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Problem Statement

N computing agents, each having a private function f, : RK - R

N
Problem 1: Solve the minimizati bl inf fn
roblem olve the minimization problem inf 2 (x)

Distributed iterative implementation: each agent updates a local
estimate of the parameter and communicates it to its neighbors.
Estimates ought to converge to same minimizer.

Assumption: The f, are proper, lower semicontinous, and
convex (notation: f, € I'). A minimizer of Problem 1 exists.
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A simple example from the field of signal processing

Network of N sensors.
» Y, = random observation of sensor n,

> x, = unknown parameter to be estimated.
Likelihood function

I(Y1,.oos Yu;x) = h(Y1;x) x -+ x In(Yn; x)  (independence).

Maximum likelihood estimate

N
£ = arg min Z —log In(Yn; x).

n=1
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Two classes of algorithms

> Local subgradient descent (or variants) + averaging with neighbors.
Conceptually simple but often slow to converge.

» Dual space techniques:

Area of active research in convex optimization theory,
Often easy to parallelize or to distribute,

Better convergence properties than the former,
ADMM is one of the most popular.
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Classical description of the ADMM

p=inf (f(x)+8(z), fger.

Given p > 0, the augmented Lagrangian is

Ly(x,z;A) = f(x)+g(z) + (A, Mx — z) + g [[Mx — sz

ADMM :
Xki1 € arg mXin Ly(x, zi; A)
= argmin f(x) + Ak, Mx) + g [Mx — z|)?,
Zki1 € arg mzin Lp(Xk+1,2; k)
= argming(2) — (M, 2) + 5 [|Mxsn — I,

A1 = Ak + p (Mxpp1 — zk1) -
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The Alternating Direction Method of Multipliers (ADMM) algorithm

Parallel implementation
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Reformulation of Problem 1

Assume that all agents are connected to a central scheduler. We look for

a parallel implementation of Problem 1 (e.g. [Boyd et.al 11]).

Set K =1 for now on, and let

f: RN -
x:(X(l),...,X(N)) —

= &

x) =27 fa(x(n))

=]l

g: RV —
z > g(2) = tspan(1y)(2)

where 2 is the indicator function
re(x) = 0 ifxeC
Y=Y oo if not.

Equivalent formulation of Problem 1:
x=z€RN

inf  (f(x) + g(2)).
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ADMM : Parallel implementation

At iteration k,
» Write x, = (Xk(l), . ,Xk(N)),

> z, = Zx1p since domain of g is span(1y),

> Write A\ = ()\k(l), ceey )\k(N)).
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ADMM : Parallel implementation

At iteration k,
> Write xx = (xc(1),. .., xk(N)),
> z, = Zx1p since domain of g is span(1y),
> Write A = (Ae(1), .. ., Me(NV)).

Algorithm:

xk+1(n) = arg min f(x) + Ae(n)x + g(x —z)? forn=1,...,N
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ADMM : Parallel implementation

At iteration k,
> Write xx = (xc(1),. .., xk(N)),
> z, = Zx1p since domain of g is span(1y),
> Write A = (Ae(1), .. ., Me(NV)).

Algorithm:

xk+1(n) = arg min f(x) + Ae(n)x + g(x —z)? forn=1,...,N

N
1 . .
Zhi1l = N E xk+1(n), projection of xxy1 on domain of g
1

Akt1(n) = A(n) + p(xicr1(n) = Z1) forn=1,....N
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The Alternating Direction Method of Multipliers (ADMM) algorithm

Distributed synchronous implementation
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Reformulation of Problem 1 on an example
Idea of [Ribeiro et.al 08]. Let Aq,...,A; be a collection of subsets of the
set A={1,..., N} of agents.
Example with N =6 and L = 3:

Ay
A
VR
7
A
Problem
x(1)
x(2)

_ x(2) x(5
|nf6 f(x) + Uspan(La) | ~+ span(13) x(4) | + Ispan(1,)
xE€R Xgig X(5) < (6))

is equivalent to Problem 1.
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Reformulation of Problem 1

g: RAlx...xRAI — R
z=(z4...,24) — g(z):Zl{zspan(l‘Am(zf)
Let
Sa,
M=
Sa,

where 5,4, is the matrix that selects the components of x belonging to A,.

