
Asynchronous distributed optimization using
a randomized ADMM algorithm

Walid Hachem

CNRS; Telecom ParisTech

Joint work with
P. Bianchi, Ph. Ciblat and F. Iutzeler

Problem Statement

The Alternating Direction Method of Multipliers (ADMM) algorithm

Monotone operator theory

Asynchronous ADMM

1/45

Problem Statement

N computing agents, each having a private function fn : RK → R̄

Problem 1: Solve the minimization problem inf
x∈RK

N
∑

n=1

fn(x)

Distributed iterative implementation: each agent updates a local
estimate of the parameter and communicates it to its neighbors.
Estimates ought to converge to same minimizer.

Assumption: The fn are proper, lower semicontinous, and
convex (notation: fn ∈ Γ). A minimizer of Problem 1 exists.

2/45

A simple example from the field of signal processing

Network of N sensors.

◮ Yn = random observation of sensor n,

◮ x⋆ = unknown parameter to be estimated.

Likelihood function

l(Y1, . . . ,YN ; x) = l1(Y1; x)× · · · × lN(YN ; x) (independence).

Maximum likelihood estimate

x̂ = argmin
x

N
∑

n=1

− log ln(Yn; x).

3/45

Two classes of algorithms

◮ Local subgradient descent (or variants) + averaging with neighbors.
Conceptually simple but often slow to converge.

◮ Dual space techniques:

Area of active research in convex optimization theory,

Often easy to parallelize or to distribute,

Better convergence properties than the former,

ADMM is one of the most popular.

4/45

Problem Statement

The Alternating Direction Method of Multipliers (ADMM) algorithm
ADMM presentation
Parallel implementation
Distributed synchronous implementation

Monotone operator theory

Asynchronous ADMM

5/45

Classical description of the ADMM

p = inf
z=Mx

(f (x) + g(z)) , f , g ∈ Γ.

Given ρ > 0, the augmented Lagrangian is

Lρ(x , z ;λ) = f (x) + g(z) + 〈λ,Mx − z〉+
ρ

2
‖Mx − z‖2

ADMM :

xk+1 ∈ argmin
x

Lρ(x , zk ;λk)

= argmin
x

f (x) + 〈λk ,Mx〉+
ρ

2
‖Mx − zk‖

2
,

zk+1 ∈ argmin
z

Lρ(xk+1, z ;λk)

= argmin
z

g(z)− 〈λk , z〉+
ρ

2
‖Mxk+1 − z‖2 ,

λk+1 = λk + ρ (Mxk+1 − zk+1) .

6/45

The Alternating Direction Method of Multipliers (ADMM) algorithm
ADMM presentation
Parallel implementation
Distributed synchronous implementation

7/45

Reformulation of Problem 1
Assume that all agents are connected to a central scheduler. We look for
a parallel implementation of Problem 1 (e.g. [Boyd et.al 11]).

Set K = 1 for now on, and let

f : R
N −→ R̄

x = (x(1), . . . , x(N)) 7−→ f (x) =
∑N

1 fn(x(n))

g : R
N −→ R̄

z 7−→ g(z) = ıspan(1N)(z)

where ı is the indicator function

ıC (x) =

{

0 if x ∈ C
∞ if not.

Equivalent formulation of Problem 1: inf
x=z∈RN

(f (x) + g(z)).

8/45

ADMM : Parallel implementation

At iteration k ,

◮ Write xk = (xk (1), . . . , xk(N)),

◮ zk = z̄k1N since domain of g is span(1N),

◮ Write λk = (λk (1), . . . , λk(N)).

9/45

ADMM : Parallel implementation

At iteration k ,

◮ Write xk = (xk (1), . . . , xk(N)),

◮ zk = z̄k1N since domain of g is span(1N),

◮ Write λk = (λk (1), . . . , λk(N)).

Algorithm:

xk+1(n) = argmin
x

fn(x) + λk(n)x +
ρ

2
(x − z̄k)

2 for n = 1, . . . ,N

9/45

ADMM : Parallel implementation

At iteration k ,

◮ Write xk = (xk (1), . . . , xk(N)),

◮ zk = z̄k1N since domain of g is span(1N),

◮ Write λk = (λk (1), . . . , λk(N)).

Algorithm:

xk+1(n) = argmin
x

fn(x) + λk(n)x +
ρ

2
(x − z̄k)

2 for n = 1, . . . ,N

z̄k+1 =
1

N

N
∑

1

xk+1(n), projection of xk+1 on domain of g

ADMM : Parallel implementation

At iteration k ,

◮ Write xk = (xk (1), . . . , xk(N)),

◮ zk = z̄k1N since domain of g is span(1N),

◮ Write λk = (λk (1), . . . , λk(N)).

