
Université Gustave Eiffel
Laboratoire d’Informatique Gaspard-Monge, UMR 8049

Analysis of Algorithms: Towards a More Realistic Model

Analyse d’algorithmes : vers un modèle plus réaliste

Mémoire d’Habilitation à diriger des Recherches
présentée et soutenue publiquement par

Carine Pivoteau

le 26/01/2026

devant le jury composé de

Marie-Pierre BEAL Université Gustave Eiffel Examinatrice
Philippe DUCHON Université de Bordeaux Examinateur
Antoine GENITRINI Sorbonne Université Examinateur
Hsien-Kuei HWANG Tapei Institute of Statistical Science Rapporteur
Loïck LHOTE Université de Caen Examinateur
Marni MISHNA Simon Fraser University Rapporteuse
Vlady RAVELOMANANA Université Paris Cité Rapporteur
Marinella SCIORTINO Università degli Studi di Palermo Examinatrice

Contents

Résumé 1

Introduction 5

I Real-World Data and Implementations 7
1 Record-Biased Permutations . 8

1.1 Background and definition of record-biased permutations 10
1.1.1 Permutations . 10
1.1.2 Ewens model . 10
1.1.3 Generative processes for the Ewens distribution 11
1.1.4 Records and record-biased permutations 12

1.2 Generative processes for record-biased permutations 14
1.2.1 Two generative processes for the word representation 14
1.2.2 One generative process for diagrams 14
1.2.3 Random generation . 15

1.3 Behavior of some classical statistics . 16
1.3.1 Four statistics and their expectations 16
1.3.2 Limit laws for fixed θ . 19
1.3.3 Conclusion on record-biased permutations 22

2 Complexity Analysis of TimSort . 23
2.1 TimSort core algorithm . 24
2.2 TimSort runs in O(n log n) . 25
2.3 TimSort runs in O(nH + n) . 29
2.4 Further developments . 32

2.4.1 Refined analysis and precise worst-case running time 32
2.4.2 About the legacy version of TimSort 32

2.5 Conclusion on TimSort . 34
Summary of Our Results on Data Oriented Analysis . 35

II Enhancing the Model with Computer Architecture Features 37
3 Branch Prediction . 38
4 Unbalancing the Jumps . 43

4.1 A case study : simultaneous minimum and maximum searching 43
4.1.1 Expected number of mispredictions on record-biased permutations . . 46

4.2 Exponentiation by squaring with a twist . 47
4.2.1 Modified algorithms . 47
4.2.2 Average number of mispredictions in GuidedPow 49

4.3 Skew binary search . 50
4.3.1 Unbalancing the binary search . 50
4.3.2 Mispredictions in biased variants of binary search 51
4.3.3 Analysis of a global predictor for SkewSearch 53

5 Pattern Matching . 56
5.1 The sliding window algorithm . 56

5.1.1 Average number of comparisons in SlidingWindow 58
5.1.2 Average number of mispredictions in SlidingWindow 58

5.2 Morris-Pratt and Knuth-Morris-Pratt algorithms 63
5.2.1 Algorithms and their encoding using transducers 63
5.2.2 Expected number of letter comparisons for a given pattern 65
5.2.3 Expected number of mispredictions 67
5.2.4 Results for small patterns, discussion and perspectives 71

Summary of Our Results on Branch Prediction Analysis . 74

On-going and Future Work 75

Bibliography 81

i

ii

Résumé

La combinatoire et l’analyse moyenne d’algorithmes, qui constituent les principaux champs de
ma recherche, sont rattachées en France à l’informatique théorique, mais sont souvent consid-
érées à l’étranger comme relevant des mathématiques (éventuellement appliquées). D’ailleurs,
parmi les cursus classiques qui conduisent à ces thématiques, plusieurs relèvent des mathéma-
tiques, avec une spécialisation en informatique théorique. Pour ma part, j’ai suivi une Licence
puis un Master d’Informatique. Cette formation m’a apporté de bonnes bases en théorie des
langages et en algorithmique, tout en intégrant les aspects appliqués de l’informatique, no-
tamment à travers une pratique étendue de la programmation dans divers paradigmes. J’ai
découvert la combinatoire et l’analyse en moyenne assez tard, en dernière année, notamment
grâce au cours d’Analyse d’Algorithmes de Philippe Flajolet. Je me suis alors orientée vers
ces domaines, tout en conservant l’influence de mes premières années de formation. Cela m’a
naturellement conduite vers la génération aléatoire, qui exploite la connaissance des objets
combinatoires pour concevoir des générateurs destinés, entre autres, à fournir des simula-
teurs pour tester les performances des algorithmes. J’ai en particulier étudié la méthode de
Boltzmann, qui permet de construire automatiquement des générateurs à partir de spécifica-
tions combinatoires (similaires à des grammaires hors contexte). J’ai poursuivi cette ligne de
recherche avec différents groupes de co-auteurs, en automatisant les traitements pour certaines
classes d’objets (notamment les permutations à motifs exclus) et pour les séries génératrices,
qui sont au cœur des méthodes de combinatoire analytique.

En parallèle, avec l’un de mes principaux co-auteurs, Cyril Nicaud, j’ai commencé à ap-
profondir la question de l’analyse d’algorithmes. En tant qu’enseignants, nous intervenons
dans le même type de cursus que celui que j’ai suivi, ce qui nous amène à couvrir des sujets
variés, tels que la programmation, le système ou encore l’architecture des ordinateurs. Même
si la plupart de ces cours ne sont pas directement orientés vers la recherche, ils nourrissent nos
réflexions et entretiennent notre intérêt pour les aspects appliqués de l’informatique. C’est
probablement l’une des raisons pour lesquelles nous concevons l’analyse d’algorithmes comme
un moyen d’expliquer de manière pertinente les phénomènes observés en pratique. L’analyse
en moyenne, qui constitue notre spécialité, offre un premier éclairage théorique sur les perfor-
mances effectives des algorithmes. Nous souhaitons toutefois aller plus loin et proposer des
éléments permettant de faire évoluer le cadre théorique dans lequel s’inscrivent nos résultats.
Dans cette perspective, nous avons exploré plusieurs pistes, dont deux que je présente ici. La
première consiste à adopter un point de vue alternatif sur les données, en considérant par ex-
emple des distributions non uniformes et calibrées pour mieux représenter les données réelles.
Une autre approche est d’enrichir les paramètres de l’analyse en y intégrant des informations
sur la structure des données, et pas uniquement sur leur taille. La deuxième piste concerne le
modèle de d’ordinateur sur lequel les algorithmes sont implémentés : elle vise à intégrer dans
les paramètres d’analyse certains aspects de l’architecture des processeurs.

C’est notre collègue Rémi Forax, avec qui j’enseigne la programmation en Java, qui nous
a parlé le premier de TimSort. Il s’agit d’un algorithme de tri relativement récent, intégré
à l’API standard de Java après avoir été introduit dans Python au début des années 2000.
Le choix des implémentations retenues dans les bibliothèques standard étant généralement
validé par des benchmarks, il paraissait évident que cet algorithme devait être particulière-
ment performant pour avoir supplanté celui précédemment en usage. En y regardant de plus
près, nous avons découvert qu’il s’agissait d’un algorithme assez différent de ceux que nous
avions l’habitude d’étudier, et que les développeurs de Python avaient su innover pour un
problème que nous considérions comme traité depuis longtemps. En particulier, ce tri utilise
des heuristiques originales pour améliorer ses performances. D’une part, son mécanisme prin-
cipal cherche à exploiter l’idée que les données manipulées dans les applications sont souvent

1

Résumé

plus structurées qu’on ne l’imagine. Il est en effet fréquent que les données soient déjà par-
tiellement triées, parce qu’elles ont simplement été mises à jour ou bien agrégées à partir
de sources elles-mêmes triées. D’autre part, les sous-routines employées par TimSort sont
conçues pour tirer pleinement parti des caractéristiques des processeurs modernes, notam-
ment en optimisant l’utilisation du cache. Suite à ces observations, nous avons naturellement
envisagé d’appliquer nos outils habituels afin de proposer une analyse en moyenne, dans le
but de mieux comprendre les raisons des bonnes performances observées en pratique. Cepen-
dant, nous avons constaté que, bien que l’algorithme ait été annoncé avec une complexité en
O(n log n) dans le pire cas, aucune preuve n’existait dans la littérature scientifique. Nous
avons donc commencé par établir ce résultat, au moyen d’une analyse en complexité amor-
tie [AJNP18]. Au cours de ce travail, nous avons rapidement réalisé qu’un des atouts majeurs
de l’algorithme réside dans son exploitation intelligente des séquences d’éléments déjà triés
(runs) présentes dans les données. Cela le place dans la catégorie des algorithmes de tri adap-
tatifs, puisqu’il exploite une certaine “mesures de désordre” [Man85], qui permet de quantifier
à quel point la séquence d’entrée est déjà partiellement triée.

La plupart des mesures de désordre proposées dans la littérature sont directement reliées
à des statistiques sur les permutations, puisque seul l’ordre relatif des éléments importe pour
l’analyse des comparaisons effectuées par un algorithme de tri. Cela nous a conduits à con-
sidérer un modèle de permutations aléatoires non uniformes capable de capturer cette notion
de mesure de désordre. De telles distributions existent déjà (a priori sans lien avec le contexte
considéré ici), parmi lesquelles la distribution d’Ewens [Ewe72] et celle de Mallows [Mal57], qui
introduisent un biais exponentiel par rapport au nombre de cycles et au nombre d’inversions,
respectivement. Nous avons choisi de nous inspirer de ces modèles pour définir une distribu-
tion biaisée vis-à-vis du nombre de records (maximums de gauche à droite). Dans ce modèle,
la probabilité d’une permutation dépend d’un paramètre θ qui permet de contrôler, dans
une certaine mesure, la proportion de records qu’elle contient [ABNP16, BNP25]. Les per-
mutations présentent alors des caractéristiques différentes de celles suivant une distribution
uniforme. Nous avons analysé certaines de ces statistiques, comme le nombre de descentes
ou le nombre d’inversions, et obtenu des formules explicites pour leur espérance en fonction
de θ, en particulier dans le régime linéaire où θ = λn, avec n la taille de la permutation.
Nous avons également établi la distribution asymptotique de ces statistiques lorsque n tend
vers l’infini. Du point de vue des algorithmes de tri, le nombre de descentes présente un
intérêt particulier puisqu’il correspond au nombre de runs croissants exploités par certains
algorithmes de tri comme le NaturalMergeSort de Knuth. Une piste de recherche dans
la même direction serait de concevoir un modèle permettant d’analyser les runs alternants
(croissants et décroissants), utilisés notamment par TimSort.

En ce qui concerne TimSort, notre première analyse de complexité en pire cas nous
a permis de mieux comprendre le fonctionnement de l’algorithme. Nous avons ensuite affiné
cette étude et montré que la complexité de TimSort est en O(n log ρ), où ρ désigne le nombre
de runs. Cependant, pour réellement expliquer ses performances, il est nécessaire d’aller plus
loin et d’intégrer la structure des runs dans l’analyse. Nous avons ainsi établi que la complexité
de TimSort en pire cas est en O(n+ nH), où H représente l’entropie de la distribution des
longueurs de runs, un paramètre inspiré de l’entropie de Shannon qui permet de prendre en
compte simultanément le nombre et la taille des runs. Un tel résultat permet, par exemple,
d’expliquer pourquoi TimSort est plus efficace pour trier un tableau composé d’un grand
run de longueur n− 2(ρ− 1) suivi de ρ− 1 runs de longueur 2, que pour trier une séquence
constituée de ρ runs chacun de longueur n/ρ.

Lorsque j’ai pris mes fonctions à l’Université de Marne-la-Vallée, le premier cours que
j’ai eu à enseigner était une introduction à l’architecture des ordinateurs pour les étudiants

2

Résumé

de DUT Informatique. Malheureusement, cet aspect de l’informatique avait été relativement
peu abordé dans mon cursus. J’ai donc découvert énormément de choses en préparant ce
cours et, de fil en aiguille, j’ai approfondi mes connaissances bien au-delà de ce qui était
nécessaire pour une simple introduction. J’ai en particulier pris conscience de l’existence
de mécanismes d’architecture moderne, à la fois ingénieux et de plus en plus sophistiqués,
conçus pour améliorer sensiblement les performances des programmes. C’est d’ailleurs ce que
j’enseigne désormais dans un cours avancé d’architecture des ordinateurs destiné aux étudiants
de troisième année de Licence. Parmi les éléments d’architecture moderne abordés, figurent
notamment la hiérarchie de mémoire et le fonctionnement du cache, ainsi que la vectorisation
des instructions, deux techniques fondamentales pour l’optimisation des performances : la
seconde réduit directement le nombre d’opérations de base par un facteur constant, tandis
que la première a déjà été étudiée en profondeur dans le cadre des algorithmes en mémoire
externe [AV88] et des algorithmes cache-oblivious [Dem02, FLPR12]. Nous avons donc là
une autre façon d’enrichir le modèle utilisé pour l’analyse d’algorithmes, en considérant cette
fois des paramètres non pas liés aux données, mais au modèle de machine sur lequel les
algorithmes sont implémentés. Dans mes cours, j’aborde également un troisième sujet : la
prédiction de branchement. Dans un processeur moderne, les instructions sont exécutées dans
un pipeline, ce qui signifie qu’elles se superposent de manière à ce qu’une nouvelle instruction
puisse commencer avant que la précédente soit terminée. C’est une technique très efficace
pour améliorer l’ILP1 du processeur, mais elle souffre d’un inconvénient majeur : tant que
le flot d’instructions est séquentiel, le pipeline reste rempli, mais certaines instructions, telles
que les sauts conditionnels, doivent être exécutées intégralement avant de déterminer la suite
du programme. Le pipeline se retrouve alors bloqué en attente de cette information. Pour
limiter ce problème, le processeur tente de prédire la prochaine instruction. Si la prédiction
est correcte, l’exécution se poursuit sans ralentissement. En revanche, si elle est incorrecte, le
pipeline doit être vidé, ce qui pénalise fortement les performances. Il en résulte que plus un
algorithme contient d’instructions de branchement (notamment des comparaisons), plus son
exécution est sensible à la qualité du prédicteur. C’est en particulier le cas des algorithmes
de tri et de recherche basés sur les comparaisons d’éléments.

Dans cette optique, nous avons initié un travail visant à intégrer le nombre d’erreurs de
prédiction comme paramètre pour l’analyse en moyenne des algorithmes, afin de mettre en
évidence les compromis possibles avec le nombre de comparaisons et d’expliquer certaines ob-
servations empiriques. Nous avons commencé par étudier trois algorithmes classiques reposant
principalement sur les comparaisons [ANP16]. La recherche simultanée du minimum et du
maximum dans un tableau constitue un exemple particulièrement frappant de l’existence de
tels compromis : bien qu’il existe un algorithme optimal qui effectue 3n/2 comparaisons pour
une entrée de taille n, l’algorithme naïf qui en effectue 2n se révèle en pratique deux fois
plus rapide pour des entrées aléatoires uniformes. Nous avons montré que ce résultat contre-
intuitif peut s’expliquer par une proportion beaucoup plus faible d’erreurs de prédiction pour
le second : O(log n) contre O(n) pour l’algorithme optimal. Ce constat nous a conduits à
examiner d’autres algorithmes fondés sur les comparaisons, tels que l’exponentiation rapide
et la recherche dichotomique. Pour chacun d’eux, nous avons proposé des variantes spéci-
fiquement conçues pour réduire le nombre d’erreurs de prédiction. Dans les deux cas, en
déséquilibrant volontairement les probabilités des branches suivies lors de l’exécution, nous
avons pu améliorer les performances en pratique.

Dans nos analyses, nous avons considéré un modèle de prédicteur local, c’est-à-dire qu’à
chaque instruction de branchement du programme est associé son propre prédicteur, lequel
utilise l’information des résultats des branchements précédents pour établir ses prédictions.

1Instruction-Level Parallelism, ou parallélisme au niveau des instructions

3

Résumé

Une des particularités des algorithmes que nous venons d’examiner est que les branchements
conditionnels qu’ils impliquent sont presque indépendants les uns des autres, ce qui rend ce
type de prédicteur particulièrement efficace. Parmi les algorithmes qui reposent fortement
sur les comparaisons, on trouve aussi les algorithmes de traitement de texte, et en particulier
ceux de recherche de motif dans un mot. Contrairement aux exemples précédents, ils induisent
souvent des branchements auto-corrélés, soit en raison de la structure interne de l’algorithme,
soit à cause des auto-corrélations présentes dans le motif lui-même. Nous avons donc pour-
suivi notre étude avec trois algorithmes de ce type : le plus naïf (celui utilisé pour les String
en Java), qui fonctionne comme une fenêtre glissante en testant le motif à toutes les positions
possibles du texte, ainsi que les algorithmes de Morris–Pratt et Knuth–Morris–Pratt, plus per-
formants en termes de nombre de comparaisons [NPV24, NPV25]. Pour chacun, nous avons
obtenu des résultats de complexité en moyenne pour le nombre d’erreurs de prédiction, dont
certains dépendent du motif, avec parfois des observations surprenantes. Par exemple, pour un
modèle de mots aléatoires uniformes (chaque lettre ayant la même probabilité d’apparaître), il
arrive que le prédicteur se trompe avec une probabilité supérieure à 1/2, ce qui est moins bon
qu’un choix aléatoire à pile ou face. Heureusement, dans la pratique, les prédicteurs intégrés
aux processeurs modernes se comportent bien mieux. Il est en effet possible de mesurer le
nombre d’erreurs de prédiction à l’aide de compteurs matériels, même si le modèle exact de
prédicteur reste inconnu, car il est presque toujours tenu confidentiel par les constructeurs.
Nos résultats, confrontés à ces observations empiriques, mettent en évidence l’inadéquation
du prédicteur local dans ce contexte et suggèrent l’utilisation d’autres techniques, en partic-
ulier les prédicteurs globaux, qui exploitent l’information issue de l’ensemble des instructions
conditionnelles au moyen de tables d’historique, par exemple. Les processeurs modernes re-
courent d’ailleurs le plus souvent à des prédicteurs hybrides, combinant plusieurs approches,
incluant à la fois la prédiction locale et globale. Dans cette perspective, la poursuite naturelle
de nos travaux sera d’analyser ces autres modèles de prédicteurs, afin d’obtenir des résultats
en meilleure adéquation avec le comportement réel des processeurs.

