
Travaux Dirigés d’algorithmique no6
Cours d’Informatique de Deuxième Année

—L2.1—

Listes châınées par pointeurs

Définition de la structure :

Un élément d’une liste châınée, appelé une cellule, contient les informations que l’on
souhaite manipuler et également l’adresse de la cellule suivante. Les définitions de types
suivantes mettent en œuvre la notion de “liste châınée d’entiers” :

typedef struct cellule {

int Valeur; /* donnee stockee : un entier. */

struct cellule * Suivant; /* pointeur sur la cellule suivante. */

} Cellule; /* definition d’un nouveau type. */

typedef Cellule * Liste; /* definition d’un nouveau type. */

L’intérêt de cette définition est qu’elle correspond à la définition mathématique, ainsi une
liste est :

- soit vide ;

- soit un élément suivit d’un liste.

x Exercice 1. (Éléments d’une liste)
– Écrire une fonction qui prend en argument une liste châınée et retourne le nombre

d’éléments qu’elle contient.
– Écrire une fonction de recherche d’un élément dans une liste. La fonction renvoie

l’adresse de la cellule qui contient l’élément s’il est présent et NULL sinon.
– Écrire une fonction qui prend en argument une liste châınée et retourne le nombre

d’éléments différents qu’elle contient.
– Donner la complexié des deux fonctions.

x Exercice 2. (Affichage d’une liste)
– Écrire une fonction de nom AffListe qui affiche les éléments de la liste châınée passée

en paramètre. Vous donnerez une version itérative et une version récursive de cette
fonction.

1



– Écrire une fonction de nom AffListeInv qui affiche, dans l’ordre inverse du châınage,
les éléments de la liste châınée passée en paramètre.
Pour la liste châınée donnée auparavant, AffListe devra produire la sortie : 4 1 7 3
et AffListeInv la sortie : 3 7 1 4.

x Exercice 3. (Miroir)
– Écrire une fonction d’insertion d’une cellule en tête de liste
– Écrire une fonction d’extraction de la cellule en tête de liste.
– Écrire une fonction qui inverse l’ordre du châınage des cellules d’une liste.

x Exercice 4. (Libération d’une liste)
Écrire une fonction LibereListe qui libère tout l’espace mémoire occupé par une liste châınée.

x Exercice 5. (Liste de mots)
– Définir les types nécessaires pour gérer des listes de mots.
– Parmi les fonctions précédentes, qu’elles sont celles qui peuvent être réutilisée sans

transformations.
– Écrire la fonction d’insertion sans répétition pour ce type.

2