Algorithm:

xk+1(n) = argmin
x

fn(x) + λk(n)x +
ρ

2
(x − z̄k)

2 for n = 1, . . . ,N

z̄k+1 =
1

N

N
∑

1

xk+1(n), projection of xk+1 on domain of g

λk+1(n) = λk(n) + ρ(xk+1(n) − z̄k+1) for n = 1, . . . ,N

9/45

The Alternating Direction Method of Multipliers (ADMM) algorithm
ADMM presentation
Parallel implementation
Distributed synchronous implementation

10/45

Reformulation of Problem 1 on an example
Idea of [Ribeiro et.al 08]. Let A1, . . . ,AL be a collection of subsets of the
set A = {1, . . . ,N} of agents.
Example with N = 6 and L = 3:

.

A1

A2

A3

1

2

3

4 5

6

.

Problem

inf
x∈R6

f (x) + ıspan(14)









x(1)
x(2)
x(3)
x(4)









+ ıspan(13)





x(2)
x(4)
x(5)



+ ıspan(12)

(

x(5)
x(6)

)

is equivalent to Problem 1.
11/45

Reformulation of Problem 1

g : R
|A1| × · · · × R

|AL| −→ R̄

z = (z1, . . . , zL) 7−→ g(z) =
∑L

1 ıspan(1|A
ℓ
|)(z

ℓ)

Let

M =







SA1

...
SAL







where SAℓ
is the matrix that selects the components of x belonging to Aℓ.

Problem 2: Find inf
z=Mx

f (x) + g(z).

12/45

Reformulation of Problem 1

Let G = ({1, . . . , L}, E) be the graph with edges {ℓ,m} ∈ E if
Aℓ ∩ Am 6= ∅.
Our example:

.

A1

A2

A3

Graph G:
.

13/45

Reformulation of Problem 1

Let G = ({1, . . . , L}, E) be the graph with edges {ℓ,m} ∈ E if
Aℓ ∩ Am 6= ∅.
Our example:

.

A1

A2

A3

Graph G:
.

If ∪Aℓ = A and the graph G is connected as we shall always
suppose, then Problems 1 and 2 are equivalent.

13/45

Distributed synchronous ADMM

◮ Write xk = (xk (1), . . . , xk(N)),

◮ zk =







z̄1k1|A1|
...

z̄Lk 1|AL|






∈ domain of g at any moment k ,

◮ Write λk = (λ1
k , . . . , λ

L
k) and λℓ

k = (λℓ
k (n1), . . . , λ

ℓ
k(n|Aℓ|)) ∈ R

|Aℓ|,
Indices ni being those of the agents belonging to Aℓ (non zero
columns of SAℓ

).

14/45

Distributed synchronous ADMM

◮ Write xk = (xk (1), . . . , xk(N)),

◮ zk =







z̄1k1|A1|
...

z̄Lk 1|AL|






∈ domain of g at any moment k ,

◮ Write λk = (λ1
k , . . . , λ

L
k) and λℓ

k = (λℓ
k (n1), . . . , λ

ℓ
k(n|Aℓ|)) ∈ R

|Aℓ|,
Indices ni being those of the agents belonging to Aℓ (non zero
columns of SAℓ

).

Algorithm:

14/45

Distributed synchronous ADMM

◮ Write xk = (xk (1), . . . , xk(N)),

◮ zk =







z̄1k1|A1|
...

z̄Lk 1|AL|






∈ domain of g at any moment k ,

◮ Write λk = (λ1
k , . . . , λ

L
k) and λℓ

k = (λℓ
k (n1), . . . , λ

ℓ
k(n|Aℓ|)) ∈ R

|Aℓ|,
Indices ni being those of the agents belonging to Aℓ (non zero
columns of SAℓ

).

Algorithm:

xk+1(n) = argmin
x

fn(x) +
∑

ℓ:n∈Aℓ

xλℓ
k (n) +

ρ

2

(

x − z̄ℓk

)2

for n = 1, . . . ,N ,

14/45

Distributed synchronous ADMM

◮ Write xk = (xk (1), . . . , xk(N)),

◮ zk =







z̄1k1|A1|
...

z̄Lk 1|AL|






∈ domain of g at any moment k ,

◮ Write λk = (λ1
k , . . . , λ

L
k) and λℓ

k = (λℓ
k (n1), . . . , λ

ℓ
k(n|Aℓ|)) ∈ R

|Aℓ|,
Indices ni being those of the agents belonging to Aℓ (non zero
columns of SAℓ

).