Ce mémoire d’habilitation présente ces résultats et fournit ainsi une synthèse d’une par-
tie des travaux que j’ai menés depuis ma thèse sur l’analyse d’algorithmes dans un modèle
réaliste. Ces travaux m’ont conduit à co-encadrer un doctorat et deux mémoires de mas-
ter 2, ainsi qu’à contribuer au dépôt d’un projet de recherche dont le financement vient d’être
accepté par l’ANR2. Je n’aborderai que brièvement, dans la conclusion, les autres travaux
menés dans la continuité de ma thèse, en particulier sur le traitement systématique des spéci-
fications combinatoires, qui s’est prolongé pendant près de dix ans, avec Bruno Salvy, par le
développement d’une bibliothèque Maple intégrant ces résultats. Nous avons ensuite poursuivi
cette collaboration, qui a abouti, après un travail de longue haleine [PS25], à une chaîne de
traitement algorithmique complète permettant de calculer automatiquement le développement
asymptotique de toutes les séries génératrices issues de la méthode symbolique de Flajolet et
Sedgewick [FS09]. J’ai également poursuivi mes travaux sur des thématiques connexes en col-
laboration avec plusieurs collègues de mon équipe, notamment Florent Koechlin (désormais
au LIPN), Pablo Rotondo et Éric Fusy.

2PLASMA (Programming Languages, Algorithms and Structures: Models and Analysis) is an ANR research
project that will begin in 2026. See https://protondo.github.io/anr-plasma/

4

https://protondo.github.io/anr-plasma/

Introduction

Analysis of algorithms is the field that studies the efficiency of computer programs through
a variety of approaches, providing theoretical estimates of the resources required by an algo-
rithm. Its systematic development began with the work of Donald Knuth, who introduced
techniques for both worst-case and average-case scenarios. These two perspectives are essen-
tial and complementary in the design and study of efficient algorithms: worst-case analysis
provides an upper bound on running time, while average-case analysis offers a more accurate
measure of performance when worst cases are rare. A well-known example is QuickSort,
which, despite its quadratic worst-case complexity, was often preferred in standard libraries
over algorithms with a guaranteed O(n log n) bound, such as Knuth’s NaturalMergeSort.
This preference can be explained in part by QuickSort’s O(n log n) average complexity (its
expected running time over all n! permutations of size n), and by the fact that a good strat-
egy to choose the pivot can mitigate the worst case. This suggests good practical behavior,
assuming comparisons have unit cost and inputs resemble uniformly random permutations.

But this may not be the most accurate model of reality: algorithms are implemented as
programs that run on real machines and process real data. For example, many algorithms
operate on sequences of letters, yet typical DNA sequences look nothing like Shakespeare’s
words, which in turn differ greatly from the binary sequences produced by compiled programs,
and none of these resemble uniformly random words. Likewise, a computer is not a Turing
machine: while that model is a useful abstraction, it ignores the complexity of modern pro-
cessors, which include sophisticated features such as highly efficient caches that can strongly
affect performance, as well as the impact of the programming language and compiler opti-
mizations. To account for these factors, one would need details about the implementation, the
target hardware, and the actual input data. In practice, this is what benchmarks are for, and
engineers rely on them extensively to guide algorithmic choices. Examining the algorithms
and data structures in the standard libraries of modern programming languages reveals a
clever mix of textbook methods and original heuristics, often diverging from expected designs
to create new algorithms or combine existing techniques in innovative ways. A prominent ex-
ample is the sorting algorithm TimSort, which we will discuss in more detail later. Designed
by Tim Peters to perform particularly well on nearly sorted inputs, TimSort was introduced
in Python in the early 2000s, accompanied by a brief note explaining its rationale and claiming
that “it has supernatural performance on many kinds of partially ordered arrays” [Pet]. To
illustrate this, the note discusses empirical average complexity on a few examples of almost
sorted data, but offers no formal proof. Nevertheless, the algorithm actually performs very
well in practice. It gradually gained popularity and is still used in Java and Rust, yet for
over a decade it attracted little attention from the academic community and still lacked a
proper complexity analysis despite its widespread adoption. This gap has since been filled,
and the techniques and metrics developed for its study have inspired new sorting algorithms,
including PowerSort [MW18], which has recently replaced TimSort in Python.

This is just one of many examples showing how incorporating real-world insight can lead to
significant improvements in algorithm design. To foster and expand this approach, the frame-
work for analyzing algorithms should evolve accordingly. While the classical analysis model
is deliberately kept independent of specific implementations and use cases, the perspective
I present here takes the opposite approach, aiming to provide complementary information.
My main question is: how can we adapt our models to produce a more realistic analysis of
algorithms? Among the possible directions, I will focus on two in particular. The first con-
cerns the nature of the input. The uniform distribution is a reasonable starting point and
provides valuable general insights, but, as the case of TimSort illustrates, uniformly random
permutations seems to be far from representative of typical sorting inputs. Can we propose

5

Introduction

alternative models that more accurately reflect the kinds of data encountered in practice?
Section 1 is devoted to one such model: a parametrized, biased probabilistic distribution on
permutations that allows us to control certain structural properties and to analyze various
parameters within this framework.

Often, what sets uniform random input apart from real-world data is the internal structure
of the objects themselves. For example, the typical height of a uniformly random tree can
differ greatly from the height of trees encountered in applications or drawn from another
distribution. One way to account for such differences is to incorporate these structural features
as parameters in the analysis. In Section 2, the case of TimSort is examined in greater
depth. After providing the missing full classical worst-case analysis, which yields an O(n log n)
running time, an alternative complexity result is presented: TimSort runs in O(n + nH),
where H is the entropy of the distribution of runs (i.e., maximal monotonic sequences). While
not an average-case analysis, this result offers a convincing explanation of why TimSort can
be an excellent practical choice, as it quantifies its performance on partially sorted inputs,
which is a pattern frequently observed in real-world data.

To enrich the model, it is also sometimes relevant to consider multiple parameters in the
analysis. For instance, an algorithm that exploits cache locality effectively may outperform
one that accesses less memory but in a random pattern. In the second part of this study, I
adopt this perspective for a specific architectural feature: the branch predictor. On modern
processors, instructions are pipelined, meaning they overlap in execution so that they can
begin before the previous one finishes. This does not hold for branching instructions such as
if statements: when encountering a branch, the next instruction cannot be executed until
the branch outcome is known, stalling the pipeline. To avoid this, the processor predicts
the outcome of the branch and preloads the corresponding instruction into the pipeline. If
the prediction is correct, execution proceeds smoothly; if not, the pipeline must be flushed,
which can significantly slow down the program. This can be particularly challenging for
algorithms that rely heavily on comparisons, such as searching or sorting. To account for this
effect, I will present work in which this mechanism is incorporated into the analysis model
for several algorithms, highlighting compromises between classical cost measures (such as
comparisons) and the number of mispredictions, thereby offering a potentially more accurate
account of the performance observed in practice. In Section 4, three simple comparison-
based algorithms, including binary search, are analyzed with a classical branch predictor
model. Evaluating the average misprediction rate alongside the number of comparisons reveals
surprising trade-offs, suggesting ways to adjust branch probabilities to improve performance.
In particular, variants of the algorithms are proposed that can outperform the classical versions
through uneven partitioning. Another broad class of algorithms that can benefit from branch-
prediction analysis is pattern matching. Also comparison-based, these algorithms often feature
correlated branches, caused both by their structure and the autocorrelation within the pattern,
which present a particularly challenging case for the predictors studied here. An initial analysis
is presented in Section 5 for three such algorithms, including Knuth–Morris–Pratt, under the
same predictor model, while also opening the path to the study of more sophisticated ones.

Overall, the purpose of the work presented here is to develop a framework for the realis-
tic analysis of modern algorithms and data structures, with the aim of both deepening our
understanding and guiding their future evolution.

Note All the results presented are drawn from collaborations with various colleagues. Most
are already published, with a few exceptions appearing only in preprints. As my aim is to
provide a survey of these results, some technical details, more intricate proofs, and results
beyond the intended scope will be omitted.

6

Part I

Real-World Data and Implementations

1 Record-Biased Permutations . 8
1.1 Background and definition of record-biased permutations . . . 10
1.2 Generative processes for record-biased permutations 14
1.3 Behavior of some classical statistics 16

2 Complexity Analysis of TimSort . 23
2.1 TimSort core algorithm . 24
2.2 TimSort runs in O(n log n) 25
2.3 TimSort runs in O(nH + n) 29
2.4 Further developments . 32
2.5 Conclusion on TimSort . 34

Summary of Our Results on Data Oriented Analysis 35

7

Part I

Over the past two and a half decades, new sorting algorithms have been introduced and
adopted, breathing new life into a fundamental problem in computer science that had long
seemed settled [Knu98]. Since the introduction of TimSort in cpython (the standard imple-
mentation of Python) in the early 2000s, many modern programming languages have embraced
new approaches to sorting. In 2009, Yaroslavskiy proposed a new implementation [Yar] of the
Dual-Pivot QuickSort from the 1970s (see, e.g., [Sed77]), which proved fast enough to be
included in Java 7 for sorting arrays of primitives. TimSort is now used in languages such as
Java and Rust; PatternDefeatingQuicksort, introduced in 2021 [Pet21], is implemented
in both Rust and C++; and PowerSort [MW18] has recently replaced TimSort in cpython.
Even the classic SampleSort [FM70], often used in parallel systems, has seen renewed interest
since 2004 [SW04], with one of the most recent variants being the IPS4o1 [AWFS17], designed
to work in place, run in parallel, be cache-efficient, and avoid branch mispredictions.

These algorithms go beyond simple heuristic modifications of classical techniques. Their
development has been driven by two main factors: advances in computer architecture (such as
caches, branch prediction, vectorization, etc.), explored in the second part of this study, and
the expected structure of the data, which is the focus here. To account for this structure, one
can either consider a non-uniform probabilistic model of the input, which is the motivation
to introduce record-biased permutations in Section 1, or incorporate additional parameters,
beyond input size, into complexity analyses to capture the non-uniformity of real-world data.
This latter approach is the one used in the study of TimSort in Section 2.

Real-world data is often too complex for direct mathematical analysis and must be simpli-
fied by removing non-essential heuristic details and focusing on key structural features. This
is why we2 focus on permutations when analyzing sorting algorithms, and why we began our
exploration of non uniformity by adapting a classical probabilistic model for our record-biased
permutations. These provide a model that is both meaningful with respect to presortedness (a
possible way to describe the structure of the data), while still being mathematically tractable.

In the case of TimSort, the same idea of presortedness guided the design of an algorithm
particularly well suited to partially ordered inputs, a feature that appears to be common
in practical applications. As shown later, this behavior can be analyzed by introducing a
measure that quantifies presortedness based on Shannon entropy, which allows the traditional
worst-case complexity analysis to be refined by incorporating a structural parameter.

1 Record-Biased Permutations

Studying the average running time of algorithms under the uniform model usually gives a
quite good understanding of their behavior. However, it is not always clear that the uniform
model is relevant, when the algorithm is used on a specific data set. In some cases, the uniform
distribution arises by construction, from the randomization of a deterministic algorithm, as in
QuickSort when the pivot is chosen uniformly at random, for instance. In other situations,
the uniformity assumption may not reflect the data accurately, yet it remains a reasonable
first step in modeling it, making the analysis mathematically tractable.

In practical applications where the data consists of sequences of values, it is not uncom-
mon for the input to be partially sorted, depending on its origin. As a result, assuming
that the input is uniformly distributed, or deliberately shuffling the input as in the case of
QuickSort, may not be appropriate. Indeed, among the new sorting algorithms that have

1IPS4o stands for: In-Place Parallel Super Scalar SampleSort.
2I began this document using the pronoun “I” to give my own personal perspective on the work presented
here. However, as already noted, this work is the result of collaborations. From this point on, I will use “we”
to reflect that.

8

Real-World Data and Implementations

made their way into standard libraries, some are specifically designed to exploit the partial
ordering of real-world data, such as TimSort, used in Python from 2002 to 2021 and in
Java since version 7, or PowerSort [MW18], which replaced TimSort in Python in 2021.
These algorithms are particularly efficient on inputs containing long increasing or decreasing
subsequences (see Section 2 for further discussion).

In the context of sorting algorithms, the idea of taking advantage of some bias in the data
towards sorted sequences dates back to Knuth [Knu98]. It has been formalized by the notion
of presortedness [Man85], which quantifies how far a sequence is from being fully sorted (see
Section 1.1.4). Given a measure of presortedness m, one can then ask whether a sorting
algorithm is optimal for m, that is, whether it minimizes the number of comparisons as a
function of both the input size and the value of m. For instance, Knuth’s NaturalMerge-
Sort [Knu98] is optimal for the number of runs r, with a worst case running time of O(n log r)
for an array of length n.

Most measures of presortedness studied in the literature are directly tied to basic statistics
on permutations, since inputs to sorting algorithms can be modeled as permutations: only
the relative order of elements matters, not their actual values. Consequently, it is natural to
define biased distributions on permutations that depend on such statistics, and to analyze
classical algorithms under these non-uniform models. A priori unrelated to the computer sci-
ence motivation, the study of non-uniform distributions on permutations has been an active
research topic in discrete probability for several decades. Among the most studied models,
one can cite the Ewens distribution [Ewe72] and the Mallows distribution [Mal57], both intro-
ducing an exponential bias according to a statistic on permutations (specifically, the number
of cycles for the Ewens model and the number of inversions for the Mallows model).

We define another non-uniform distribution on permutations, which we call record-biased
of parameter θ > 0. It also has an exponential bias: this time, the probability of a permu-
tation σ is proportional to θrec(σ) where rec(σ) is the number of records (a.k.a. left-to-right
maxima) of σ. This model is meaningful in the context of presortedness, which naturally arises
when studying algorithms that are designed to be efficient for almost sorted sequences. More-
over, the record-biased distribution is the image of the Ewens distribution under the Foata
bijection, a property that can be exploited to derive results on record-biased permutations.

In the second part of this study (see Section 4.1), we present a fine-grained analysis
of a simple algorithm under the record-biased distribution. Specifically, we compare two
algorithms (one naive and one more clever) for finding both the minimum and the maximum
in an array, focusing on the number of mispredictions made by a branch predictor in each
case. This analysis helps explain why, in practice, the naive algorithm outperforms the clever
one despite performing a lot more comparisons.

We begin by presenting several generative processes for the record-biased distribution on
permutations of any given size, and show how they can be used for efficient random generation
under this distribution. We then analyze the behavior of classical permutation statistics in this
setting. First, we derive explicit formulas for their expectations and examine their behavior
in various regimes for the parameter θ, in particular when θ = λn is linear w.r.t. the size n.
We next focus on the regime where θ is constant, establishing the asymptotic distributions
of these statistics as the size goes to infinity: three are Gaussian, and the last one follows a
beta distribution, asymptotically. The work in [BNP25] also provides the description of the
typical limit shape of the diagrams of record-biased permutations, via their permuton limit,
but this lies beyond the scope of the present study.

This section is based on joint work with Nicolas Auger, Mathilde Bouvel, and Cyril
Nicaud [ABNP16, BNP25].

9

Part I

2 3

6

4

1
7 5

Figure 1: The diagram and the set of cycles representations of τ = 6321745.

1.1 Background and definition of record-biased permutations

We review here some basics on permutations and some known results on the Ewens distri-
bution [Ewe72]. We define record-biased permutations and present the link between Ewens
permutations and record-biased permutations through Foata’s bijection [Lot97, §10.2].

1.1.1 Permutations

For any integers a and b, let [a, b] = {a, . . . , b} and for every integer n ≥ 1, let [n] = [1, n].
By convention [0] = ∅. If E is a finite set, let S(E) denote the set of all permutations on
E, i.e., of bijective maps from E to itself. For convenience, we write S([n]) as Sn. For a
permutation σ in Sn, the integer n is called the size of σ and is denoted by |σ|. Permutations
in Sn can be viewed in several ways (see, e.g., [Bón12]); in what follows, we alternate between
their representations as words, diagrams, and sets of cycles.

A permutation σ in Sn can be represented as a word w1w2 · · ·wn, where each symbol in [n]
appears exactly once, by setting wi = σ(i) for all i ∈ [n]. The diagram of a permutation σ of
size n is the set of points (i, σ(i)) in an n× n grid. An example is given in Fig. 1. A cycle of
size k in a permutation σ ∈ Sn is a subset {i1, . . . , ik} of [n] such that i1

σ7→ i2 . . .
σ7→ ik

σ7→ i1,
written as (i1, i2, . . . , ik). Any permutation can be decomposed into its cycles. For instance,
the cycle decomposition of τ = 6321745 is (32)(641)(75), as illustrated in Fig. 1.