Problem 2: Find |_nAi, f(x)+g(2).
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Reformulation of Problem 1

Let G = ({1,...,L},&) be the graph with edges {¢, m} € £ if
ArNAnL gié .
Our example:

Ay
A3

S

Graphg:. O—0O—=O
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Reformulation of Problem 1

Let G = ({1,...,L},&) be the graph with edges {¢, m} € £ if
ArNAnL gié .
Our example:

Ay
A;g

S

Graphg:. O—0O—=O

If UA; = A and the graph G is connected as we shall always
suppose, then Problems 1 and 2 are equivalent.
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Distributed synchronous ADMM

» Write x, = (Xk(l), . ,Xk(N)),
Ze L
>z = : € domain of g at any moment k,
Zc 1),
> Write Ax = (Af,..., Ak) and Al = (AL(m), ..., Ak(nja,))) € RIA,
Indices n; being those of the agents belonging to A; (non zero
columns of Su,).
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Distributed synchronous ADMM

» Write x, = (Xk(l), . ,Xk(N)),
Ze L
>z = : € domain of g at any moment k,
Zc 1),
> Write Ax = (Af,..., Ak) and Al = (AL(m), ..., Ak(nja,))) € RIA,
Indices n; being those of the agents belonging to A; (non zero
columns of Su,).

Algorithm:

2
xk+1(n) = argminfy(x) + Z x)\i(n)—l—g(x—if) forn=1,...,N,
L:n€EA,

1
Zhq = —— Z Xxkr1(n) forl=1,... L,
|A£| neA,

Ner(n) = Me(n) + p(xks1(n) — Ze,q) forn=1,...,N and for £: n € A,.
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Algorithm execution

At clock tick k + 1,

» Every agent computes xxt1(n),

» Members of a set A; belong to a connected communication network.
They send their updates xx11(n) to a device (possibly one of them)
who computes the average Z,fﬂ. This average is then broadcasted
to the members of Ay,

» The {\{(n)}nea, are local to agents. Each is updated by the agent
according to the third equation.
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A simple example

Communication network between agents represented by a connected non
oriented graph with no self loops G = (A, E)
Set L = |E|. Any {m, n} € E (notation m ~ n) is a set A,.
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A simple example

We identify the index ¢ of set Ay = {m, n} € E with {m, n}.
All Agents perform updates
#5(e-a)
X — Zk

Xi1(n) = argmin f(x +Z xA"(n

mn~n

h)l‘:
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A simple example

We identify the index ¢ of set Ay = {m, n} € E with {m, n}.
All Agents perform updates

Xicy1(n) = argmin fy(x )+ > AP (n (X_zlnn)2

mn~n

All agents m and n such that m ~ n exchange the values of x41(m) and
xk+1(n). They compute

—m,n Xk+1(m) +Xk+1(n)

Zk+1 - 2

and

m,n m,n Xk 1(”) — Xk 1(m)
A (n) = A" (n) +p — > u

A (m) = A(m) 4 p ) e l)
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Duality

Consider the primal problem:
p=inf(f(x)+g(Mx)), f,geTl

where M is a T x N matrix.
Let
. RV — R
6 F(6) = supycan ((x. ) — F(x))

be the Legendre-Fenchel Transform of f. Similar definition for g.
The dual problem is

p= = inf (F1(=M"N) +g" (V)

If a qualification condition holds, the duality gap is zero (p = p*), and
the dual problem is attained. We also assume the primal problem is
attained (existence of a saddle point).
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Splitting

Solve the dual problem by finding a zero of
—MOf*(—=M*-) + dg™ ().
where Of* and Jg* are the subdifferentials of f* and g*.

Subdifferentials of convex functions are particular cases of so called
monotone operators.

Douglas-Rachford (or Lions-Mercier [Lions Mercier 79]) splitting
algorithm is a procedure for finding the zero of the sum of two

monotone operators.

Applied to the two operators above, it results in the ADMM [Gabay 83].
= Alternative approach to the augmented Lagrangian.
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Monotone operator theory

Monotone operators: basic definitions
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Monotone operators

A monotone operator on a Euclidean space X is a set-valued
application U : X — 2% such that

V(x,y), Y(u,v) € U(x) x U(y), {(u—v,x—y)>0

» It is maximal monotone if it is not contained in an other monotone
operator. Example: the subdifferential of a function in T

> A point x is a zero of U if 0 € U(x)

The resolvent of U is

Ju=(I+U)"" where | is the identity operator

» domain(Jy) = X whenever U is maximal
» Jy is single-valued (it is a function)
» Fixed points of Jy coincide with the zeros of U: fix(Jy) = zer(U).
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Non expansiveness

» A single valued monotone operator T is said non expansive if
Vx,y € domain(T), [|T(x) = T(y)ll <[x—yll
» It is said firmly non expansive if

¥x,y € domain(T), (T(x) = T(y),x—y) > [ T(x) = T(y)I?
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Properties related with non expansiveness

» Jis a firmly non expansive operator with domain X < J is the
resolvent of a maximal monotone operator.