Algorithm:

xk+1(n) = argmin
x

fn(x) +
∑

ℓ:n∈Aℓ

xλℓ
k (n) +

ρ

2

(

x − z̄ℓk

)2

for n = 1, . . . ,N ,

z̄ℓk+1 =
1

|Aℓ|

∑

n∈Aℓ

xk+1(n) for ℓ = 1, . . . , L,

14/45

Distributed synchronous ADMM

◮ Write xk = (xk (1), . . . , xk(N)),

◮ zk =







z̄1k1|A1|
...

z̄Lk 1|AL|






∈ domain of g at any moment k ,

◮ Write λk = (λ1
k , . . . , λ

L
k) and λℓ

k = (λℓ
k (n1), . . . , λ

ℓ
k(n|Aℓ|)) ∈ R

|Aℓ|,
Indices ni being those of the agents belonging to Aℓ (non zero
columns of SAℓ

).

Algorithm:

xk+1(n) = argmin
x

fn(x) +
∑

ℓ:n∈Aℓ

xλℓ
k (n) +

ρ

2

(

x − z̄ℓk

)2

for n = 1, . . . ,N ,

z̄ℓk+1 =
1

|Aℓ|

∑

n∈Aℓ

xk+1(n) for ℓ = 1, . . . , L,

λℓ
k+1(n) = λℓ

k(n) + ρ(xk+1(n)− z̄ℓk+1) for n = 1, . . . ,N and for ℓ : n ∈ Aℓ.

14/45

Algorithm execution

At clock tick k + 1,

◮ Every agent computes xk+1(n),

◮ Members of a set Aℓ belong to a connected communication network.
They send their updates xk+1(n) to a device (possibly one of them)
who computes the average z̄ℓk+1. This average is then broadcasted
to the members of Aℓ,

◮ The {λℓ
k(n)}n∈Aℓ

are local to agents. Each is updated by the agent
according to the third equation.

15/45

A simple example

Communication network between agents represented by a connected non
oriented graph with no self loops G = (A,E)
Set L = |E |. Any {m, n} ∈ E (notation m ∼ n) is a set Aℓ.

.

.

16/45

A simple example

We identify the index ℓ of set Aℓ = {m, n} ∈ E with {m, n}.
All Agents perform updates

xk+1(n) = argmin
x

fn(x) +
∑

m∼n

xλm,n
k (n) +

ρ

2

(

x − z̄m,n
k

)2

17/45

A simple example

We identify the index ℓ of set Aℓ = {m, n} ∈ E with {m, n}.
All Agents perform updates

xk+1(n) = argmin
x

fn(x) +
∑

m∼n

xλm,n
k (n) +

ρ

2

(

x − z̄m,n
k

)2

All agents m and n such that m ∼ n exchange the values of xk+1(m) and
xk+1(n). They compute

z̄m,n
k+1 =

xk+1(m) + xk+1(n)

2

and

λm,n
k+1(n) = λm,n

k (n) + ρ
xk+1(n)− xk+1(m)

2

λm,n
k+1(m) = λm,n

k (m) + ρ
xk+1(m)− xk+1(n)

2

17/45

Problem Statement

The Alternating Direction Method of Multipliers (ADMM) algorithm

Monotone operator theory
An alternative view of ADMM
Monotone operators: basic definitions
The proximal point algorithm
The Douglas-Rachford splitting

Asynchronous ADMM

18/45

Duality

Consider the primal problem:

p = inf
x
(f (x) + g(Mx)) , f , g ∈ Γ

where M is a T × N matrix.
Let

f ∗ : R
N −→ R

φ 7−→ f ∗(φ) = supx∈RN (〈x , φ〉 − f (x))

be the Legendre-Fenchel Transform of f . Similar definition for g .
The dual problem is

p∗ = − inf
λ∈RT

(f ∗(−M∗λ) + g∗(λ))

If a qualification condition holds, the duality gap is zero (p = p∗), and
the dual problem is attained. We also assume the primal problem is
attained (existence of a saddle point).

19/45

Splitting

Solve the dual problem by finding a zero of

−M∂f ∗(−M∗·) + ∂g∗(·).

where ∂f ∗ and ∂g∗ are the subdifferentials of f ∗ and g∗.

Subdifferentials of convex functions are particular cases of so called
monotone operators.