1.1.2 Ewens model

The Ewens distribution on permutations (see, e.g., [ABT03, Ewe72]) is a generalization of
the uniform distribution on Sn: the probability of a permutation depends on its number of
cycles. Let cyc(σ) denote the number of cycles of a permutation σ, the Ewens distribution of
parameter θ on Sn (where θ > 0) assigns to each σ ∈ Sn the probability

θcyc(σ)∑
ρ∈Sn

θcyc(ρ)
. (1)

Setting θ = 1 yields the uniform distribution on Sn. The normalization constant
∑

ρ∈Sn
θcyc(ρ)

is equal to the rising factorial θ(n), where for any real number x, the rising factorial x(n) is
defined by x(n) = x(x+1) · · · (x+n− 1), with x(0) = 1. Forgetting the normalizing constant,
we sometimes refer to the numerator θcyc(σ) in Eq. (1) as the weight of the permutation σ;
this weight can be interpreted as a product of weights, one from each element of σ. Here, we
assign weight θ to each element that is the smallest in its cycle, and weight 1 to all others.

For fixed θ, the expected number of cycles in a random permutation of size n under
the Ewens distribution is

∑n−1
j=0

θ
θ+j , which is asymptotically equivalent to θ logn, and it is

asymptotically normal.

10

Real-World Data and Implementations

1.1.3 Generative processes for the Ewens distribution

We call generative process a way to incrementally build random permutations that follow a
given distribution. They are conveniently depicted by trees, where the branches correspond
to the random choices performed during the generation.3 As we are interested in distributions
on Sn for every positive n, we consider two kinds of generative processes: either n is known
in advance and is used for the construction, or the generative process is in essence infinite and
one halts when a size-n permutation is produced.

Generative processes can be directly transformed into random generation algorithms,
whose complexity primarily depends on the data structures used throughout the process.
They also prove to be very useful for analyzing the behavior of statistics as those studied
in Section 1.3, as they describe how a random permutation can be viewed as a sequence
of independent random choices. We recall two classical generative processes for the Ewens
distribution (see [ABT03] for instance).

The Chinese restaurant process. This works on permutations expressed as sets of cycles
and was originally designed for uniform random permutations. A straightforward variant of
this process can be used to derive any permutation according to the Ewens distribution.

Starting from the empty permutation σ0 at step 0, a random permutation σn ∈ Sn

is constructed after n steps. At each step i ≥ 1, the new permutation σi is obtained by
modifying σi−1 as follows. First, set σi(j) = σi−1(j) for j ∈ [i−1]. Then, insert i as described
below, all the random choices being independent:

• with probability θ
θ+i−1 , create a new cycle containing i only, i.e., set σi(i) = i;

• with probability i−1
θ+i−1 , insert i at a uniformly chosen position (among the i−1 available

across all existing cycles). Equivalently, for each j ∈ [i− 1], with probability 1
θ+i−1 , set

σi(i) = j and σi(σ−1
i−1(j)) = i, that is, insert i before j in its cycle.

This process is infinite and does not depend on n. However, stopping after n steps produces
a random permutation of size n according to the Ewens distribution of parameter θ. Indeed,
with the notation cσ(i) = 1 if the i is the minimum in its cycle in σ and cσ(i) = 0 otherwise,
it generates the permutation σ ∈ Sn with probability

n∏
i=1

θcσ(i)

i− 1 + θ
=
θcyc(σ)

θ(n)
.

This process can be represented by a tree, which is also infinite in this case. Its root, at
height 0, is the empty permutation and has one child: the permutation consisting of a single
cycle containing 1. Then, each node at height i has i+1 children obtained as described above.

Trimming the tree at height n creates leaves corresponding to all permutations of size n.
For example, Fig. 2 shows the tree for S3. In this figure (and similar ones later), the weight of
each permutation (a leaf of the tree) is shown in red. As explained earlier, it is the product of
the element weights, indicated in blue on the edges corresponding to each element insertion.

The Feller coupling. The Feller coupling is another classical generative process that can
be used for the Ewens distribution. Contrary to the Chinese restaurant process, the size n has
to be known in advance, and there is one (finite) tree associated with each n. This generative
process is described as follows. At any given step, except for the initialization, the partial
3This is similar to the way algorithms are translated into decision trees when establishing lower bounds in
complexity, but in addition with probabilities (or weights) on the edges of the trees.

11

Part I

∅

1

1

θ

1

1

θ

θ

1

θ

1

1 2

1
2

1 2
3

1 3
2

1 2 3

1 3 2

3 2 1

1 2 3 θ3

θ2

θ2

θ

θ2

θ

Figure 2: the Chinese Restaurant process for
permutations in S3 in the Ewens model.

∅ (1

(1)(2

(1)(2)(3)θ

(1)(23)1

θ

(12

(12)(3)θ

(123)1
1

(13

(13)(2)θ

(132)1

1

θ

θ3

θ2

θ2

θ

θ2

θ

Figure 3: Feller coupling for permutations
in S3 in the Ewens model.

representation of the permutation consists of a set of cycles and a sequence, called the open
cycle, which represents the current cycle under construction. The other cycles are complete:
they remain untouched in the sequel and will be cycles of the generated permutation at the
end. At each step i, we perform an (independent) random choice as follows:

• with probability θ
θ+n−i , close the open cycle, adding the newly formed cycle to the list,

and start a new open cycle containing the smallest unused value;

• for each unused value j ∈ [n], with probability 1
θ+n−i , add j at the end of the open cycle.

The process starts with no cycle and no open cycle, so the first step deterministically produces
a open cycle containing only the value 1.

In the tree representation shown in Fig. 3, cycles are written in the order of their creation,
which naturally orders them by increasing values of their smallest element. The open cycle is
written using a single open parenthesis; for example, (13 represents the open cycle 1→ 3→.
Each edge is labeled with a weight, either θ or 1, depending on the chosen action. One can
readily verify that the probability of generating a given size-n permutation σ is:

n∏
i=1

θcσ(i)

n− i+ θ
=
θcyc(σ)

θ(n)
.

where cσ(i) = 1 if i is the minimum in its cycle in σ and cσ(i) = 0 otherwise.

1.1.4 Records and record-biased permutations

For a permutation σ ∈ Sn and for i ∈ [n], there is a record at position i in σ (and σ(i) is
called a record) if σ(i) > σ(j) for all j ∈ [i − 1]. The number of records in σ is denoted
by rec(σ). We refer to any element that is not a record as a non-record. For permutations
represented as words, records are elements that have no larger elements to their left. And in
the diagrams of a permutation, a record is an element that have no higher element to its left.

Foata’s bijection: the link between cycles and records [Lot97] Also called the fun-
damental bijection, it is a bijection from Sn to Sn that maps cyc(σ) to rec(σ), for any
permutation σ. This bijection φ is the following transformation:

1. given σ a permutation of size n, consider the cycle decomposition of σ;

12

Real-World Data and Implementations

Figure 4: Random record-biased permutations. From left to right, θ = 1 (uniform), 50, 100,
and 500. For each diagram, the darkness of a point (i, j) is proportional to the number of
permutations σ such that σ(i) = j, for a sampling of 10000 permutations of size 100.

2. write every cycle starting with its maximal element, and write the cycles in increasing
order of their maximal (i.e., first) element;

3. erase the parenthesis to get the word representation of φ(σ).

For instance φ
(
(57)(32)(416)

)
= 3264175. This transformation is a bijection, with each cycle

of σ corresponding to a record in φ(σ), and vice versa.

Our model: record-biased permutations In a similar fashion as for Ewens distribution,
we consider the non-uniform distribution of parameter θ that gives the probability

θrec(σ)∑
ρ∈Sn

θrec(ρ)

to any permutation σ ∈ Sn. We call them record-biased permutations. We define the weight
of a permutation σ as w(σ) = θrec(σ). Like for the Ewens distribution, the normalization
constant

∑
ρ∈Sn

θrec(ρ) is equal to the rising factorial θ(n).
Foata’s bijection provides a very tight connection between Ewens permutations and record-

biased permutations. Indeed, σ is a random Ewens permutation in Sn if and only φ(σ) is a
random record-biased permutation in Sn. Figure 4 shows random record-biased permutations,
for various values of θ.

The number of non-records as a measure of presortedness The concept of presort-
edness, formalized by Mannila [Man85], naturally arises in the study of sorting algorithms
that efficiently handle nearly sorted sequences. We denote by E⋆ the set of all nonempty
sequences of distinct elements of a totally ordered set E, and by · the concatenation on E⋆.
A mapping m from E⋆ to N is is called a measure of presortedness if it satisfies:

1. if X ∈ E⋆ is sorted, then m(X) = 0;
2. if X = (x1, · · · , xℓ) and Y = (y1, · · · , yℓ) are sequences in E⋆ of the same length, and

for every i, j ∈ [ℓ], xi < xj ⇔ yi < yj , then m(X) = m(Y);
3. if X is a subsequence of Y , then m(X) ≤ m(Y);
4. if every element of X is smaller than every element of Y , then m(X ·Y) ≤ m(X)+m(Y);
5. for every symbol a ∈ E not occurring in X, m(a ·X) ≤ |X|+m(X).

Classical measures of presortedness include the number of inversions and the number of ascend-
ing runs. One can easily verify, by checking conditions 1 to 5, that the number of non-records
in a sequence s, is a valid measure of presortedness for sequences of distinct integers. Note
that, due to condition 2, restricting to permutations in Sn is equivalent to studying sequences
of distinct integers. Given a measure of presortedness m, one can define the corresponding
notion of m-optimality for sorting algorithms. For example, Knuth’s NaturalMergeSort
is optimal with respect to the number of runs (see [Man85, PM95] for details).

13

Part I

∅ [3

[2 [3]

[1] [2] [3]θ

[21] [3]1

θ

[32

[1] [32]θ

[321]1
1

[31

[2] [31]θ

[312]1

1

θ

θ3

θ2

θ2

θ

θ2

θ

Figure 5: Generative process for
record-biased permutations in S3,
viewed as sequences of sequences.

1

2 1 3 2 1θ1

2 1 2 3 1θ
θ

1

1

1 2 3 1 2θ1

2 1 2 1 3θ
θ

1

1

1 2 1 3 2θ1

1 2 1 2 3θ
θ

θ

θ3

θ2

θ2

θ2

θ

θ

Figure 6: Generative process for record-biased per-
mutations in S3, viewed as words.

1.2 Generative processes for record-biased permutations

As in Section 1.1.3, we introduce generative processes for record-biased permutations, which
will be used to compute expected values and derive limit laws for several statistics of interest.

1.2.1 Two generative processes for the word representation

The Feller coupling presented above can readily be transformed into a generative process for
record-biased permutations. The modifications are the following:

• we work directly on sequences of values concatenated at the end, instead of cycles;
• when a new open sequence is created, it contains the largest available value;
• the sequences are created from right to left.

This construction directly ensures that the largest value of each sequence is a record. The
tree associated with this generative process on S3 is depicted in Fig. 5.

The tree depicted in Fig. 6 represents a different generative process for record-biased
permutations viewed as sequences. Given the target size n, the idea is to start with a sequence
made of n empty slots, and then to incrementally place the values ranging from 1 to n, one
by one. At each step i an independent random choice is performed:

• with probability θ
θ+n−i , the value i is placed at the leftmost empty slot;

• for every index j in the array which corresponds to an empty slot but the leftmost one,
i is placed at the j-th slot with probability 1

θ+n−i .

The construction is readily seen to associate with each permutation σ the probability θrec(σ)/θ(n)

which characterizes record-biased permutations.

1.2.2 One generative process for diagrams

For permutations viewed as diagrams, one can also design a generative process, starting with
an empty diagram and inserting points from left to right. Note that this generative process
does not require the target size n to be known in advance.

The root of the tree is the empty diagram. At each step i, we add a new row and a new
column in the diagram, and we put the new point at their crossing. The added column will

14

Real-World Data and Implementations

∅

θx

1

θx

1

θ2x

θ

1

θ2x

1

θ2x

1

θ3x

θ

θ

θ

Figure 7: Generative process for record-biased permutations in S3, viewed as diagrams.

always be the rightmost (i.e., the i-th column). The placement of the point in the newly
added column is chosen randomly and independently at each step i:

• it is on the highest row with probability θ
θ+i−1 ;

• every other possibility has probability 1
θ+i−1 .

The associated tree is depicted on Fig. 7, where the weights on the edges are such that the
total weight of a permutation σ, i.e., the product of the weights along the path from the root
to the diagram of σ, is precisely σrec(σ).

1.2.3 Random generation

Among other advantages, the generative processes described above translate naturally into
random samplers, making it possible to formulate conjectures and test algorithms. We briefly
explain how to construct efficient samplers (see [BNP25] for details).

As noted in [Fér13], it is easy to obtain a linear time and space algorithm for random
permutations according to the classical Ewens distribution, using the variant of the Chinese
restaurant process. Applying Foata’s bijection, this yields a linear random sampler for per-
mutations according to the record-biased distribution (see [ABNP16] for details).

Building on the same ideas, we can design linear samplers that generate record-biased
permutations directly, based on our three generative processes, provided each step can be
implemented in constant time. Here, we assume that it is possible to sample a uniform real
number in [0, 1] in constant time, which in turn allows us to generate a random integer in [1, n]
in constant time as well.4

Sequence representation To implement a linear-time sampler following the process in
Fig. 6, we maintain a set S, initially the interval [n], representing the positions still empty in
the array σ and we must be able to perform the following operations in constant time:

(i) remove the minimum from S, which will be needed when inserting a record in σ;
(ii) choose uniformly at random one value different from the minimum in S, and remove it

from S, which will be needed when inserting a non-record in σ.

This is achieved by maintaining three linear-space data-structures: a linked list L, and
two arrays A and invA. Both L and A store the positions of σ which still need to be filled
(i.e., the set S), but with different structures to support different operations efficiently. The
array invA stores the functional inverse of A and allows constant-time lookup of the position
4An analysis for a more accurate complexity model is doable, e.g., considering that we can only generate
uniform random bits in constant time, but it is not the topic of the present study.

15

Part I

of any given value in A. The data structure L is a doubly linked list of the values in the
set S, in increasing order. Its cells are kept in an array such that the cell containing the
value i is located at index i, which gives direct access to any value. This setup provides
efficient retrieval of the minimum (always the first element in the list), and any value can
be removed from the set S in constant time by updating the pointers in L. Meanwhile, the
array A keeps track of all positions still empty in σ, excluding the current minimum. This
array is maintained contiguous upon removals by filling any gap with the last element (and
updating invA), which allows to choose the position of a non-record uniformly at random in
constant time. When the minimum is needed, its value is obtained from L, and its index k in
A can be found in constant time using invA.

The generative process of Fig. 5 can be transformed into a linear sampler for record-biased
permutations, using almost the same data structure as above, replacing the minimum by the
maximum. The only slight difference is that the maximum of the remaining values can be
picked for action (ii). This is easy to implement by keeping the maximum in A and removing
it (instead of the next maximum) from A during action (i). The sequence of sub-sequences
is a simple list of lists in which insertions can be performed in constant time. Flattening the
list in the end yields another linear time sampler for record-biased permutations.

Diagram representation To get a linear time sampler following the process of Section 1.2.2,
we first note that choosing the height of the new row for a non-record is equivalent to choosing
uniformly at random a column j and placing the new row just under the point in column j.
Thus, it is enough to maintain a linked list of the indices of the columns ordered by decreasing
height of the point they contain, starting with the highest. When a non-record point is added,
its height is determined by choosing a column in [i − 1]. At each step, the insertion of the
index i of the last column into the list can also be done in constant time, provided we use a
linked list with direct access to its cells, as we did before. Viewed as a word, the resulting list
(in reverse order) corresponds to σ−1, from which σ can be recovered in linear time.

1.3 Behavior of some classical statistics

In this section, we study the behavior of several statistics on record-biased permutations with
parameter θ, which may be either a fixed positive real number or a function of the size n. These
results can be derived almost directly from the generative processes described in Section 1.2.

We use the properties of the so-called digamma function [OLBC10]. The digamma func-
tion is defined by Ψ(x) = Γ′(x)/Γ(x), with Γ the classical gamma function generalizing the
factorial. It satisfies the recurrence Ψ(x+ 1) = Ψ(x) + 1

x which leads to the identity

n−1∑
i=0

1

x+ i
= Ψ(x+ n)−Ψ(x). (2)

As x→ +∞, it admits the asymptotic expansion Ψ(x) = log(x)− 1
2x −

1
12x2 + o

(
1
x2

)
.

1.3.1 Four statistics and their expectations

Throughout this section, we denote by En[·] the expectation of a random variable on record-
biased permutations of size n for the parameter θ.

Number of records We naturally begin by examining how the value of θ affects the ex-
pected number of records.

16

Real-World Data and Implementations

Theorem 1. Among record-biased permutations of size n for the parameter θ, for any i ∈ [n],
the probability that there is a record at position i is: Pn(record at i) = θ

θ+i−1 .

Proof. A record occurs at position i if and only if the point inserted in the i-th column by
the process of Section 1.2.2 is the highest so far, which happens with probability θ

θ+i−1 .

Corollary 2. Among record-biased permutations of size n for the parameter θ, the expected
value of the number of records is: En[rec] =

∑n
i=1

θ
θ+i−1 = θ(Ψ(θ + n)−Ψ(θ)).

Proof. The expression of En[rec] is simply obtained summing over i the result of Theorem 1,
and applying Eq. (2) for the right hand term.

Observe that this can also be recovered from known results on the Ewens distribution.
Indeed, as we have seen in Section 1.1.4, the record-biased distribution on Sn is the image
of the Ewens distribution on Sn by the fundamental bijection φ mapping cycles to records.
Consequently, Corollary 2 is a consequence of the well-known expectation of the number of
cycles under the Ewens distribution.

Number of descents Recall that a permutation σ of Sn has a descent at position i ∈
{2, . . . , n} if σ(i − 1) > σ(i). We denote by desc(σ) the number of descents in σ; we are
interested in descents as they are directly related to the number of increasing runs in a per-
mutation: every run except the last one is immediately followed by a descent, and conversely.
Some merge-based sorting algorithms, such as Knuth’s NaturalMergeSort, begin by de-
composing the input into such runs.