» If T is non expansive, then is firmly non expansive.

» The reflected resolvent (sometimes called Cayley Transform) of a
monotone operator U is Ry =2Jy — I.

If U is maximal monotone, then Ry is non expansive with domain X.
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Monotone operator theory

The proximal point algorithm
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The proximal point algorithm

Xn+1 = JU(Xn)
Assume that there exists x, € zer(U)
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The proximal point algorithm

Xn+1 = JU(Xn)

Assume that there exists x, € zer(U)

Ln42

|[xn — x| decreases with n

Ty

Convergence of the proximal point algorithm [Rockafellar 76]:
If U is maximal monotone and zer(U) # (), then x, converges to a
point in fix(Jy) = zer(U).
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Application

U = Of where f is a function in I attaining its infimum.

Let p > 0 and consider the iterates xk+1 = Jou(xk) = (I + pdf) " (xk).
We have xi11 + pOf (xk+1) = Xk, in other words,

. 1
Xk1 = argmin f(w) + %HW — xk||? = xx — pOf (xx11)

For any p > 0, the algorithm converges to a minimum of f.
Notice the difference with the classical subgradient.
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Monotone operator theory

The Douglas-Rachford splitting
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Douglas-Rachford splitting

Problem: Find a zero of the sum of two maximal monotone
operators U + V by a procedure involving each operator individually.
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Douglas-Rachford splitting

Problem: Find a zero of the sum of two maximal monotone
operators U + V by a procedure involving each operator individually.

Douglas-Rachford splitting:
Assume that zer(U + V) # ). Set p > 0 and define operator

1
Jor = 5 (RouR,v +1)
where R,y and R,y are the reflected resolvents of pU and
pV. Then the set of fixed points of Jpr is not empty. For
any ¢ € X, the sequence (xt+1 = Jpr(Ck) converges to a fixed
point ¢, of Jpr, and A, = J,v({) € zer(U + V).
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Douglas Rachford splitting: proof outline

> Since U is maximal monotone, R,y is non expansive with domain X.
Same for V. Hence Jpr = 0.5(R,uyR,v + [) is firmly non expansive
with domain X.

It is the resolvent of a maximal monotone operator (the so
called Douglas-Rachford operator),

» Check that
zer(U + V) = Jp\/(ﬁx RpuRp\/) = Jp\/(ﬁX(O.'.‘-)(RpuRp\/ + I)),

> Apply the theorem of convergence of the proximal point algorithm.
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ADMM as a Douglas-Rachford operator [Gabay 83]
(outline)

Set
U=-Mof*(=M*-) and V =0g"

Algorithm can be rewritten
L. Input: (kx = Ak + pzi with A\ = Jpv(Ch),
2. Set vkr1 = Jou(Ak — pzk).
3. Algorithm output: (k11 = Jor(Ck) = Vkr1 + p2k-

» Using the identity Of* = Of ~!, Step 2 can be translated into the
update equation for xx1 in Slide 6.

> (ki1 = Vki1 + pzk at the output of Step 3 should be re-represented

as Ck41 = Akt+1 + pzr+1 where Ap1 = Jov(Ceq1). Using the identity
0g* = Og~!, this identity gives the update equations for z,,1 and

Akl
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Notations

» Assume X = X! x .- XL (cartesian product of Euclidean spaces)
and write accordingly any ¢ € X as ¢ = (¢%,...,¢h).

> Let Jy be the resolvent of a maximal monotone operator U on X,

and write Jy(¢) = (J*(Q), ..., JH(Q)).
» Given ¢ € {1,...,L}, define
(:1
CE:—I
Ju(Q) = | /(<)

C£+1

C:L
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Random Gauss-Seidel iterations: main result

Let & be an iid random process valued in the set {1,...,L}, and such
that minlggél_ P[fl = é] > 0.

Theorem:
Assume U is maximal monotone. Then for any initial value (p, the

random sequence (ki1 = ._/ff“(gk) converges almost surely to an
element of fix(Jy) whenever fix(Jy) # 0.

