTr [DHDH]} — td;7E {[HDHDij]pXm ﬁ] . (12)

Plugging (12) into (11), we obtain:
L P K _
E[HDHDH] 7] Z 7B [ij]p X,;d;Tr DHDHDH)
j=1

EHDHDH|, = E[HDHD]

H'MN

2 & t - — o
+ﬁ2d 7E[HDHx;] X, /Tr[DHDH] + ?Zdjfj]E[HDHDij]po)j B,
j=1 =1

t2 ~

~ E[HDHD)],, - tad,E[HDHDH]  + - ETy(DHDHDH) [HXRDX*]

K pp
t? ~ 2 o ~

+——ETr [DHDH] [HDHXDRX*} +EB [HDHDHXDRX*}

K K pp

Hence,

- 2 o
(1+tad,)E[HDHDH|,, = E[HDHD],, + —ETr[DHDHDH]| {HXRDX Lp
2 o 2 o o
+——ETr[DHDH] [HDHXDRX*] +—EB [HDHDHXDRX }

pp pp

Multiplying the left and right hand sides by, = ﬁ, we get:

t2 ~
E[HDHDH],, = 1,E[HDHD],, + —r,ETr[DHDHDH] [HXRDX*]W
t2 t2 o —
~_r,ETr [DHDH] [HDHXDRX*} + ZryE § [HDHDHXDRX"| . (13)
K2 w K pp

Multiplying by d,,, summing ovep and dividing by K, we obtain:

K
1 1
E--Tr[DHDHDH] = E?;dp[HDHDH]

pp’

K
1 t? .
= = r4,E[HDHD], + —ETr(DHDHDH) Ir (DRHXRDX )
p=1

2 ~ ~
—&-%ETr (DHDH) Tr (DRHDHXDRX*)
2 o ~ ~
—&-%E 3Tr (DRHDHDHXDRX*) :

X1+ X2 + X3 + X4, (14)

>
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where:

w = %ETr(DRHDHD),

o = %ETI«(DHDHDH) %Tr (DRHXﬁKﬁX*>,
o %ETr(DHDH) %Tr (DRHDHXﬁKﬁX*>7
& = %EﬁTr (DRHDHDHXf)I{ﬁxk).

According to Proposition 3yar—+Tr (DRHDHDH%) is of orderO(K ~2). Similarly, var(3) = O(K ~2).
Hence, using Cauchy-Schwartz inequality, we get the etitmas = O(K~2). It remains to work out the
expressions involved ig1, x2 andys by removing the terms with expectation and replacing theth déterministic
equivalents.

Since var & Tr (DRH%) = O(K~2) by Proposition 3 andvar(+TrDHDHDH) = O(K~2) by

Proposition 4, we have:

t? 1
X2 = K]ETr(DHDHDH)E(KTr

XDRX*
DRHKD +O(K™?),

@ 1 (e ] I
¢ ETr(DHDHDH) _Tr (DTDR) —Tr (DRDT) + O(K ),

2

© %IETr (DHDHDH) v + O(K?) . (15)

where (a) follows from Proposition 3-2) and (b), from Pragios 2. Similar arguments yield:

2 1 XDRX* L
X3 = KIETr(DHDH)E<KTr DRHDHKD +O(K™?),
_ % Ly (DTDR) L1 (DRD?*T?) — Uy (D*T*DR) L Ty(DRDT)| + O(K2)
(1-1297)% | K K K K ’
_ t*y gl 3m3 ty? 373 -2
- Aoy {KTr(D T%) — = T(D°T?)| + O(K?) (16)
and
X1 = ST (D’RDT?) + O(K?)
1—2v3 K
_ 1 1 33 -2
= [ g BT + O, 17)

Plugging (16), (15) and (17) into (14), we obtain:

33 .
-Tr'T°D? + O(K ).

1
—ETy(DHDHDH) = —
w T ) K(1—1277)

- _TyD3T? -
K(1— 238
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Hence,

om [ BK B\’ p? 33 Y mams 2 3 1
E (K op ) = DTt - DT | E (120 - 1) +0 ().
Do Po K (p?2 —~7) p K
203 . 3, 1
S — [TrD?T3 - ’y:,)TrD?’T"} +0 <> .
K (p* —9) p K

The fact thatvx = K(%_SW)S [Tng’T3 — ;’—zTrf)g”f‘P’} is of orderO(1) is straightforward and its proof is omitted.
Proof of Theorem 1 is completed.

APPENDIXII

PROOF OFPROPOSITION4

The proof mainly relies on Poincaré-Nash inequality. Usimg Poincaré-Nash inequality, we have:

2
var(p <ZdeE‘ +ZdeE‘8X
ij

=1 j=1 =1 j=1

We only deal with the first term of the last inequality (the aad term can be handled similarly). We have

o(X) = % Zﬁfns,t:l fo:l CppHpr Apr Hys Ass H ot X1 Buu X, After straightforward calculations using the dif-
ferentiation formula (3), we get that:

Oy (1) 4 42 43 @)
aX (,ZS” (rb” (rbz] ('blj ’
where:
1)y _ (2 _
o) = —ﬁ [X*"HAHAHXBX'CH],, ¢, = —ﬁ [X*"HAHXBX CHAH], ,
(3) o * * (4) *
% = _ﬁ [X*HXBX CHAHAH]ji, gzbl-j ﬁ [BX CHAHAH]ji
Hence,‘a‘zg <4<¢(1)‘ + ¢(2)’ + | ij ‘ + |0l ) and

N K
ZZdZJjE

i=1 j=1

K6

2
’;‘(P H < ®ppy (PHCXBX"HAHAHXDX'HAHAHXBX'CH)
j

A2 N
—&—%ETr (DHAHCXBX*HAHXDX*HAHXBX*CHAH)
A2 N
—&—%ETr (DHAHAHCXBX*HXDX*HXBX*CHAHAH)

f— ETr (DHAHAHCXBf)BX*CHAHAH) .
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We only prove that the first term of the right hand side is ofeorHl —2; the other terms being handled similarly.

Using Cauchy-Schwartz inequality, we get:

N

N K
5 2 4t duax | H|?[|C|1? 2 Ty 2 2
43S adEleL” < = ETr ((HA) HXDX*H (AH)? (XBX") )
i=1 j=1
4¢2
K6

1
2

IN

dunase | H||?]|C 2 (ETr (HA)? HXDX*H (AH)? (HA)? HXDX*H (AH)2)

x (]ETY (XBX*)4)%

~ 2
442 1 [ XDX* 1 /XBX*\*
< 2 G HIS[CI AL E( ) E( )

K2 K K K K

where the first inequality follows by using the fact tHa*rAB| < ||B||Tr (A), A being hermitian non-negative

matrix and the second follows by applyig twice Cauchy-SatmiaequalitiesTr (AB) < /Tr (AA¥),/Tr (BB™)
andEXY < vVEX2vEY2. We end up the proof of the first statement by using the fact}ia [+ Tr (£ XBxX*)"]
is uniformly bounded i’ wheneveB g is a sequence of diagonal matrices with uniformly boundextspl norm
andn is a given integer.

The second statement follows from the resolvent identity:
iTrAHAHAH = iTrAHAHA - iTrAHAHAHXX*.
K K K
According to the first part of the proposition,
1
var <KTrAHAHAHXX*) =0(K?).

Now, TTAHAHA = TrA?HAH and var+TrA?HAH = O(K~?) by Proposition 3-1). Hence, applying
inequality var(X +Y) < var(X) + var(Y) + 24/var(X)var(Y) yields the desired result. Proof of Proposition 4
is completed.
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