Theorem 3. Among record-biased permutations of size n for the parameter θ, ∀i ∈ {2, . . . , n},
the probability that there is a descent at position i is: Pn(descent at i) = (i−1)(2θ+i−2)

2(θ+i−1)(θ+i−2) .

Proof (sketch). For a permutation σ of size n and any a ≤ n, we denote by norm(σ(a)) the
rank of σ(a) in σ(1)σ(2) . . . σ(a), that is to say norm(σ(a)) = j exactly when σ(a) is the
j-th smallest element in {σ(1), σ(2), . . . , σ(a)}. Splitting according to the possible values of
norm(σ(i− 1)) and norm(σ(i)), we have

Pn(descent at i) =
i−1∑
j=1

j∑
k=1

Pn

(
norm(σ(i− 1)) = j and norm(σ(i) = k)

)
.

From the generative process for diagrams of Section 1.2.2, we know that the rank of σ(i− 1)

is independent from the rank of σ(i), and the probabilities of these ranks are explicit. This
makes it possible to compute the probability that there is of a descent at position i.

Corollary 4. Among record-biased permutations of size n for the parameter θ, the expected
value of the number of descents is: En[desc] =

n(n−1)
2(θ+n−1) .

Proof. The partial fraction decomposition of the formula for Pn

(
σ(i−1) > σ(i)

)
in Theorem 3

gives: 2Pn(σ(i − 1) > σ(i)) = 1 + θ(θ−1)
θ+i−1 −

θ(θ−1)
θ+i−2 . Hence, we have a telescopic series when

summing for i from 2 to n, which yields: 2En[desc] = (n − 1) + θ(θ−1)
θ+n−1 −

θ(θ−1)
θ . This gives

the announced expression for En[desc] after some elementary simplifications.

17

Part I

Number of inversions An inversion in a permutation σ ∈ Sn is a pair (i, j) ∈ [n] × [n]
such that i < j and σ(i) > σ(j). In the word representation of permutations, this corresponds
to a pair where the larger element appears to the left of the smaller one. For any σ ∈ Sn, let
inv(σ) denote the number of inversions in σ, and for any j ∈ [n], define invj(σ) as the number
inversions of the form (i, j). Formally, invj(σ) =

∣∣{i ∈ [j − 1] : (i, j) is an inversion of σ}
∣∣.

Note that the number of inversions is directly related to the complexity of InsertionSort
(see, e.g., [CLRS09]). This algorithm maintains a sorted prefix of its input: at each step
i ∈ 2, . . . , n, the first i − 1 elements are already sorted, and the i-th element is inserted into
its correct position through a sequence of adjacent swaps. It is well known that the number
of swaps performed on a permutation σ is exactly its number of inversions. Moreover, the
number of comparisons C(σ) satisfies the inequality inv(σ) ≤ C(σ) ≤ inv(σ) + n− 1.

Theorem 5. Among record-biased permutations of size n for the parameter θ, for any j ∈ [n]

and k ∈ [0, j − 1], the probability that there are k inversions of the form (i, j) is:
Pn

(
invj(σ) = k

)
= 1

θ+j−1 if k ̸= 0 and Pn

(
invj(σ) = k

)
= θ

θ+j−1 if k = 0.

Proof. By definition, the value of invj(σ) depends only on how σ(j) compares to the σ(i) for
i < j. More precisely, invj(σ) = k if and only if σ(j) is the (j − k)-th largest element of
σ among the first j. From the generative process of Section 1.2.2, the probability that σ(j)
is the largest element of σ among the first j is θ

θ+j−1 , and this proves the statement of the
theorem in the case k = 0. And for any value k ̸= 0 with k < j, the probability that σ(j) is
the (j − k)-th largest element of σ among the first j is 1

θ+j−1 , concluding the proof.

Corollary 6. Among record-biased permutations of size n for the parameter θ, the expected
value of the number of inversions is: En[inv] =

n(n+1−2θ)
4 + θ(θ−1)

2 (Ψ(θ + n)−Ψ(θ)).

Proof. We first compute En[invj] for any j ∈ [n]. With Theorem 5 and noting that the
maximum possible value of invj is j − 1, we have

En[invj] =

j−1∑
k=0

k · Pn(invj = k) =

j−1∑
k=1

k · 1

θ + j − 1
=

j(j − 1)

2(θ + j − 1)
. (3)

Consequently, En[inv] =
∑n

j=1 En[invj] =
∑n

j=1
j(j−1)

2(θ+j−1) . Using the properties of the digamma

function Ψ reviewed at the beginning of Section 1.3, and noting that j(j−1)
θ+j−1 = j − θ + θ(θ−1)

θ+j−1 ,

this sum may be expressed as En[inv] =
n(n+1−2θ)

4 + θ(θ−1)
2 (Ψ(θ + n)−Ψ(θ)).

As a direct consequence of Corollary 6 and the asymptotic estimates of the fourth row of
Table 1 (see below), we get the expected running time of InsertionSort:

Corollary 7. Applied to record-biased permutations of size n for the parameter θ = O(n),
the expected running time of InsertionSort is Θ(n2), like under the uniform distribution.
If θ = nδ with 1 < δ < 2, it is Θ(n3−δ). If θ = Ω(n2), it is Θ(n).

First value Naturally, the behavior of the first value σ(1) in record-biased permutations
differs completely from the three statistics studied above.

Theorem 8. Among record-biased permutations of size n for the parameter θ, for any k ∈ [n],
the probability that a permutation starts with k is: Pn(σ(1) = k) = (n−1)! θ(n−k)θ

(n−k)!θ(n) .

18

Real-World Data and Implementations

θ = 1 fixed θ > 0 θ = nε, θ = λn, θ = nδ, See
(uniform) 0 < ε < 1 λ > 0 δ > 1 Cor.

En[rec] log n θ · logn (1− ε) · nε log n λ log(1 + 1/λ) · n n 2
En[desc] n/2 n/2 n/2 n/2(λ+ 1) n2−δ/2 4
En[inv] n2/4 n2/4 n2/4 n2/4 · f(λ) n3−δ/6 6
En[σ(1)] n/2 n/(θ + 1) n1−ε (λ+ 1)/λ 1 9

Table 1: Asymptotic behavior in expectation of some permutation statistics on record-biased
permutations for the parameter θ. We use the shorthand f(λ) = 1 − 2λ + 2λ2 log (1 + 1/λ).
All the results in this table are asymptotic equivalents.

Proof. The statement is proved using the generative process of Section 1.2.1 for permutations
viewed as words (Fig. 6). In this process, the event that the first element equals k corresponds
to the first k− 1 insertions (of the values 1 through k− 1) being non-records, followed by the
k-th insertion (of the value k) being a record. This happens with the following probability:

Pn(σ(1) = k) =

k−1∏
i=1

n− i
θ + n− i

· θ

θ + n− k
=

(n− 1)! θ(n−k)θ

(n− k)!θ(n)
.

Note that the above theorem was also proved by B. Corsini in [Cor22]. Both our and his
proof rely on the generative process of Section 1.2.1.

Corollary 9. Among record-biased permutations of size n for the parameter θ, the expected
value of the first element of a permutation is: En[σ(1)] =

θ+n
θ+1 .

Proof. From Theorem 8, we have

En[σ(1)] =
n∑

k=1

k Pn(σ(1) = k) =
(n− 1)!θ

θ(n)

n∑
k=1

k
θ(n−k)

(n− k)!
=

(n− 1)!θ

θ(n)

n−1∑
j=0

(n− j)θ
(j)

j!
.

By the binomial formula, [zm](1−z)−α = α(m)

m! , where as usual [zm]F (z) denotes the coefficient
of zm in the series expansion of F (z). Observe also that (n−j) = [zn−j−1](1−z)−2. Therefore

En[σ(1)] =
(n− 1)!θ

θ(n)

n−1∑
j=0

[zn−j−1](1− z)−2 · [zj](1− z)−θ =
(n− 1)!θ

θ(n)
(θ + 2)(n−1)

(n− 1)!
,

which yields the announced result after elementary simplifications.

Different regimes for different θ We compute asymptotic equivalents of the expectations
derived above for different regimes of θ: constant, sublinear θ = nε with ε ∈ (0, 1), linear
θ = λn for λ > 0 and superlinear θ = nγ with γ > 1. The computations are straightforward,
using the asymptotic behavior of Ψ when necessary. The results are summarized in Table 1.

1.3.2 Limit laws for fixed θ

In this section, and only here, we consider the case where θ > 0 is fixed. Under this classical
assumption, the number of records, the number of descents and the number of inversions

19

Part I

0 10 20 30 40 50 60 70 80 90 100
Number of records

0

25000

50000

75000

100000

125000

150000

175000

200000

Nu
m

be
r o

f p
er

m
ut

at
io

ns

Number of records in a million permutations of size 100
 = 1
 = 50
 = 100
 = 500

0 10 20 30 40 50 60 70
Number of descents

0

20000

40000

60000

80000

100000

120000

140000

160000

Nu
m

be
r o

f p
er

m
ut

at
io

ns

Number of descents in a million permutations of size 100
 = 1
 = 50
 = 100
 = 500

Figure 8: Empirical distribution of the number of records (left) and the number of descents
(right) in 106 record-biased permutations of size 100 for several values of θ.

are asymptotically Gaussian, whereas the first value tends to a beta distribution of parame-
ters (1, θ). For the first two results, we rely on known properties of the Ewens distribution.
These convergences are clearly illustrated by simulations using the random generator described
in Section 1.2.3, as shown in Figs. 8 and 9.

As usual, the notation N (0, 1) below denotes the normal distribution with mean 0 and
variance 1, and d→ denotes the convergence in distribution.

Theorem 10. The number of records in record-biased permutations is asymptotically normal.
More precisely, letting Rn be the random variable which denotes the number of records in a
record-biased permutation of size n for any fixed value of the parameter θ, we have

Rn − θ log(n)√
θ log(n)

d→ N (0, 1).

Proof. As before, it follows immediately from the distribution of the number of cycles in
Ewens permutations.

Theorem 11. The number of descents in record-biased permutations is asymptotically normal.
More precisely, letting Dn be the random variable which denotes the number of descents in a
record-biased permutation of size n for any fixed value of the parameter θ, we have

Dn − n/2√
n/12

d→ N (0, 1).

Proof (sketch). Similarly to cycles, the number of descents in record-biased permutations of
size n is mapped by the fundamental bijection φ−1 to the number of anti-excedances in Ewens
permutations of size n. An anti-excedance of σ ∈ Sn is an index i ∈ [n] such that σ(i) < i.
The fact that descents of σ are equinumerous with anti-excedances of φ−1(σ) is a simple
adaptation of a proof from [Bón12]. A weak excedance of σ ∈ Sn is an index i ∈ [n] such that
σ(i) ≥ i. Clearly, the numbers of anti-excedances and of weak excedances in a permutation
of size n sum up to n, so results for one translate directly to the other. Since the distribution
of Dn matches that of the number of anti-excedances in Ewens permutations, Dn is therefore
distributed like n−Wn, where Wn denotes the number of weak excedances in a random Ewens
permutation of size n. As Wn is asymptotically normal [Fér13], the same holds for Dn. As
shown in Corollary 4, the expectation of Dn is asymptotically n/2, and its variance, which
equals that of Wn, can be computed from the results of [Fér13].

20

Real-World Data and Implementations

0 500 1000 1500 2000 2500 3000
Number of inversions

0

5000

10000

15000

20000

25000

30000

35000
Nu

m
be

r o
f p

er
m

ut
at

io
ns

Number of inversions in a million permutations of size 100
 = 1
 = 50
 = 100
 = 500

0 10 20 30 40 50 60 70 80 90 100
value of (1)

0

50000

100000

150000

200000

250000

300000

350000

Nu
m

be
r o

f p
er

m
ut

at
io

ns

value of (1) in a million permutations of size 100
 = 0.2
 = 0.5
 = 1
 = 10
 = 50

Figure 9: Empirical distributions of the number of inversions (left) and the value of σ(1)
(right) in 106 record-biased permutations of size 100, for several values of θ.

Theorem 12. The number of inversions in record-biased permutations is asymptotically nor-
mal. More precisely, letting In be the random variable which denotes the number of inversions
in a record-biased permutation of size n for any fixed value of the parameter θ, we have

In − n2/4√
n3/36

d→ N (0, 1).

Proof (sketch). Fix a positive real number θ. From Section 1.2.2, we observe that, for σ a
record-biased permutation of size n for the parameter θ, the random variables invj(σ) and
invj′(σ) are independent for j ̸= j′. Therefore In is the sum of the independent random
variables invj(σ) for j from 1 to n, whose distributions are given by Theorem 5. Recall from
the proof of Corollary 6 that En[invj] =

j(j−1)
2(θ+j−1) , which implies En[In] ∼ n2/4. Similarly,

En[inv
2
j] =

j−1∑
k=0

k2 · Pn(invj = k) =

j−1∑
k=1

k2 · 1

θ + j − 1
=
j(j − 1)(2j − 1)

6(θ + j − 1)
.

Denoting Vn(·) the variance of a random variable on record-biased permutations of size n, it
follows that Vn(invj) =

j(j−1)(j2+(4θ−3)j+2−2θ)
12(θ+j−1)2

, so that Vn(In) ∼ n3/36 as n→∞.
Using Theorem 27.3 in [Bil12] it suffices to show that

n∑
j=1

1

v
En[inv

3
j]→ 0 as n→∞, where v =

√∑n
j=1Vn(invj)

3
.

With similar computations as before, we find that En[inv
3
j] is of order j3, so

∑n
j=1 En[inv

3
j] is

of order n4. And, since v = Vn(In)
3/2 is of order n9/2, the result follows.

Theorem 13. Fix θ a positive real number. For σ a record-biased permutation of size n for
the parameter θ, the random variable σ(1)/n is asymptotically distributed following a beta
distribution of parameters (1, θ).

Proof (sketch). For any positive integer r, the r-th moment of a beta distribution of param-
eters (1, θ) is r!

(θ+1)(r)
(see, e.g., [JKB95]). In particular, the associated moment generating

function has positive radius of convergence, so that the beta distribution is determined by its
moments [Bil12]. Therefore, it is enough to compute the limits of the moments of σ(1)/n,

21

Part I

for σ a record-biased permutation of size n for the parameter θ, and to observe that these
limits are indeed r!

(θ+1)(r)
.

For any r > 0, we denote by Ar(z) = ar,0+ar,1z+ · · ·+ar,r−1z
r−1 the Eulerian polynomial

of degree r − 1 (their properties can be found, e.g., in [Pet15]). First, ar,i is the number of
permutations of size r with i descents, so that we have ar,0+ar,1+· · ·+ar,r−1 = r!. Second, the
following identity (known as the Carlitz identity) holds, for any r > 0:

∑
n n

rzn = zAr(z)
(1−z)r+1 .

This allows us to compute the r-th moment of σ(1), for r > 0 (see [BNP25] for the details):

En[σ(1)
r] =

r∑
j=1

ar,j−1
nr(1 + o(1))

(θ + 1)(r)
so that En[σ(1)

r] ∼n→∞
r!nr

(θ + 1)(r)
.

Therefore, dividing by nr, the r-th moment of σ(1)/n coincides with that of a beta distribution
of parameters (1, θ), concluding the proof.

1.3.3 Conclusion on record-biased permutations

We introduced a non-uniform distribution on permutations, biased by their number of records,
inspired by the classical Ewens model. Since the number of non-records serves as a measure of
presortedness, this provides a meaningful model for analyzing algorithms on partially sorted
data, potentially offering a more realistic alternative to the uniform distribution.

We studied the behavior of several classical permutation statistics, such as the number
of records, inversions, and descents, for record-biased permutations. We derived explicit
formulas for the expectations of these statistics and analyzed their behavior across different
regimes for the parameter θ, in particular when θ = λn is linear w.r.t. the size n. In the
regime where θ is constant (corresponding to a logarithmic number of records), we further
established the asymptotic distributions of the statistics as the size tends to infinity: three
converge to Gaussian distributions, while the last converges to a beta distribution.

It would be interesting to extend this work to other permutation statistics, particularly
those related to presortedness, such as the number of runs (i.e., maximal monotonic sequences)
or the minimum number of elements that must be removed to obtain a sorted sequence
(see [Man85]). We are especially interested in the number of alternating runs, as this statistic
plays a central role in TimSort, which we study in the next section. Unfortunately, runs
are difficult to handle directly within our model. A natural direction for future work is
to design alternative biased models that better capture such statistics. As we have seen,
generative processes provide powerful tools for exploring and defining such models5 and they
also provide a practical way to design efficient (linear-time) random samplers. As a simple
application, we used our model to analyze the expected complexity of InsertionSort under
the record-biased distribution. In the second part of this study, we also examine the impact
of branch prediction (see Section 3) on two variants of simultaneous minimum and maximum
search in arrays, assuming inputs are distributed according to our record-biased model.

Finally, although we did not present it here, as it lies beyond the scope of algorithm
analysis, the typical shape of the diagram of a record-biased permutation (see Fig. 4) can be
described via the permuton limit of random record-biased permutations of size n as n tends to
infinity, in the linear regime where θ = λn. For these results, we refer the reader to [BNP25].

5Notably, while we were able to establish some results on expectations without generative processes, the proofs
required more tedious case analysis.

22

Real-World Data and Implementations

2 Complexity Analysis of TimSort

In our University’s Master program, we teach a lot of Java. This choice obviously aligns
with industry demand, as Java remains one of the most widely used languages in practice.
However, it also comes from a certain opportunism. One of our colleagues, Rémi Forax, is
part of the team that develops the language, which means we are always up to date with its
newest features. It was in fact he who first introduced us to TimSort, expressing his interest
in better understanding its inner mechanics. This curiosity led us to investigate the algorithm,
which made us realize that the implementations in standard libraries can deviate significantly
from those presented in traditional textbooks. In the case of TimSort, its practical design
reflects specific assumptions about the structure of real-world data: in particular, it is tailored
to the presortedness (as discussed in the previous section) that is often present in real inputs.