Douglas-Rachford (or Lions-Mercier [Lions Mercier 79]) splitting
algorithm is a procedure for finding the zero of the sum of two

monotone operators.

Applied to the two operators above, it results in the ADMM [Gabay 83].
⇒ Alternative approach to the augmented Lagrangian.

20/45

Monotone operator theory
An alternative view of ADMM
Monotone operators: basic definitions
The proximal point algorithm
The Douglas-Rachford splitting

21/45

Monotone operators

A monotone operator on a Euclidean space X is a set-valued
application U : X → 2X such that

∀(x , y), ∀(u, v) ∈ U(x)× U(y), 〈u − v , x − y〉 ≥ 0

◮ It is maximal monotone if it is not contained in an other monotone
operator. Example: the subdifferential of a function in Γ.

◮ A point x is a zero of U if 0 ∈ U(x)

The resolvent of U is

JU = (I + U)−1 where I is the identity operator

◮ domain(JU) = X whenever U is maximal

◮ JU is single-valued (it is a function)

◮ Fixed points of JU coincide with the zeros of U : fix(JU) = zer(U).

22/45

Non expansiveness
◮ A single valued monotone operator T is said non expansive if

∀x , y ∈ domain(T), ‖T (x)− T (y)‖ ≤ ‖x − y‖.

◮ It is said firmly non expansive if

∀x , y ∈ domain(T), 〈T (x)− T (y), x − y〉 ≥ ‖T (x)− T (y)‖2

.

y − x

T (y)− T (x)

.

23/45

Properties related with non expansiveness

◮ J is a firmly non expansive operator with domain X ⇔ J is the
resolvent of a maximal monotone operator.

◮ If T is non expansive, then
I + T

2
is firmly non expansive.

◮ The reflected resolvent (sometimes called Cayley Transform) of a
monotone operator U is RU = 2JU − I .
If U is maximal monotone, then RU is non expansive with domain X .

24/45

Monotone operator theory
An alternative view of ADMM
Monotone operators: basic definitions
The proximal point algorithm
The Douglas-Rachford splitting

25/45

The proximal point algorithm

xn+1 = JU(xn)

Assume that there exists x⋆ ∈ zer(U)
.

x⋆ xn

xn+1

.

26/45

The proximal point algorithm

xn+1 = JU(xn)

Assume that there exists x⋆ ∈ zer(U)
.

x⋆

xn+2 xn+1

.

26/45

The proximal point algorithm

xn+1 = JU(xn)

Assume that there exists x⋆ ∈ zer(U)
.

x⋆

xn+2

.

‖xn − x⋆‖ decreases with n

Convergence of the proximal point algorithm [Rockafellar 76]:
If U is maximal monotone and zer(U) 6= ∅, then xn converges to a
point in fix(JU) = zer(U).

26/45

Application

U = ∂f where f is a function in Γ attaining its infimum.

Let ρ > 0 and consider the iterates xk+1 = JρU(xk) = (I + ρ∂f)−1(xk).
We have xk+1 + ρ∂f (xk+1) = xk , in other words,

xk+1 = argmin
w

f (w) +
1

2ρ
‖w − xk‖

2 = xk − ρ∂f (xk+1)

For any ρ > 0, the algorithm converges to a minimum of f .
Notice the difference with the classical subgradient.

27/45

Monotone operator theory
An alternative view of ADMM
Monotone operators: basic definitions
The proximal point algorithm
The Douglas-Rachford splitting

28/45

Douglas-Rachford splitting

Problem: Find a zero of the sum of two maximal monotone

operators U + V by a procedure involving each operator individually.

29/45

Douglas-Rachford splitting

Problem: Find a zero of the sum of two maximal monotone

operators U + V by a procedure involving each operator individually.

Douglas-Rachford splitting:
Assume that zer(U + V) 6= ∅. Set ρ > 0 and define operator

JDR =
1

2
(RρURρV + I)

where RρU and RρV are the reflected resolvents of ρU and
ρV . Then the set of fixed points of JDR is not empty. For
any ζ ∈ X , the sequence ζk+1 = JDR(ζk) converges to a fixed
point ζ⋆ of JDR, and λ⋆ = JρV (ζ⋆) ∈ zer(U + V).

29/45

Douglas Rachford splitting: proof outline

◮ Since U is maximal monotone, RρU is non expansive with domain X .
Same for V . Hence JDR = 0.5(RρURρV + I) is firmly non expansive
with domain X .
It is the resolvent of a maximal monotone operator (the so
called Douglas-Rachford operator),

◮ Check that
zer(U + V) = JρV (fixRρURρV) = JρV (fix(0.5(RρURρV + I)),

◮ Apply the theorem of convergence of the proximal point algorithm.