In our case, Jy will be the Douglas-Rachford resolvent.
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Asynchronous ADMM

Random Gauss-Seidel and asynchronous ADMM
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Application: asynchronous ADMM algorithm

Random Gauss-Seidel updates of the Douglas-Rachford resolvent made
at level of sets A,.
Cartesian product RZ14¢l = RIAl ... x RIA,

For £x+1 = £, we get
/\i + pz/%]'\Aﬂ
Ntz a,

Cky1 = [JfDR()\k [-Flf)Zk)
VAR S >rAl 1YW

/\k + Pf/fl\ALl

Only the ((xk(n)),,eA[, /\ﬁ,zﬁ) are updated. Agents not belonging to
Ay remain inactive.
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Implementation in the case of example above

A§k+1 = {mv ”}
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Implementation in the case of example above

A€k+1 = {mv ”}

» Agent n computes

Xe41(n) = arg min £,(x)+
j,n 1Y =j,n 2
Zx)\Jk (n) + E(x—zf( )
Jj~n

and similarly for Agent m.
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Implementation in the case of example above

A§k+1 = {m7 n}

» Agent n computes

Xe41(n) = arg min £,(x)+
j,n P j,n 2
Zx)\Jk’ (n) + E(X—Zf(’ )
j~n
and similarly for Agent m.

» They exchange xx11(m) and xk41(n)
and compute

M = 0.5(xe1(m) + xes1(n)),

Xk1(n) — Xie1(m)
2

Xk+1(m) — xk1(n)
2

Apra(n) = A7"(n) + p

Apii(m) = X" (m) +p
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Asynchronous ADMM

The proof
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The proof

Assume P[¢; = 1] = - =P[& = L] = 1/L for simplicity.
Recalling X = X! x --- x XL, let || - || x be the norm on X*.
Let Fx = 0(51, R ,fk).

Let (. be a fixed point of Jy.

M~

E [Ll|Gkrr = GIIP[F] = > 115(Gk) = GI?

o~

~ |l
-

L
(119660 = e + 7 Nk = i)

(=1 i=1
il

= [[Ju(G) = Gl + (L= DI G = G
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The proof

Recall Jy is firmly nonexpansive. So is Operator | — Jy. Since
(I = Ju)¢e = 0, we have

[Ju(Ci) = Gl = 1Sk = GlP?
= | Ju(Ci) = G + Gk — Gl = 1IGk — Gl ?
= [|Ju(k) = Ckll* +2(Ju(Ck) = Gk Sk — G
= [[Ju(¢k) = Gl = 2((1 = Ju) () = (1 = Ju) (G Sk = G
< —[Ju(¢*) = Gll?

40/45



The proof

Hence
E (e — GIP 17 < 16— G2 = T ~al? ()

This shows that ||¢x — (.||? is a nonnegative supermartingale. As such, it
converges towards a random variable 0 < X, < 0o. By a separability
argument, we get

Fact 1: There is a probability one set on which ||(x — (,|| converges
for every fixed point (, of Jy.

Taking expectations in (1) and iterating,

S R[4 = GllP] < Llido = ¢l < 0.
0

By Markov's inequality and Borel Cantelli's lemma

Fact 2: J((x) — ¢k — 0 almost surely.
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Proof

On the probability one event where Facts 1 and 2 hold,

> Sequence ||x|| is bounded since ||Cx — (.|| converges.

» Since Jy is nonexpansive, it is continuous, and Fact 2 shows that
accumulation points of (i are fixed points of Jy.

> Assume ¢, is an accumulation point. Since ||(x — (, || converges by
Fact 1, lim ||(x — ¢, || = liminf ||{x — ¢, || = 0. So ¢, is unique.
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Asynchronous ADMM

Numerical illustration
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Simulation setting

Configuration of example above, with A = {1,...,5} and

E ::{{1a2}7{253}7{374}7{475}7{573}}

Behavior of
» The synchronous distributed gradient algorithm,
» An asynchronous version of the distributed gradient,
» The synchronous ADMM,
» The asynchronous ADMM.
with quadratic functions f,.
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Simulation results

Squared Error

1074

107°

—O— Distributed Gradient descent
—}— Asynchronous Distributed Gradient
—QO— Synchronous ADMM

—=/— Asynchronous ADMM
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Figure: Squared error versus the number of primal updates
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