A= (12, 10, 7, 5︸ ︷︷ ︸
first run

, 5, 7, 10, 14, 25, 36︸ ︷︷ ︸
second run

, 3, 5, 11, 14, 15, 21, 22, 22︸ ︷︷ ︸
third run

, 20, 15, 10, 8, 5, 1︸ ︷︷ ︸
fourth run

)

Figure 10: A sequence of values and its run decomposition by TimSort: for each run, the
first two elements determine whether it is increasing or decreasing; the run then continues
with the longest possible sequence of consecutive elements that preserve the monotonicity.

In a nutshell, TimSort processes the input array by greedily computing maximal mono-
tonic runs on the fly (see Fig. 10). Each time a new run is identified, it is pushed onto a stack,
followed by a possible sequence of merges, as in MergeSort, until the stack is stabilized.
Historically, the merge conditions involved only the top three runs, and only two consecutive
runs can be merged to favor cache locality. More precisely, if the runs are R1, R2, . . . , Rh,
from top to bottom of the stack, with respective sizes r1, r2, . . . , rh, merges occur as long
as r1 ≥ r2 or r1 + r2 ≥ r3, each involving either R1 and R2, or R2 and R3. Once the stack
satisfies r1 < r2 and r1 + r2 < r3, the next run is identified and added. When no runs remain
to be computed, the ones in the stack are merged iteratively from top to bottom.

In an unpublished preprint [ANP15], we established that the running time of TimSort
is O(n log n), as initially stated without proof in the document accompanying its first im-
plementation in cpython. Shortly after, De Gouw and co-authors [DGRdB+15] attempted a
formal proof of TimSort using the verification tool Keys [BHS07]. They discovered that an
important invariant stated in the algorithm’s description (ri + ri+1 < ri+2 holds anywhere
in the stack once stabilized) is actually incorrect. This had no impact on the correctness of
the algorithm or on our proof, which does not rely on that invariant. By that time, however,
TimSort has already been adopted in Java and the invariant was used to statically allocate
the stack size. As a consequence, De Gouw et al. were able to construct an example array
causing a stack overflow. They proposed two solutions: (i) resize the stack, using the fact that
the invariant cannot fail twice in a row, or (ii) modify the algorithm to also trigger a merge
when r2 + r3 >= r4. The first solution was adopted in Java, while Python chose the second
(although no change was necessary since Python uses a dynamic stack implementation).

Later, we showed that the claim that the invariant cannot be broken twice in a row is
incorrect [AJNP18]. Consequently, patch (i) implemented in Java did not fully fix the algo-
rithm, and we were able to trigger another stack overflow using a carefully constructed array.
After we brought this to their attention, Java developers eventually adopted solution (ii), as
in Python. Since this corrected version is now the standard implementation, we will refer to
it simply as TimSort, and use the term legacy TimSort for the original algorithm.

In parallel with the work on the invariant ri + ri+1 < ri+2, we extended the analysis
of TimSort’s complexity by introducing parameters that quantify the pre-sortedness of the

23

Part I

Algorithm 1: TimSort, from Python up to 3.10

Input: a sequence A to sort
Result: the sequence A is sorted into a single run, which remains on the stack

Note: the function merge_force_collapse repeatedly pops the last two runs on the stack S,
merges them and pushes the resulting run back on the stack

1 runs← a run decomposition of A
2 S ← an empty stack
3 while runs ̸= ∅ do // main loop of TimSort

4 remove a run R from runs and push R onto S
5 merge_collapse(S)

6 if height(S) ̸= 1 then
7 merge_force_collapse(S)

input. A natural such parameter is the number of runs, denoted as ρ. It was conjectured for
several years that TimSort’s complexity could be refined to O(n log ρ+n), which we establish
here as a byproduct of an even stronger result, using a finer parameter than ρ. The entropy
of the run lengths (denoted by ri, for i ≤ ρ) is defined as H := H(r1/n, . . . , rρ/n), with H
the binary Shannon entropy (see Eq. (6)). This measure generalizes the number of runs by
capturing the disparity among run lengths. We prove that TimSort runs in O(nH + n),
which is optimal since a matching lower bound exists [BN13].

Buss and Knop [BK19] established a tight lower bound of 1.5nH + O(n) for TimSort’s
running time, conjecturing it was also an upper bound. We confirmed this, though we will
not detail the proof here. These advances in the analysis inspired new first-order optimal
algorithms, such as AdaptiveShiverSort by Jugé [Jug20] and PowerSort by Munro and
Wild [MW18], the latter adopted in 2021 as cpython’s default sorting algorithm.

This work presented in the next section was done with Nicolas Auger, Vincent Jugé, and
Cyril Nicaud [ANP15, AJNP18].

2.1 TimSort core algorithm

The idea behind TimSort was to design a merge sort capable of exploiting possible non-
randomness in the input, without having to detect it beforehand and without degrading the
performances on random-looking data. To achieve this, the first feature of TimSort is to
use the natural decomposition of the input sequence into maximal runs. To capture longer
subsequences, TimSort allows both nondecreasing and decreasing runs, unlike most merge
sort algorithms. The merging strategy of TimSort (Algorithm 1) is simple yet effective:
runs are considered in the order given by the run decomposition and successively pushed onto
a stack. If certain conditions on the size of the topmost runs in the stack are not satisfied
after a new run has been pushed, this triggers a sequence of merges involving pairs of runs
at the top or right under. Once all initial runs have been pushed, the remaining ones are
merged pairwise from the top of the stack to produce the final sorted sequence. These stack
conditions and merging rules are handled by the merge_collapse subroutine (Algorithm 2),
which forms the core mechanism of the original TimSort design.

Another strength of TimSort lies in its use of heuristics to improve efficiency. For exam-
ple, it ensures that initial runs are not too short by applying insertion sort, and it employs
a technique known as galloping to accelerate merges. These optimizations do not affect our

24

Real-World Data and Implementations

Algorithm 2: The merge_collapse procedure (from Python 3.4.4 up to 3.10)

Input: a stack of runs S
Result: the invariant of Equations (4) and (5) is established

Note: the runs on the stack are R1, R2 . . . Rh (top to bottom), with lengths denoted by ri

1 while height(S) > 1 do

2 if (height(S) > 2 and r3 ⩽ r2 + r1) or (height(S) > 3 and r4 ⩽ r3 + r2) then
3 if r3 < r1 then merge runs R2 and R3 on the stack
4 else merge runs R1 and R2 on the stack

5 else if r2 ⩽ r1 then merge runs R1 and R2 on the stack
6 else break

analysis and will not be discussed further here (see [GJK22, GJKY25] for an analysis of the
galloping heuristic).

Algorithm 2 is a pseudo-code transcription of the merge_collapse procedure from Python.
We keep the convention that the topmost run has index 1 and the length of run i is ri. An
example of execution of the main loop of TimSort (lines 3-5 of Algorithm 1) is presented in
Fig. 11. As stated in its note [Pet], Tim Peter’s idea was that:

“The thrust of these rules when they trigger merging is to balance the run lengths as closely
as possible, while keeping a low bound on the number of runs we have to remember.”

To achieve this, the merging conditions in merge_collapse are designed to ensure that the
following invariant6 holds at the end of the procedure:

ri+2 > ri+1 + ri, (4)
ri+1 > ri. (5)

This implies that the runs lengths ri on the stack grow at least as fast as Fibonacci numbers,
and consequently, that the stack height remains logarithmic (see Lemma 25, Section 2.2).

Note that the bound on the stack height alone does not ensure the O(n log n) running
time of TimSort. Without the efficient merge strategy applied on the fly, one can easily
construct an example with at most two runs on the stack that leads to Θ(n2) complexity:
for instance, if all runs have size two and are merged pairwise as soon as there are two runs
on the stack. In contrast, the merges triggered by line 3 allow very large runs to be pushed
and absorbed into the stack without being merged all the way down, effectively collapsing the
stack below the new run instead. Meanwhile, the role the other merges is primarily to restore
the invariant from Eqs. (4) and (5), ensuring an exponential growth of the run lengths within
the stack. The cost of maintaining the stack’s structural invariant is offset by the absorption
of these large runs, naturally calling for an amortized complexity analysis.

2.2 TimSort runs in O(n log n)

Our main objective here is to provide an insightful proof of the complexity of TimSort, in
order to illustrate how well designed its strategy for choosing the merge order is. To obtain
precise bounds on the running time, we follow the standard approach of defining the merge
cost of two runs of lengths r and r′ as the size of the resulting run, r + r′. Henceforth, we
6Actually, in [Pet], the invariant is only stated for the 3 topmost runs of the stack.

25

Part I

24

#1 18
24

#1 50
18
24

#1

50
42

#2

92

#3 28
92

#1 20
28
92

#1 6
20
28
92

#1 4
6
20
28
92

#1 8
4
6
20
28
92

#1

8
10
20
28
92

#2

18
20
28
92

#5

38
28
92

#4

66
92

#3 1
66
92

#1

merge_collapse merge_collapse

Figure 11: Successive states of the stack S (the values are the run lengths) during an execution
of the main loop of TimSort (Algorithm 1), with run length (24, 18, 50, 28, 20, 6, 4, 8, 1). The
label #1 marks that a run has just been pushed onto the stack. Other labels correspond to
the different merge cases of merge_collapse, as defined in Algorithm 3.

will consider the time spent merging two runs to be equal to their merge cost. Under this
cost model, we are only one comparison above the lower bound in the comparison model,
according to the following folklore result (it also matches the upper bound of the classical
merging algorithm used in MergeSort).

Lemma 14. For any algorithm that compares only pairs of elements, merging two ordered
sequences of lengths n and m requires at least n+m− 1 comparisons in the worst case.

We begin with our initial, least refined yet important result, followed by a detailed proof
to offer a first glimpse into why TimSort performs so well in practice.

Theorem 15. TimSort runs in O(n log n).

We start the proof with an alternative formulation of the TimSort algorithm, presented
in Algorithm 3, which is easier to analyze and performs the same comparisons in the same
order as Algorithm 1. The only difference is that Algorithm 2 is replaced by the while loop
in lines 5 to 10 of Algorithm 3. By examining the different cases, it is easy to verify that
merges involving the same runs occur in the same order in both algorithms.

The run decomposition in the first line can be computed using a simple greedy algorithm,
in linear time. We can therefore turn to the main part of Algorithm 3, that is the while
loop of lines 3-10. The proof proceeds using standard arguments from amortized complexity.
Tokens are credited to the elements of the initial sequence at some point during the algorithm
and are spent when comparisons are performed. An upper bound on the number of credited
tokens then gives an upper bound on the running time of the algorithm. This technique allows
us to pay in advance for costly successions of merges that can be more complicated to track
than the credit times. Recall that the merge cost of two runs Ri and Ri+1 is ri+ri+1, the sum
of their lengths, which is an upper bound on the number of comparisons needed. Elements
of the input array are easily identified by their starting position in the array, so we consider
them as well-defined and distinct entities (even if they have the same value). The height of an
element in the stack of runs is the number of runs that are below it in the stack: the elements
belonging to the run Ri in the stack S = (R1, . . . , Rh) have height h− i.

Two ♢ tokens and one ♡ token are credited to an element when its run is pushed onto
the stack (when case #1 is triggered) or when its height decreases because of a merge: in
the latter case, all the elements of R1 are credited when R1 and R2 are merged, and all the
elements of R1 and R2 are credited when R2 and R3 are merged. Tokens are spent to pay for
comparisons, depending on which case is triggered (the different cases are depicted in Fig. 12):

26

Real-World Data and Implementations

Algorithm 3: TimSort, translation of Algorithm 1 and Algorithm 2

Input: a sequence to A to sort
Result: the sequence A is sorted into a single run, which remains on the stack
Note: at any time, we refer to the height of the stack S as h

1 runs← the run decomposition of A
2 S ← an empty stack
3 while runs ̸= ∅ do // main loop of TimSort

4 remove a run R from runs and push R onto S // #1
5 while true do
6 if h ⩾ 3 and r1 > r3 then merge the runs R2 and R3 // #2
7 else if h ⩾ 2 and r1 ⩾ r2 then merge the runs R1 and R2 // #3
8 else if h ⩾ 3 and r1 + r2 ⩾ r3 then merge the runs R1 and R2 // #4
9 else if h ⩾ 4 and r2 + r3 ⩾ r4 then merge the runs R1 and R2 // #5

10 else break

11 while h ̸= 1 do merge the runs R1 and R2

• case #2: every element of R1 and R2 pays 1 ♢. This is enough to cover the cost of
merging R2 and R3, because r1 > r3 in this case, and therefore r2 + r1 ⩾ r2 + r3.

• case #3: every element of R1 pays 2 ♢. In this case r1 ⩾ r2, and the cost is r1+r2 ⩽ 2r1.
• cases #4 and #5: every element of R1 pays 1 ♢ and every element of R2 pays 1 ♡. The

cost r1 + r2 is exactly the number of tokens spent.

Lemma 16. The balances of ♢ tokens and ♡ tokens of each element remain non-negative
throughout the main loop of TimSort.

Proof. In all four cases #2 to #5, because the height of the elements of R1 and possibly the
height of those of R2 decreases, the number of ♢ credited after the merge is at least the
number of ♢ spent. The ♡ tokens are spent only in cases #4 and #5: each element of R2

pays one ♡; after that, it belongs to the topmost run R1 of the new stack S = (R1, . . . , Rh−1)

obtained by merging R1 and R2. Since for all i ⩾ 2, Ri = Ri+1, the conditions of case #4
and #5 imply respectively that r1 ⩾ r2 and r1+r2 ⩾ r3. In both scenarios, the next operation
on the stack S is another merge.

This subsequent merge reduces the height of R1, which in turn lowers the height of the
elements originally in R2. These elements then regain one ♡ without losing any, since the
topmost run of the stack never pays in ♡. Therefore, every time an element pays one ♡,
the very next modification is another merge that restores its ♡. This concludes the proof by
direct induction.

Since tokens are credited to an element upon entering the stack and whenever its height
decreases, the running time of the while loop can be bounded by analyzing the stack height.
To this end, we establish the invariants (4) and (5), ensuring an exponential growth of run
lengths from top to bottom in the stack. Note that this is already established in [DGRdB+15]

Lemma 17. At any point in the main loop of TimSort, ri+ri+1 < ri+2, for i ∈ {3, . . . , h−2}.

Proof. We proceed by induction, verifying that, if the invariant holds at some point, it con-
tinues to hold after a stack update in any of the five cases #1 to #5 of the algorithm. This

27

Part I

R1

R2

R3

R1

R2

case #2: Since r1 > r3, runs R2 and R3 are
merged into R2. Each element of R1 and R2

pays one ♢ token, covering the merge cost, as
r2+ r3 ⩽ r2+ r1. These tokens are immediately
regained due to the resulting decrease in height.

R1

R2

R3

R1

R2

case #3: Since r1 ⩾ r2, runs R1 and R2 are
merged into R1. Each element of R1 pays two ♢,
covering the merge cost, as r1+r2 ⩽ 2r1. These
tokens are immediately regained due to the re-
sulting decrease in height.

R1

R2

R3

R1

R2

R1

R2

R3

R4

R1

R2

R3

cases #4 & #5: Since r1 + r2 > r3 (case #4) or r2 + r3 > r4 (case #5), runs R1 and R2 are
merged into R1. Each element of R1 pays one ♢, and each element of R2 pays one ♡, covering
the merge cost. The ♢ are immediately regained due to the decrease in height, while the ♡
are restored during the following merge, as explained in the proof.

Figure 12: Schematic representations of the merge cases considered in the proof of Lemma 16.

follows from a straightforward case analysis. Let S = (R1, . . . , Rh) be the new state of the
stack after the update, and let ri = |Ri| denote the size of Ri for each i:

• If case #1 just occurred, a new run R1 was pushed onto the stack. This implies that
none of the conditions of cases #2 to #5 held in S, otherwise additional merges would
have followed. In particular, if h ⩾ 4, we have r2+ r3 < r4. Since ri = ri−1 for all i ⩾ 2,
and the invariant holds for S, it also holds for S.

• If one of the cases #2 to #5 just occurred, ri = ri+1 for all i ⩾ 3. Since the invariant
holds for S, it necessarily holds for S as well.

Corollary 18. During the main loop of TimSort, whenever the inner while loop terminates,
we have ri ⩽

√
2
(i+1−j)

rj for all integers i ⩽ j ⩽ h.

Proof. Since the inner loop has finished, none of the conditions of cases #2 to #5 hold in the
stack S. Combined with Lemma 17, this implies that ri+ri+1 < ri+2 for all i ∈ {1, . . . , h−2},
and r1 < r2 if h ⩾ 2. In particular, ri < ri+1 for all i ⩽ h−2, and thus 2ri ⩽ ri+ ri+1 ⩽ ri+2.
It follows that ri ⩽ 2−kri+2k ⩽ 2−kri+2k+1 for all k ⩾ 0 for which the runs exist.

This covers the main part of Theorem 15, as a consequence of Lemma 16, Corollary 18,
and the fact that tokens are credited to an element at most its height plus one times.

Proposition 19. The outer while loop of TimSort runs in O(n log n).

Proof. By taking j = h in Corollary 18, we see that the stack height is in O(log n) whenever
the inner while loop finishes. Consequently, the height remains in O(log n) at any point
during the outer loop: each iteration adds one element to the stack before the inner while
loop completes, and during this inner loop, the height only decreases.

28

Real-World Data and Implementations

Since elements are credited a constant number of tokens upon entering the stack and each
time their height decreases, the total number of credited tokens is O(n log n). By Lemma 16,
the total number of comparisons performed during the outer while loop is therefore bounded
from above by the number of credited tokens, which concludes the proof.