30/45

ADMM as a Douglas-Rachford operator [Gabay 83]

(outline)

Set
U = −M∂f ∗(−M∗·) and V = ∂g∗

Algorithm can be rewritten

1. Input: ζk = λk + ρzk with λk = JρV (ζk),

2. Set vk+1 = JρU(λk − ρzk).

3. Algorithm output: ζk+1 = JDR(ζk) = vk+1 + ρzk .

◮ Using the identity ∂f ∗ = ∂f −1, Step 2 can be translated into the
update equation for xk+1 in Slide 6.

◮ ζk+1 = vk+1 + ρzk at the output of Step 3 should be re-represented
as ζk+1 = λk+1 + ρzk+1 where λk+1 = JρV (ζk+1). Using the identity
∂g∗ = ∂g−1, this identity gives the update equations for zk+1 and
λk+1.

31/45

Problem Statement

The Alternating Direction Method of Multipliers (ADMM) algorithm

Monotone operator theory

Asynchronous ADMM
Random Gauss-Seidel iterations
Random Gauss-Seidel and asynchronous ADMM
The proof
Numerical illustration

32/45

Notations

◮ Assume X = X 1 × · · ·X L (cartesian product of Euclidean spaces)
and write accordingly any ζ ∈ X as ζ = (ζ1, . . . , ζL).

◮ Let JU be the resolvent of a maximal monotone operator U on X ,
and write JU(ζ) = (J1(ζ), . . . , JL(ζ)).

◮ Given ℓ ∈ {1, . . . , L}, define

J̄ℓU(ζ) =

























ζ1

...
ζℓ−1

Jℓ(ζ)
ζℓ+1

...
ζL

























.

33/45

Random Gauss-Seidel iterations: main result

Let ξk be an iid random process valued in the set {1, . . . , L}, and such
that min1≤ℓ≤L P[ξ1 = ℓ] > 0.

Theorem:
Assume U is maximal monotone. Then for any initial value ζ0, the
random sequence ζk+1 = J̄ξk+1

U (ζk) converges almost surely to an
element of fix(JU) whenever fix(JU) 6= ∅.

In our case, JU will be the Douglas-Rachford resolvent.

34/45

Asynchronous ADMM
Random Gauss-Seidel iterations
Random Gauss-Seidel and asynchronous ADMM
The proof
Numerical illustration

35/45

Application: asynchronous ADMM algorithm

Random Gauss-Seidel updates of the Douglas-Rachford resolvent made
at level of sets Aℓ.
Cartesian product R

∑
|Aℓ| = R

|A1| × · · · × R
|AL|.

For ξk+1 = ℓ, we get

ζk+1 =

























λ1
k + ρz̄1k1|A1|

...

λℓ−1
k + ρz̄ℓ−1

k 1|Aℓ−1|

JℓDR(λk + ρzk)

λℓ+1
k + ρz̄ℓ+1

k 1|Aℓ+1|
...

λL
k + ρz̄Lk 1|AL|

























Only the
(

(xk (n))n∈Aℓ
, λℓ

k , z̄
ℓ
k

)

are updated. Agents not belonging to

Aℓ remain inactive.

36/45

Implementation in the case of example above

.

n

m

.

Aξk+1
= {m, n}

37/45

Implementation in the case of example above

.

n

m

.

Aξk+1
= {m, n}

◮ Agent n computes

xk+1(n) = argmin
x

fn(x)+

∑

j∼n

xλj,n
k (n) +

ρ

2

(

x − z̄ j,nk

)2

and similarly for Agent m.

37/45

Implementation in the case of example above

.

n

m

.

Aξk+1
= {m, n}

◮ Agent n computes

xk+1(n) = argmin
x

fn(x)+

∑

j∼n

xλj,n
k (n) +

ρ

2

(

x − z̄ j,nk

)2

and similarly for Agent m.