Only the final sequence of merges remains, and due to the exponential decrease in size
given by Corollary 18, it follows directly that this sequence completes in linear time. Note
that the analysis of line 11 could also be omitted by adding a fictitious run of length n + 1,
consisting of elements greater than any in the original array, and appending it to the end of
the run decomposition.

Lemma 20. Line 11 of Algorithm 3 runs in linear time.

Proof. Let S = (R1, . . . , Rh) be the stack just before Line 11. Each element in Ri will be
involved in at most h+1− i merges during the process, except those in R1, which participate
in only h−1 merges. Thus, the total number of comparisons is bounded by

∑h
i=1(h+1− i)ri.

Since rh ⩽ n, applying Corollary 18 with j = h yields

h∑
i=1

(h+ 1− i)ri ⩽ n

(
h∑

i=1

(h+ 1− i)
√
2
i+1−h

)
= 2n

h∑
ℓ=1

ℓ
√
2
−ℓ
,

which is in O(n) since the sum converges as h tends to infinity, completing the proof.

This concludes the proof of Theorem 15: computing the runs takes O(n) time, the main
loop runs inO(n log n) by Proposition 19, and the final merges complete inO(n) by Lemma 20.

2.3 TimSort runs in O(nH + n)

In this section, we refine the analysis by introducing some measures of presortedness [Man85],
as defined in Section 1.1.4, to capture properties of the input that more accurately describe
the performance of the algorithm. In our setting, the number of runs ρ is a natural measure:
as we shall see below, TimSort runs essentially in O(n log ρ), highlighting its efficiency on
inputs with relatively few runs. Our main result is more precise, showing that TimSort finds
inputs consisting of ρ runs each of length n/ρ harder to process than inputs made up of one
large run of length n−2(ρ−1) together with ρ−1 runs of length 2. This is to be expected for
an efficient algorithm: in the latter case, each element of the long run can be placed correctly
using binary search with very few comparisons.

Shannon entropy is a classical and natural way to account for this without introducing
too many parameters to describe the run structure. Recall that if p1, . . . pρ are non-negative
real numbers that sum to 1, their binary Shannon entropy is the quantity defined by

H(p1, . . . , pρ) = −
ρ∑

i=1

pi log2(pi). (6)

For any integer vector r⃗ = (r1, . . . , rρ), with each ri ⩾ 2, let C(r⃗) denote the class of arrays
of length n, whose run decomposition consists of ρ monotonic runs of lengths r1, . . . , rρ. The
entropy of the run lengths is defined as H(r⃗) := H(r1/n, . . . , rρ/n). For instance,

• if r⃗ = (nρ , . . . ,
n
ρ) then H(r⃗) = log2 ρ;

• if r⃗ = (n− 2(ρ− 1), 2, . . . , 2) then H(r⃗) ≈ 2(ρ−1) log2 n
n .

29

Part I

Thus, to exploit presortedness, it is natural to consider sorting algorithms that perform well
on inputs with low entropy, such as TimSort, as evidenced in Theorem 21 below.

Note that, when it is clear from context (as below), we omit the parameter r⃗ and simply
write H := H(r⃗) for the run entropy of arrays in the class C := C(r⃗).

Theorem 21. For inputs of length n, TimSort runs in time O(n+ nH).

Since Shannon entropy is maximal for the uniform distribution (p1 = p2 = . . . = pρ), we
immediately obtain the following, less precise result.

Corollary 22. For inputs of length n with ρ runs TimSort runs in time O(n+ n log ρ).

Proof. The function f : x 7→ −x ln(x) is concave on the positive real numbers R>0, since
its second derivative is f ′′(x) = −1/x. Hence, for any positive p1, . . . , pρ summing to one,
we have H(p1, . . . , pρ) =

∑ρ
i=1 f(pi)/ ln(2) ⩽ ρf(1/ρ)/ ln(2) = log2(ρ). In particular, this

implies that H ⩽ log2(ρ), so TimSort runs in O(n + n log ρ) time. Note that, since ρ ⩽ n,
we also recover the result of Theorem 15: O(n+ n log ρ) ⊆ O(n+ n logn) = O(n log n).

Before proving Theorem 21, we first show that it is optimal up to a multiplicative constant
(a related, slightly less precise proof for ascending runs appears in [BN13, Th. 2]).

Proposition 23 (lower bound). For every algorithm comparing only pairs of elements, there
exists an array in the class C whose sorting requires at least nH− 3n element comparisons.

Proof. In the comparison-based model, for any given run length vector r⃗ = (r1, . . . , rρ),
at least log2(|C(r⃗)|) element comparisons are required for sorting all arrays in C(r⃗), by the
classical counting argument for lower bounds. We prove below that log2(|C(r⃗)|) ⩾ nH(r⃗)−3n.

In this model, only the relative order of elements matters; therefore, it suffices to consider
permutations of {1, . . . , n}. Let P be the set of partitions π of {1, . . . , n} such that |πi| = ri
for all i ⩽ ρ. We say that π is nice if maxπi > minπi+1 for all i ⩽ ρ − 1: this ensures that
listing the elements of π1, . . . , πρ in order corresponds to an input whose run length vector is
exactly r⃗. On the contrary, if π is not nice, the run decomposition does not match with r⃗.
We denote by N ⊆ P the subset of nice partitions.

Let us transform any partition π ∈ P into a nice partition as follows. Since the sizes |πi|
correspond to run lengths, each πi except the last contains at least two elements, so for all
i ⩽ ρ − 1 we have minπi < maxπi. Then, for all i ⩽ ρ − 1, if maxπi < minπi+1, we swap
the elements maxπi and minπi+1 between their respective parts,7 and denote the resulting
partition by π∗, which is guaranteed to be nice. Since each partition π∗ can result from at
most 2ρ−1 different partitions π ∈ P, it follows that 2ρ−1|N | ⩾ |P|. Now, identify each
partition π∗ with an array in C(r⃗), which starts with the elements of π∗1 (in increasing order),
followed by those of π∗2, and so on, up to π∗ρ. Since these partitions are nice, this mapping
from N to C(r⃗) is injective, and we conclude that |C(r⃗)| ⩾ |N |.

Finally, using variants of the Stirling formula which give (k/e)k ⩽ k! ⩽ e
√
k(k/e)k for all

k ⩾ 1, and since |P| =
(

n
r1,...,rρ

)
= n!

r1!···rρ! , we obtain

log2(|C(r⃗)|) ⩾ nH(r⃗) + (1− ρ− ρ log2(e))− 1/2

ρ∑
i=1

log2(ri).

7For instance, if π = ({1, 2, 3, 4}, {5, 6}), then π∗ = ({1, 2, 3, 5}, {4, 6}).

30

Real-World Data and Implementations

By concavity of the function x 7→ log2(x), we have
∑ρ

i=1 log2(ri) ⩽ ρ log2(n/ρ). One checks
readily that the function x 7→ x log2(n/x) reaches its maximum at x = n/e. Since n ⩾ ρ, it
follows that log2(|C(r⃗)|) ⩾ nH(r⃗)− (1 + log2(e) + log2(e)/e)n ⩾ nH(r⃗)− 3n.

Elements of the proof of Theorem 21 It follows the same ideas as in Section 2.2, but we
need to treat separately the sequence of cases #2 that occur immediately after the insertion
of each run. For any input, we consider the sequence of cases #1 to #5 triggered during the
execution of the main loop of TimSort. This sequence fully encodes the execution of the
algorithm. Splitting this sequence at each occurrence of #1 yields segments corresponding
to iterations of the main loop. Each such segment is further divided into two parts at the
first occurrence (if any) of a #3, #4, or #5. The first part, called a starting sequence, consists
of a #1 followed by a maximal number of #2’s. The second part, called an ending sequence,
starts with #3, #4, or #5 (or is empty), and contains no occurrence of #1 (see Fig. 13).

#1 #2 #2 #2︸ ︷︷ ︸
starting seq.

#3 #2 #5 #2 #4 #2︸ ︷︷ ︸
ending seq.

#1 #2 #2 #2 #2 #2︸ ︷︷ ︸
starting seq.

#5 #2 #3 #3 #4 #2︸ ︷︷ ︸
ending seq.

Figure 13: A trace of cases during execution, decomposed into starting and ending sequences.

We use two new ingredients to prove Theorem 21. The first one is that the total number
of comparisons required to merge the starting sequences is at most linear.

Lemma 24. The total cost of all merges performed during the starting sequences is O(n).

Proof. For a stack S = (R1, . . . , Rh), we prove that any starting sequence initiated by pushing
a run R of size r onto S uses at most γr comparisons in total, with γ = 2

∑
ℓ⩾1 ℓ
√
2
−ℓ.

After the push, the stack becomes S = (R,R1, . . . , Rh). If the starting sequence consists
of k ⩾ 1 steps (i.e., k − 1 applications of case #2), then this sequence merges the runs
R1, R2, . . . , Rk. Since no merge occurs if k = 1, we assume k ⩾ 2. The final application of
case #2 ensures that r > rk, and by Corollary 18 applied to the stack S = (R1, . . . , Rh), we
have r ⩾ rk ⩾

√
2
k−1−i

ri for all i = 1, . . . , k. As in the proof of Lemma 20, it follows that:

C ⩽ r

k∑
i=1

(k + 1− i)
√
2
i+1−k

= 2

k∑
ℓ=1

ℓ
√
2
−ℓ
< γr.

This concludes the proof, since each run initiates exactly one starting sequence, and the total
sum of their lengths is n.

Now, we handle the merges that occur during ending sequences. We adapt the amortized
analysis technique from Section 2.2, restricting it to merges performed within these sequences:

• 2 ♢ tokens and 1 ♡ token are credited to an element when it first enters the stack, and
when its height decreases because of a merge belonging to an ending sequence (no token
is credited during the case #2 merges of starting sequences);

• tokens are used to pay for comparisons during ending sequences only.

Since token credits and debits occur only during ending sequences, the balances of ♢ tokens
and ♡ tokens remain non-negative throughout the main loop of TimSort, by a direct adap-
tation of Lemma 16. It remains to establish a bound h on the height of a newly inserted
element after its starting sequence, in order to bound the number of tokens it is credited: at
most 2h+ 2 ♢ tokens and h+ 1 ♡ tokens. This is the purpose of the following lemma.

31

Part I

Lemma 25. The height of the stack when the starting sequence of a run of length r is over
satisfies the inequality h ⩽ 4 + 2 log2(n/r).

Proof. Let S be the stack just before pushing a run R of length r, and let S = (R1, . . . , Rh) be
the stack just after the starting sequence of R (i.e., the starting sequence initiated when R is
pushed onto S) is over. Since none of the runs R3, . . . , Rh has been merged during the starting
sequence of R, applying Corollary 18 to the stack S proves that r3 ⩽ 22−h/2rh ⩽ 22−h/2n.
The run R has not yet been merged either, which means that r = r1. Moreover, at the end
of this starting sequence, the conditions of case #2 no longer hold, which means that r1 ⩽ r3.
It follows that r = r1 ⩽ r3 ⩽ 22−h/2n, which entails the desired inequality.

Collecting the above results suffices to prove Theorem 21: the starting sequences of the
main loop have a total merge cost of O(n) by Lemma 24, and the ending sequences have a
total merge cost of O(

∑ρ
i=1(4+2 log2(n/ri))ri) = O(n+nH) by Lemma 25. The other parts

of the algorithm are treated exactly as in Theorem 15 and contribute to O(n) time.

2.4 Further developments

2.4.1 Refined analysis and precise worst-case running time

The analysis performed in Section 2.2 proves that TimSort runs in time O(n+nH). Looking
more closely at the constants hidden in the O notation, one can in fact prove that the cost
of merges performed during an execution of TimSort is never greater than 6nH + O(n).
However, the lower bound provided by Proposition 23 only proves that the cost of these
merges must be at least nH + O(n). In addition, as mentioned in the introduction, there
do exist sorting algorithms [MW18, Jug20] whose merge cost is exactly nH+O(n), which is
therefore tight for the first order asymptotic.

Hence, TimSort is optimal only up to a multiplicative constant. In an extended, still
unpublished version of [AJNP18], we refined this estimate by determining the smallest real
constant κ such that the merge cost of TimSort is at most κnH +O(n), thereby proving a
conjecture posed in [BK19]. The result is as follows.

Theorem 26. The merge cost of TimSort on arrays of length n is at most κnH + O(n),
where κ = 3/2. Furthermore, κ = 3/2 is the least real constant with this property.

Theorem 26 consists of two parts: an asymptotic upper bound of 3
2nH, and a matching

lower bound of the same order, the latter established in [BK19]. Our full proof appears in the
arXiv version of [AJNP18], but we do not include it here, as it is somewhat tedious.

2.4.2 About the legacy version of TimSort

Algorithm 2 (and thus Algorithm 3) differs slightly from the original TimSort. Prior to
Python release 3.4.4, the second part of the condition at line 2 of merge_collapse (and there-
fore merge case #5 of Algorithm 3) was missing. This earlier variant, shown in Algorithm 4,
is what we refer to as legacy TimSort. Although it correctly sorted arrays, the invariant
in Equation (4) could fail. Figure 14 illustrates the impact of the missing condition on the
same input as in Fig. 11. Legacy TimSort was also used in Java to sort arrays of objects
until September 2018 when Java 11 was released, at which point it was changed to the new
TimSort, following the bug report we made while publishing our results [AJNP18].

32

Real-World Data and Implementations

Algorithm 4: legacy TimSort, translation of the Java code (up to Java 10)

Input: a sequence to A to sort
Result: the sequence A is sorted into a single run, which remains on the stack
Note: at any time, we refer to the height of the stack S as h

1 runs← the run decomposition of S
2 S ← an empty stack
3 while runs ̸= ∅ do // main loop of TimSort

4 remove a run R from runs and push R onto S // #1
5 while true do
6 if h ⩾ 3 and r1 > r3 then merge the runs R2 and R3 // #2
7 else if h ⩾ 2 and r1 ⩾ r2 then merge the runs R1 and R2 // #3
8 else if h ⩾ 3 and r1 + r2 ⩾ r3 then merge the runs R1 and R2 // #4
9 else break

10 while h ̸= 1 do merge the runs R1 and R2

After the first bug in Java’s implementation was discovered by De Gouw et al. [DGRdB+15],
the static maximum size of the run stack was adjusted based on the assumption that the in-
variant could not be broken for two consecutive runs on the stack. This also turned out to
be incorrect,8 as illustrated in Fig. 15. Consequently, up to Java 10, it was still possible to
cause the Java implementation to fail: it uses a stack of runs of size at most 49, while we
constructed an example requiring a stack of size 50 (see http://igm.univ-mlv.fr/~pivoteau/
Timsort/Test.java), causing an error at runtime in Java’s sorting method.

Even if the bug we identified in Java’s TimSort is very unlikely to occur in practice, it still
needed to be fixed.9 Following our recommendation, this correction was finally made in the
release of Java 11. However, since legacy TimSort is still present in earlier versions of Java
that are still in use (and possibly widespread), two questions remain: Does the complexity
analysis still hold without the missing condition? And, can we compute an actual bound on
the stack size? It turns out that the missing invariant was a key ingredient in obtaining simple
and elegant proofs. Deriving similar results for the legacy TimSort requires more involved
(and less insightful) arguments. We only summarize the results here (full proofs can be found

8This results from a small error in the proof of their Lemma 1. The constraint C1 > C2 is unfounded. Indeed,
in our example, we have C1 = 25 and C2 = 31.

9See the related discussion for Python at: https://bugs.python.org/issue23515.

24
#1 18

24

#1 50
18
24

#1

50
42

#2

92
#3 28

92

#1 20
28
92

#1 6
20
28
92

#1 4
6
20
28
92

#1 8
4
6
20
28
92

#1

8
10
20
28
92

#2 1
8
10
20
28
92

#1

Figure 14: Execution of the main loop of legacy TimSort (Algorithm 4), with run lengths
(24, 18, 50, 28, 20, 6, 4, 8, 1). When the second to last run (of length 8) is pushed onto the
stack, the while loop of line 5 stops after only one merge, breaking the invariant (in red), in
contrast with the behavior of the Python version shown in Fig. 11.

33

http://igm.univ-mlv.fr/~pivoteau/Timsort/Test.java
http://igm.univ-mlv.fr/~pivoteau/Timsort/Test.java
https://bugs.python.org/issue23515

Part I

109
#1 83

109

#1 25
83
109

#1 16
25
83
109

#1 8
16
25
83
109

#1 7
8
16
25
83
109

#1 26
7
8
16
25
83
109

#1

26
15
16
25
83
109

#2

26
31
25
83
109

#2

26
56
83
109

#2 2
26
56
83
109

#1 27
2
26
56
83
109

#1

27
28
56
83
109

#2

Figure 15: Execution of the main loop of legacy TimSort, with run lengths (109, 83, 25, 16, 8,
7, 26, 2, 27). When it stops, the invariant is broken at two consecutive runs (in red).

in the arXiv version of [AJNP18]): the complexity of legacy TimSort on inputs of size n
with ρ runs is indeed O(n + n log ρ). Moreover, on an input of size n, the algorithm creates
a stack of at most hmax ⩽ 7 + logδ(n) runs, where δ =

(
5/(2 +

√
7)
)1/5.

Unfortunately, for integers smaller than 231, this only guarantees that the stack size never
exceeds 347. However, in the comments of Java’s implementation of TimSort,10 it is men-
tioned that keeping the stack short is important, for practical reasons, and that Python’s
bound of 85 is considered “too expensive.” Thus, we went so far as to compute the optimal
bound. It turns out that this bound is hmax ⩽ 3 + log∆(n), where ∆ = (1 +

√
7)1/5, and it

never exceeds 86 for such integers. This bound might be slightly improved, but not to the
extent of competing with the one obtained if the invariant of Eq. (4) were valid, so we stopped
our efforts at this point.

2.5 Conclusion on TimSort

When we discovered that Java had adopted TimSort in place of the highly regarded Quick-
Sort, we saw an opportunity to validate a novel algorithm with a compelling average-case
analysis that could explain this choice. While such an analysis should be most reflective of
real-world behavior, it remains only a complement to a proper worst-case complexity analysis,
which serves as a guarantee on execution time. At the time, this was lacking for TimSort,
so we first addressed this gap by providing a short, simple, and self-contained proof of its
worst-case running time. In doing so, we came to appreciate the true nature of the algorithm
and developed a clearer view of how it operates in practice, particularly the central role played
by the merge strategy. We came to realize that the excellent performance, which likely moti-
vated the adoption of TimSort in widely used languages such as Python and Java, can be
explained through a worst-case analysis, albeit from a different perspective on the input data.
While TimSort is not worse than traditional algorithms on uniformly random inputs, it is
particularly well suited to partially sorted inputs. Even stripped of its fine-tuned heuristics,
the dynamics of its merge process, driven by a few local rules, yield globally efficient behavior.
This is captured in the bound O(n+ nH), where H denotes the entropy of the run lengths.

As we have seen, the story of TimSort is rich in developments and highlights the im-
portance of careful algorithm analysis in avoiding errors and misconceptions. This work also
stands as a successful example of fruitful collaboration between engineers and academics and
this is the kind of interaction we hope to continue fostering in the future.

10Comment at line 168: http://igm.univ-mlv.fr/~pivoteau/Timsort/TimSort.java.

34

http://igm.univ-mlv.fr/~pivoteau/Timsort/TimSort.java

Real-World Data and Implementations

Summary of Our Results on Data Oriented Analysis

At first, when we learned that Java’s implementation of QuickSort had been replaced by a
variant of MergeSort, we assumed that this new algorithm, TimSort, must be particularly
efficient in practice. Naturally, we wanted to study its average-case complexity to confirm this
from a theoretical perspective. However, we soon realized that its worst-case complexity had
not yet been formally established. This led us to first focus on proving that TimSort runs
in O(n log n), as was announced by its creator.

In parallel, we began investigating the notion of presortedness, aiming to characterize the
types of inputs that could explain why an algorithm like TimSort would be favored over
more obvious alternatives, i.e., algorithms already known to perform well in practice. Given
our interest in experimenting to test our ideas, it quickly became clear that having a suitable
model (and ideally random generators) would be valuable for putting TimSort to the test.
This naturally led us to the question of non-uniform distributions for random permutations.

While the worst-case analysis clarified aspects of TimSort’s behavior, it was not sufficient
to explain why it had been brought to the forefront. We refined our analysis and showed that
TimSort runs in O(n+nH), where H is the entropy of the run lengths, a natural parameter
that accounts for its strong performance on partially sorted inputs.

To complete the picture, a natural next step would be to develop a probabilistic model for
biased permutations that allows us to derive results on the expected number of runs, thereby
enabling a meaningful average-case analysis.

35

Part I

36

Part II

Enhancing the Model with Computer
Architecture Features

3 Branch Prediction . 38
4 Unbalancing the Jumps . 43

4.1 A case study : simultaneous minimum and maximum searching 43
4.2 Exponentiation by squaring with a twist 47
4.3 Skew binary search . 50

5 Pattern Matching . 56
5.1 The sliding window algorithm 56
5.2 Morris-Pratt and Knuth-Morris-Pratt algorithms 63

Summary of Our Results on Branch Prediction Analysis 74

37

Part II

In pursuit of a more realistic model for algorithm analysis, the second part of our work
turns to modern architectural features. We try to design models that capture phenomena
observed in practice, aiming to provide theoretical results that align with empirical behavior.
As computing systems grow increasingly complex, continuous efforts to improve performance
have led to the introduction of various hardware mechanisms for accelerating data access,
predicting control flow, and enabling parallel execution. Among these, caching stands out
as one of the most impactful innovations, giving rise to an entire field of research. This led
to the development of two major algorithmic models: external memory algorithms [AV88]
and cache-oblivious algorithms [Dem02, FLPR12]. As a result, cache-related behavior is now
well understood from an algorithmic perspective, although detailed, fine-grained analysis re-
mains technically challenging. In our work, we instead focus on another architectural feature:
branch prediction, which plays a crucial role in improving instruction-level parallelism (see
next section). This topic began attracting attention in the 2000s, with both experimental and
theoretical approaches, primarily targeting worst-case analyses. To deepen our understanding
of its impact, we shift focus to the average case. We concentrate mainly on relatively simple
models as a starting point, aiming to later explore more complex ones that are more repre-
sentative of real processors. Proposing an adequate model is a challenge in itself, especially
since the exact designs of processors are proprietary and sparsely documented. Whenever
possible, we compare our theoretical results with experimental data; some results align well,
while others suggest the presence of more refined mechanisms at play. We explore two main
directions in this context: exploiting branch prediction to improve algorithm performance
when execution paths are simple, and analyzing the behavior of branch predictors when al-
gorithms present more complex branching patterns. Our results highlight trade-offs between
architectural events and operations traditionally assumed to have unit-time cost, in the spirit
of the work on cache misses in [LL99], and they pave the way for studying more sophisticated
and accurate models of branch predictors.

3 Branch Prediction

Pipelining is a fundamental technique in modern processors that improves performance by
allowing multiple instructions to execute in parallel rather than strictly sequentially. Typically,
the execution of an instruction is divided into distinct stages, so that several instructions can
be processed simultaneously, much like an assembly line in a factory. Fig. 16 illustrates how
this works on a four-stage pipeline. Today, pipelining is ubiquitous, even in low-cost processors
priced under a dollar (see [HP17] for a detailed presentation).

The sequential execution model assumes independence between instructions, since each
completes before the next begins; however, this assumption no longer holds in a pipelined
processor. Specific conditions, known as hazards, may prevent the next instruction in the
pipeline from executing during its designated clock cycle. Hazards introduce delays that
undermine the performance benefits of pipelining and may stall the pipeline, thus reducing
the theoretical speedup:

• Structural hazards occur when resource conflicts arise, preventing the hardware from
supporting all possible combinations of instructions during simultaneous executions.

• Control hazards arise from the pipelining of conditional jumps (arising from loops or
if–then–else structures, for instance) and other instructions that modify the order in
which instructions are processed, by updating the Program Counter (PC).

• Data hazards occur when an instruction depends on the result of a previous instruction,
and this dependency is exposed by the overlap of instructions in the pipeline.

38

Enhancing the Model with Computer Architecture Features

Waiting
instructions

Stage 1: Fetch

Stage 2: Decode

Stage 3: Execute

Stage 4: Write-back

Pi
pe

lin
e

Completed
instructions

0 1 2 3 4 5 6 7 8
Clock cycle Instructions are represented as colored

boxes, and clock cycles correspond to the
processor’s discrete time units. At cycle 0,
four instructions are waiting to be exe-
cuted. Over the following four cycles, the
green instruction progresses through the
CPU’s four pipeline stages: it is fetched
from memory, decoded, executed, and fi-
nally its result is written back to either the
register file or memory. At cycle 2, the
purple instruction enters the pipeline’s first
stage (fetch), as the green instruction has
already advanced to the second stage (de-
code). The third and fourth instructions
follow the same pattern. Note that this

parallelism is only possible if the instructions are independent (i.e., there are no data or con-
trol dependencies between them). As a result, only eight clock cycles are needed to complete
all four instructions, compared to sixteen cycles in a fully sequential four-stage CPU.

Figure 16: Example of the evolution of a four-stage pipeline on independent instructions.1

We focus here on control hazards from branching instructions. Two-way branching is typ-
ically implemented using a conditional jump instruction, which can either be taken, updating
the Program Counter with the target address specified by the jump instruction and redirect-
ing the execution path to a different location in memory, or not taken, allowing execution to
continue sequentially. Note that when a conditional instruction is compiled, it results in a
jump that may correspond to either a taken or a not-taken branch.2 For consistency, we define
a successful condition (when a test evaluates to true) as always leading to a taken branch.

During the execution of a program, the outcome of any conditional jump remains unknown
until the evaluation of its condition reaches the actual execution stage, which may cause
stalls in the pipeline. To improve efficiency, modern computer architectures incorporate a
mechanism to predict the branch to take: a branch predictor is a digital circuit that anticipates
the outcome of a branch (due to an if–then–else statement, for instance) before it is resolved.
Without branch prediction, the processor would be forced to wait until the conditional jump
instruction reaches its last stage before the next instruction can enter the first stage in the
pipeline. The branch predictor aims to reduce this delay by predicting whether the conditional
jump is likely to be taken or not. The instruction corresponding to the predicted branch is
then fetched and speculatively executed. If the prediction is later found to be incorrect (that
is, a misprediction has occurred), the speculatively or partially executed instructions must be
cancelled: the instructions after the jump are discarded, the pipeline is flushed, and execution
resumes along the correct path, incurring a small delay. A misprediction costs little more than
the stall that would have occurred without branch prediction, whereas a correct prediction
avoids the stall entirely, which is where the real bonus lies.

The effectiveness of a branch prediction scheme depends on both its accuracy and the

1Illustration from Wikipedia, by en:User:Cburnett - This W3C-unspecified vector image was created with
Inkscape, CC BY-SA 3.0.

2Most assembly languages provide both jump-if-true and jump-if-false instructions.

39

https://en.wikipedia.org/wiki/User:Cburnett
https://commons.wikimedia.org/w/index.php?curid=1499754/

Part II

ν ν τ τN

N N N

T T T

T

Figure 17: The 2-bit saturating predictor consists of four states: ν and ν predict that the
branch will not be taken, while τ and τ predict that it will. The predictor updates at each
condition evaluation, transitioning via T when the branch is taken (i.e., the condition is true)
and via N when it is not. Bold edges indicate mispredictions.

frequency of conditional jumps. Static branch prediction is the simplest technique, as it does
not depend on the code execution history, with the drawback that it cannot adapt to program
behavior. In contrast, dynamic branch prediction takes advantage of runtime information
(specifically, branch execution history) to determine whether branches were taken or not,
allowing it to make more informed predictions about future branches.

A vast body of research is dedicated to dynamic branch prediction schemes. At the highest
level, branch predictors are classified into two categories: global and local. A global branch
predictor does not maintain separate history records for individual conditional jumps. Instead,
it relies on a shared history of all jumps, allowing it to capture their correlations and improve
prediction accuracy. In contrast, a local branch predictor maintains an independent history
buffer for each conditional jump, enabling predictions based solely on the behavior of that
specific branch. Modern processors typically employ a combination of local and global branch
prediction techniques, often incorporating even more sophisticated designs. For a deeper
exploration of this topic, see [Mit18], and for a comprehensive discussion of modern computer
architecture, refer to [HP17].

We primarily focus on local branch predictors implemented with saturating counters. A
1-bit saturating counter (essentially a flip-flop) records the most recent branch outcome. Al-
though this is the simplest form of dynamic branch prediction, it offers limited accuracy.
A 2-bit saturating counter (see Fig. 17), by contrast, operates as a state machine with four
possible states: Strongly not taken (ν), Weakly not taken (ν), Weakly taken (τ),
and Strongly taken (τ). When the 2-bit saturating branch predictor is in the Strongly
not taken or Weakly not taken state, it predicts that the branch will not be taken
and execution will proceed sequentially. Conversely, when the predictor is in the Strongly
taken or Weakly taken state, it predicts that the branch will be taken, meaning execution
will jump to the target address.

Each time a branch is evaluated, the corresponding state machine updates its state. If the
branch is not taken, the state shifts toward Strongly not taken; if taken, it moves toward
Strongly taken. A misprediction (corresponding to a bold edge in Fig. 17) occurs when:

• a branch is not taken, while the predictor is in either of the Taken states (τ or τ);

• a branch is taken, while the predictor is in either of the Not Taken states (ν or ν).

This mechanism gives the 2-bit saturating counter an advantage over the simpler 1-bit scheme:
a branch must deviate twice from its usual behavior (i.e., a Strongly state) before the pre-
diction changes, reducing the likelihood of mispredictions. Note that this saturating counter
scheme can be further improved by keeping more information (k-bit predictors using 2k states).

Branch prediction and it influence over algorithms efficiency in the literature
Since the 2000s, several articles began to address the influence of branch predictors, and es-

40

Enhancing the Model with Computer Architecture Features

pecially the cost of mispredictions, in comparison based algorithms. For instance, Biggar and
his coauthors [BNWG08] investigated the behavior of branches for many sorting algorithms,
in an extensive experimental study. Brodal, Fagerberg and Moruz reviewed the trade-offs
between comparisons and mispredictions for several sorting algorithms [BM05] and studied
how the number of inversions in the data affects statistics such as the number of mispre-
dictions [BFM08]. Moreover, these works introduced the first theoretical analysis of static
branch predictors.

Also interested by the influence of mispredictions on the running time of sorting algo-
rithms, Sanders and Winkel considered the possibility to dissociate comparisons from branches
in their SampleSort, which allows to avoid most of the misprediction cost [SW04]. Elmasry,
Katajainen and Stenmark then proposed a version of MergeSort that is not affected by
mispredictions [EKS12], by taking advantage of some processor-specific instructions.3 The
influence of mispredictions was also studied for Quicksort: Kaligosi and Sanders gave an
in-depth analysis of simple dynamic branch predictors to explain how mispredictions affect
this classical algorithm [KS06]; however, Martínez, Nebel and Wild pointed out that this is
not enough to explain the “better than expected” performances of the dual-pivot version of
QuickSort [MNW15] implemented in Java’s standard library, while Edelkamp and Weiß
gave an alternative called BlockQuicksort [EW19] which limit the impact of branch pre-
diction by avoiding certain conditional jumps.

Besides, Brodal and Moruz conducted an experimental study of skewed binary search trees
in [BM06], highlighting that such data structures can outperform well-balanced trees, since
branching to the right or left does not necessarily have the same cost, due to branch prediction
schemes. Some of our work follows the same line, as we also want to take advantage of the
branch predictions, but we focus on algorithms rather than on data structures. To that end,
we examine classical divide-and-conquer algorithms, adjust their structure to unbalance the
conditional jumps, and analyze the trade-offs between the number of comparisons and the
number of mispredictions in the average case.

Markov chains in the analysis of branch prediction Since our main focus is on average-
case analysis, we often enrich the algorithm’s input with a probability distribution, which in
turn leads to a decoration of the branch predictor with probabilities on its edges, effectively
yielding a Markov chain. In our context, a Markov chain is defined by a non-empty finite set S
of states, and a transition matrix M , where, for every x, y ∈ S, M(x, y) is the probability to go
from state x to state y. In particular, it requires that for all x ∈ S,

∑
y∈S M(x, y) = 1. Usually,

the definition is supplemented with an initial probability vector π0 of the same dimension,
with non-negative coefficients that sum to 1. One can follow a (random) trajectory (xt)t≥0

in the Markov chain by starting at a random position following the probability π0 for x0, at
time t = 0, and then at each discrete step from time t to t+1, going from the current state xt
to xt+1 with probability M(xt, xt+1).

We shall rely on classical results on Markov chains in the sequel, which we now briefly
introduce. A Markov chain is said to be irreducible when its underlying directed graph is
strongly connected, and aperiodic when the gcd of its cycle lengths is 1. The key result we use
is that, under these conditions, the chain admits a unique stationary distribution [LPW08]:

Theorem 27. If (M,π0) is a Markov chain on S that is irreducible and aperiodic, then there
exists a unique probability line vector π̂ on S, called the stationary vector, such that π̂ ·M = π̂

and if (xt)t≥0 is a trajectory then limt→∞ P(xt = s) = π̂(s), for all s ∈ S.

3Namely, conditional moves, such as cmov, which are now widely available on computers.

41

Part II

Classically, if the chain is not irreducible and has only one terminal strongly connected
component C that is aperiodic, Theorem 27 still applies by considering the restriction to C,
as a random trajectory quickly ends in C with high probability.

Some of our results involve counting the number of mispredictions that occur during the
execution of various algorithms. This task can often be reduced to counting how many times
specific edges are taken in a Markov chain, when we perform a random walk of (random)
length Lk. When this happens, we may be able to conclude using the classical Ergodic
Theorem [LPW08], which we restated below in order to fit our needs.

Theorem 28 (Ergodic Theorem). Let (M,π0) be a primitive and aperiodic Markov chain on
the finite set S. Let π̂ be its stationary distribution. Let E be a set of edges of M , that is,
a set of pairs (i, j) ∈ S2 such that M(i, j) > 0. For any nonnegative integer n, let Ln be
a random variable taking values in the nonnegative integers such that limn→∞ E[Ln] = +∞.
Let Xn be the random variable that counts the number of edges in E that are used during a
random walk of length Ln in M (starting from the initial distribution π0). Then the following
asymptotic equivalence holds:

E[Xn] ∼ E[Ln]
∑

(i,j)∈E

π̂(i)M(i, j).

Now that our setting is established and our main tools have been introduced, we can
proceed first with variants of classical comparison-based algorithms, and then with a study
of pattern matching.

42

Enhancing the Model with Computer Architecture Features

NaiveMinMax

Input: array T of length n

1 min← T [0]

2 max← T [0]

3 for i = 1 to n− 1 do
4 if T [i] < min then
5 min← T [i]

6 if T [i] > max then
7 max← T [i]

8 return min,max

3
2-MinMax

Input: array T of length n

1 min← T [n− 1],max← T [n− 1]

2 for i← 1; i < n− 2; i← i+ 2 do
3 if T [i] < T [i+ 1] then
4 if T [i] < min then min← T [i]

5 if T [i+ 1] > max then max← T [i+ 1]

6 else
7 if T [i+ 1] < min then min← T [i+ 1]

8 if T [i] > max then max← T [i]

9 return min,max

Figure 18: Naive and optimized algorithms for simultaneous minimum/maximum searching.