◮ They exchange xk+1(m) and xk+1(n)
and compute

z̄m,n
k+1 = 0.5(xk+1(m) + xk+1(n)),

λm,n
k+1(n) = λm,n

k (n) + ρ
xk+1(n)− xk+1(m)

2

λm,n
k+1(m) = λm,n

k (m) + ρ
xk+1(m)− xk+1(n)

2

37/45

Asynchronous ADMM
Random Gauss-Seidel iterations
Random Gauss-Seidel and asynchronous ADMM
The proof
Numerical illustration

38/45

The proof

Assume P[ξ1 = 1] = · · · = P[ξ1 = L] = 1/L for simplicity.
Recalling X = X 1 × · · · × X L, let ‖ · ‖X ℓ be the norm on X ℓ.
Let Fk = σ(ξ1, . . . , ξk).
Let ζ⋆ be a fixed point of JU .

E
[

L‖ζk+1 − ζ⋆‖
2 | Fk

]

=
L

∑

ℓ=1

‖J̄ℓU(ζk)− ζ⋆‖
2

=

L
∑

ℓ=1

(

‖JℓU(ζk)− ζℓ⋆‖
2
X ℓ +

L
∑

i=1
i 6=ℓ

‖ζ ik − ζ i⋆‖
2
X i

)

= ‖JU(ζk)− ζ⋆‖
2 + (L− 1)‖ζk − ζ⋆‖

2.

39/45

The proof

Recall JU is firmly nonexpansive. So is Operator I − JU . Since
(I − JU)ζ⋆ = 0, we have

‖JU(ζk)− ζ⋆‖
2 − ‖ζk − ζ⋆‖

2

= ‖JU(ζk)− ζk + ζk − ζ⋆‖
2 − ‖ζk − ζ⋆‖

2

= ‖JU(ζk)− ζk‖
2 + 2〈JU(ζk)− ζk , ζk − ζ⋆〉

= ‖JU(ζk)− ζk‖
2 − 2〈(I − JU)(ζk)− (I − JU)(ζ⋆), ζk − ζ⋆〉

≤ −‖JU(ζ
k)− ζk‖

2

40/45

The proof
Hence

E
[

‖ζk+1 − ζ⋆‖
2 | Fk

]

≤ ‖ζk − ζ⋆‖
2 −

1

L
‖JU(ζ

k)− ζk‖
2 (1)

This shows that ‖ζk − ζ⋆‖2 is a nonnegative supermartingale. As such, it
converges towards a random variable 0 ≤ Xζ⋆ < ∞. By a separability
argument, we get

Fact 1: There is a probability one set on which ‖ζk − ζ⋆‖ converges
for every fixed point ζ⋆ of JU .

Taking expectations in (1) and iterating,

∞
∑

0

E
[

‖J(ζk)− ζk‖
2
]

≤ L‖ζ0 − ζ⋆‖
2 < ∞.

By Markov’s inequality and Borel Cantelli’s lemma

Fact 2: J(ζk)− ζk −→ 0 almost surely.

41/45

Proof

On the probability one event where Facts 1 and 2 hold,

◮ Sequence ‖ζk‖ is bounded since ‖ζk − ζ⋆‖ converges.

◮ Since JU is nonexpansive, it is continuous, and Fact 2 shows that
accumulation points of ζk are fixed points of JU .

◮ Assume ζ⋆ is an accumulation point. Since ‖ζk − ζ⋆‖ converges by
Fact 1, lim ‖ζk − ζ⋆‖ = lim inf ‖ζk − ζ⋆‖ = 0. So ζ⋆ is unique.

42/45

Asynchronous ADMM
Random Gauss-Seidel iterations
Random Gauss-Seidel and asynchronous ADMM
The proof
Numerical illustration

43/45

Simulation setting

Configuration of example above, with A = {1, . . . , 5} and
E = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 3}}.

Behavior of

◮ The synchronous distributed gradient algorithm,

◮ An asynchronous version of the distributed gradient,

◮ The synchronous ADMM,

◮ The asynchronous ADMM.

with quadratic functions fn.

44/45

Simulation results

0 100 200 300 400 500 600 700 800 900 1,000
10−5

10−4

10−3

10−2

10−1

100

Number of iterations

S
q
u
ar
ed

E
rr
or

Distributed Gradient descent

Asynchronous Distributed Gradient

Synchronous ADMM

Asynchronous ADMM

Figure: Squared error versus the number of primal updates

45/45

	Problem Statement
	The Alternating Direction Method of Multipliers (ADMM) algorithm
	ADMM presentation
	Parallel implementation
	Distributed synchronous implementation

	Monotone operator theory
	An alternative view of ADMM
	Monotone operators: basic definitions
	The proximal point algorithm
	The Douglas-Rachford splitting

	Asynchronous ADMM
	Random Gauss-Seidel iterations
	Random Gauss-Seidel and asynchronous ADMM
	The proof
	Numerical illustration