4 Unbalancing the Jumps

Branches with equally likely outcomes can naturally occur during the execution of an algo-
rithm. For example, if the input follows a uniform distribution or is randomized, branches
arising from element comparisons will be balanced, meaning they are equally likely to be taken
or not. Divide-and-conquer algorithms often produce such branches as well, since they typ-
ically split problems into equally sized parts to achieve optimal complexity. However, these
perfectly balanced conditions are particularly challenging for the type of branch predictor
considered here: past information offers no guidance in predicting which side will prevail, and
the predictor will be wrong roughly half of the time.

Our idea is to mitigate this effect by deliberately breaking this symmetry. We explore
two strategies for disrupting the balance, aiming to improve performance on two classical
algorithms. We take a look at exponentiation by squaring and give a simple alternative,
slightly faster algorithm, which reduces the number of mispredictions without increasing the
number of multiplications, by adding an unnecessary test. And in the same vein, we propose
biased versions of the binary search in a sorted array, for which we analyze the expected
number of mispredictions for the local predictor. For these two different problems, we manage
to significantly lower the number of mispredictions by breaking the perfect balance usually
favored in the divide and conquer strategy. In practice, the trade-off between comparisons
and mispredictions allows a noticeable speed-up in the execution time, when the comparisons
involve primitive data types, which supports our theoretical results.

This section presents a synthesis of work published jointly with Nicolas Auger, Mathilde
Bouvel, and Cyril Nicaud [ANP16, ABNP16].

4.1 A case study : simultaneous minimum and maximum searching

We start with an introductory example using combinatorial arguments. Let us consider the
simple problem of computing both the minimum and the maximum of an array of size n. The
naive approach is to compare each entry to the current minimum and maximum, which uses 2n
comparisons. This is Algorithm NaiveMinMax. A better solution, in terms of number of
comparisons, is to look at the elements of the array two by two, and to compare the smallest

43

Part II

Figure 19: Execution time of simultaneous minimum and maximum searching.

to the current minimum and the greatest to the current maximum. This corresponds to
Algorithm 3

2-MinMax.
In the classical analysis setting, 3

2-MinMax is optimal.4, performing a number of compar-
isons asymptotically equivalent to 3

2n. By contrast, NaiveMinMax needs 2n−2 comparisons.
To observe the benefit of this optimization, we implemented both versions and measured

their execution time5 for large arrays of uniform random float in [0, 1]. The results are
given in Fig. 19 and are very far from what was expected, since the naive implementation
is almost twice as fast as the optimized one. Clearly, counting comparisons cannot explain
these counterintuitive results. An obvious explanation could be a difference in the number
of cache misses. However, both implementations make the same memory accesses, in the
same order. Instead, we turn our attention to the comparisons themselves. As we have seen,
most modern processors are heavily parallelized and use predictors to guess the outcome of
conditional branches in order to avoid costly stalls in their pipelines. Since the cost of a
misprediction can be quite large compared to a basic instruction, we believe this should be
taken into account in order to explain accurately the behavior of algorithms that use a fair
amount of comparisons.

In this matter, our example is quite revealing since the trick used to lower the number of
comparisons relies on a conditional jump that is unpredictable (for an input taken uniformly
at random) and will cause a substantial increase in the number of mispredictions. As we will
see, the expected number of mispredictions caused by the naive algorithm is Θ(log n), whereas
it is Θ(n) for the “optimal” one.

In order to give an explanation of the experimental results presented in Fig. 19, where
NaiveMinMax outperforms 3

2-MinMax, we estimate the expected number of mispredictions
for both algorithms. Our probabilistic model is the following: we consider the uniform random
distribution on arrays of size n, where each element is chosen uniformly and independently
in [0, 1]. Up to an event of probability 0 (when the elements of the input are not pairwise
distinct), this is the same as choosing a uniform random permutation of {1, . . . , n}, since we
only use comparisons on the elements in both algorithms.

Recall that a min-record (resp. max-record) in an array or a permutation is an element that
is strictly smaller (resp. greater) than any element to its left. Obviously, in NaiveMinMax,
the first condition at line 4 (resp. the one at line 5) is true for each min-record (resp. max-
4 More precisely, an adversary argument can be used to establish a lower bound of ⌊ 3n

2
⌋ − 2 comparisons, in

the “decision tree with comparisons” model of computation [Poh72].
5 We used a Linux machine with a 3.40 GHz Intel Core i7-2600 CPU.

44

Enhancing the Model with Computer Architecture Features

record), except for the first position. The number of records in a random permutation is a
well-known statistics, which we can use to establish the following proposition.

Proposition 29. The expected number of mispredictions performed by NaiveMinMax, for
the uniform distribution on arrays of size n, is asymptotically equivalent to 2 log n for the
2-bit saturating counter. The expected number of mispredictions performed by 3

2-MinMax is
asymptotically equivalent to n

4 +O(logn).

Proof (sketch). We consider the 2-bit predictor in Fig. 17. Let σ be a permutation in Sn,
whose cycles, ordered by decreasing order of their smallest element, are C1, . . . , Cm. We use
Foata’s bijection φ, described in Section 1.1.4, from Sn onto itself, such that the number of
min-records in φ(σ) equals the number of cycles of σ. Hence, the expected number of records
in a uniform random permutation is asymptotically equivalent to logn (see [FS09]). Our goal
is to estimate the number of mispredictions ξ(φ(σ)) triggered by line 3 of NaiveMinMax
applied to σ. Since φ(σ) = φ(C1) ·φ(C2) · · ·φ(Cm), we count the mispredictions cycle by cycle.

Assume that the predictor is in state ν just before processing φ(Ci). This state predicts
that the branch is not taken. As the first element of φ(Ci) is a min-record, it causes a
misprediction and the predictor switches to state τ (which predicts taken). If Ci has length
at least 2, then the next element also causes a misprediction and the predictor goes back to
ν. If it has length at least 3, then the predictor is set to ν with no further misprediction. All
useful cases are depicted in the following table:

starting cycle of length 1 cycle of length 2 cycle of length 3 cycle of length ≥ 4

state mispred. ending mispred. ending mispred. ending mispred. ending

ν 1 ν 1 ν 1 ν 1 ν

ν 1 τ 2 ν 2 ν 2 ν

τ 0 τ 1 τ 2 ν 2 ν

τ 0 τ 1 τ 2 ν 2 ν

From this, we readily get that the number χ(φ(σ)) of mispredictions caused by the first
conditional jump satisfies

cyc≥4(σ) ≤ χ(φ(σ)) ≤ cyc≥4(σ) + 3 cyc≤3(σ),

where cyci(σ) is the number of cycles of length i of σ, since there can be two mispredictions
caused by f(Ci) only if Ci−1 has length at most 3. We conclude by summing the contribution
of both conditional jumps, as En[cyc≤3] = O(1).

We now consider the algorithm 3
2-MinMax. Using the model of n random numbers in

[0, 1], it is straightforward to see that the first test in the loop of 3
2-MinMax (line 3) causes

a misprediction with probability 1
2 , for any saturating counter. Hence, this first test causes

around n
4 mispredictions in average, when the algorithm ranges through the whole input.

Moreover, the inner tests are true only when a min-record or max-record occurs. Using the
same kinds of arguments as for Proposition 29, the expected number of mispredictions caused
by these inner tests is in O(logn), concluding the proof.

In light of these results, we observe that the mispredictions occurring in NaiveMinMax
are negligible compared to the number of comparisons. On the other hand, the additional test
used to optimize 3

2-MinMax (line 3) causes the number of mispredictions to be comparable
to the number of comparisons performed. We believe this is enough to explain why the naive

45

Part II

implementation performs better (Fig. 19), since we know that mispredictions can cost many
CPU cycles and that comparisons are cheap operations. Of course, we are aware that other
factors may influence the performance of such simple programs, including cache effects. In
our implementation, we took care to fetch each element of the array only once and in the same
order, so that the cache behavior should not interfere with our results. We also tried the most
commonly used optimization of the gcc compiler (-O3) to check that these results withstand
strong code optimization. In this particular case, all the branches but the one at line 3 in
3
2-MinMax are replaced by conditional moves, which are not vulnerable to misprediction.
Hence, 3

2-MinMax still causes approximately 1
4n mispredictions on average; in practice, both

algorithms are faster, as expected, but the naive version is still almost twice as fast.
Of course, these results no longer hold under a non-uniform distribution. We now examine

the behavior of both algorithms on record-biased permutations, as introduced in Section 1.

4.1.1 Expected number of mispredictions on record-biased permutations

We have just seen that, for uniform permutations, NaiveMinMax outperforms 3
2-MinMax,

as the latter suffers more mispredictions, offsetting the benefit of performing fewer compar-
isons. This corresponds to the case of record-biased permutations with θ = 1. However, as θ
varies, the distribution of records changes accordingly, which in turn affects the performance
of both algorithms. In particular, when θ = λn, the expected number of records becomes
linear in n, in contrast to the logarithmic behavior observed when θ = 1. We now analyze
the number of mispredictions in NaiveMinMax and 3

2-MinMax, applied to record-biased
permutations, with a special focus on the case θ = λn, which exhibits significantly different
behavior compared to the uniform distribution (see Fig. 20).

Expected number of mispredictions in NaiveMinMax Recall from the first part of
this study that, among record-biased permutations of size n with parameter θ, the expected
number of records is given by En[rec] = θ(Ψ(θ+n)−Ψ(θ)), where Ψ is the digamma function.6

Theorem 30. For record-biased permutations of size n with parameter θ, the expected numbers
of mispredictions occurring at lines 4 and 6 of NaiveMinMax are respectively given by
En[µ4] ≤ 2

θEn[rec] and En[µ6] = 2θ(Ψ(θ + n− 1)−Ψ(θ))− (2θ+1)(n−1)
θ+n−1 .

Consequently, the expected number of mispredictions at line 4 is O(log n) when θ = Ω(1),
that is, when θ = θ(n) is constant or larger. Furthermore, using the asymptotic expansion of
the digamma function, we obtain the following asymptotic behavior for the expected number
of mispredictions at line 6 (again, for λ > 0, 0 < ϵ < 1, and δ > 1):

fixed θ > 0 θ := nϵ θ := λn θ := nδ

En[µ6] ∼ 2θ · logn ∼ 2(1− ϵ) · nϵ log n ∼ 2λ(log(1 + 1/λ)− 1/(λ+ 1)) · n o(n)

In particular, asymptotically, the expected total number of mispredictions of NaiveMinMax
is given by En[µ6] (up to a constant factor when θ is constant).

Expected number of mispredictions in 3
2-MinMax Mispredictions in 3

2-MinMax
may occur at any of the three if statements. We analyze the expected number of mispredic-
tions at each of them independently. We start with the if statement at line 3, which compares
T [i− 1] and T [i]. For a 1-bit saturating counter, a misprediction occurs whenever there is a
6As mentioned in Section 1.3, the digamma function is defined by Ψ(x) = Γ′(x)/Γ(x), where Γ is the classical
gamma function. As x → +∞, it admits the asymptotic expansion Ψ(x) = log(x)− 1

2x
− 1

12x2 + o
(

1
x2

)
.

46

Enhancing the Model with Computer Architecture Features

λ

#mispredictions/n

1
4

1
2

1 2 3

1
nEn[ν]

1
nEn[µ]

We have En[µ] ∼ En[µ
⋆] for λ0 =

√
34−4
6 ≈ 0.305.

Algorithm 3
2-MinMax incurs fewer mispredictions

on average than NaiveMinMax as soon as λ > λ0.
However, since 3

2-MinMax performs n
2 fewer com-

parisons than the naive algorithm, it becomes more
efficient before λ0. For instance, if a misprediction
is worth 4 comparisons, 3

2-MinMax becomes more
efficient as soon as λ > 0.110.

Figure 20: The expected number of mispredictions produced by NaiveMinMax (µ) and
for 3

2-MinMax (µ⋆), when θ := λn.

descent at i − 2 and an ascent at i, or an ascent at i and a descent at i − 2. For the 2-bit
saturating counter, a tedious case analysis yields a precise estimate of En[µ

⋆
3], the expected

number of mispredictions at line 3 (the first if) of 3
2-MinMax, for any parameter θ. The full

statement of this intermediate result is omitted for conciseness. As an illustrative example,
when θ = λn, we obtain En[µ

⋆
3] ∼ 6λ2+8λ+3

12(λ+1)3
n.

For the second if, the statement is simpler: the expected number of mispredictions at
line 7 of 3

2-MinMax satisfies En[µ
⋆
7] ≤ 2

θEn[rec]. As a result, if θ = λn, then En[µ
⋆
7] = O(1).

We finally turn to the third if (line 8) of Algorithm 3
2-MinMax. If there is a record (resp.

no record) at position i−3 or i−2, then a misprediction occurs when there is no record (resp. a
record) at position i−1 or i. A case-by-case analysis of all possible configurations at these four
positions yields, once again, a precise estimate for En[µ

⋆
8]; we omit the details for brevity. From

this, one has, for example, that if θ = λn, then En[µ
⋆
8] ∼

(
2λ log

(
1 + 1

λ

)
− λ(6λ2+15λ+10)

3(λ+1)3

)
n.

Combining these results yields the following.

Theorem 31. For record-biased permutations of size n with parameter θ = λn, the total
number of mispredictions of 3

2-MinMax is

En[µ
⋆] ∼

(
2λ log

(
1 +

1

λ

)
− 24λ3 + 54λ2 + 32λ− 3

12(λ+ 1)3

)
n.

Fig. 20 shows that, unlike in the uniform case (θ = 1), 3
2-MinMax is more efficient than

NaiveMinMax on record-biased permutations with θ := λn, as soon as λ is large enough.

4.2 Exponentiation by squaring with a twist

The example in the previous section shows that reducing the average number of mispredictions
during the execution of an algorithm can significantly improve efficiency. Here, we explore
a first application of this idea by using a small trick to intentionally unbalance the jump
conditions in exponentiation by squaring. This also leads to a trade-off: fewer mispredictions
at the cost of performing slightly more comparisons, again resulting in a faster implementation.

4.2.1 Modified algorithms

The classical divide-and-conquer algorithm to compute xn is based on rewriting

xn = (x2)⌊n/2⌋xn0 ,

where nk . . . n1n0 is the binary decomposition of n, in order to divide the size n of the problem
by two. This is the Algorithm ClassicalPow of Fig. 21. As expected, the branch of line 3

47

Part II

ClassicalPow

Input: x, n

1 r ← 1

2 while n > 0 do
// n is odd

3 if n & 1 then
4 r ← r ∗ x

5 n← n/2

6 x← x ∗ x

7 return r

For each algorithm, x is a
floating-point number, n is
an integer and the returned
value r is xn.

UnrolledPow

Input: x, n

1 r ← 1

2 while n > 0 do
3 t← x ∗ x

// n0 = 1

4 if n & 1 then
5 r ← r ∗ x

// n1 = 1

6 if n & 2 then
7 r ← r ∗ x

8 n← n/4

9 x← t ∗ t

10 return r

GuidedPow

Input: x, n

1 r ← 1

2 while n > 0 do
3 t← x ∗ x

// n1n0 ̸= 00

4 if n & 3 then
5 if n & 1 then
6 r ← r ∗ x

7 if n & 2 then
8 r ← r ∗ t

9 n← n/4

10 x← t ∗ t

11 return r

Figure 21: Three versions of exponentiation by squaring. The & operator is a bitwise AND.

is taken with probability 1
2 , which is what we want to avoid.7 In order to introduce some

imbalance in the algorithm, we first unroll the loop (UnrolledPow, Fig. 21) using the
decomposition xn = (x4)⌊n/4⌋(x2)n1xn0 . Still, both branches are taken with probability 1

2 ,
but we can now guide the algorithm by injecting the test that determines whether the last
two bits of n are 11 or not. This is the third algorithm of Fig. 21. Note that this branch
(line 4) is absolutely unnecessary in the algorithm, as it is redundant with the tests of line 5
and 7. But on the other hand, this branch is taken with probability 3

4 and the branches of
line 5 and 7 are now both taken with probability 2

3 . This is how we aim to use the branch
predictions.

To compare their performances experimentally, we computed the floating-point value of xn

using each of the algorithms 5.107 times, with n chosen uniformly at random in {0, . . . , 226−1}.
We measured the execution time, as well as some other parameters given by the PAPI library,8

which give access, for instance, to the number of mispredictions occurring during the execu-
tion. These results are depicted on Fig. 22. The first observation is that GuidedPow is 14%
faster than UnrolledPow and 29% faster than ClassicalPow and yet, the number of
multiplications performed is essentially the same for the three algorithms. The main explana-
tion we have come across for the speed-up between UnrolledPow and ClassicalPow is
that the number of loops is divided by two. As for GuidedPow, the number of loops is the
same as for UnrolledPow and it uses 25% more comparisons, but still the guided version
is faster. The main difference between the two is that the test added at line 4 allows us to
decrease the number of mispredictions by about a quarter (this test causes additional mispre-
dictions, but it also modifies the probabilities associated to the inner if instructions of line 5
and 7 (corresponding to line 4 and 6 in UnrolledPow), which leads to an overall decrease
in the number of mispredictions). We are in similar setting to the simultaneous minimum and
maximum, where the increased number of comparisons is balanced by fewer mispredictions.
We now proceed with the analysis of this phenomenon.

7In our model, n is chosen uniformly at random between 0 and 4k − 1 for some positive k.
8PAPI 5.4.1.0 , see http://icl.cs.utk.edu/papi.

48

http://icl.cs.utk.edu/papi

Enhancing the Model with Computer Architecture Features

Pow time (in sec.) loops ×109 mult. ×109 branches ×109 mispred. ×109

classical 7.230 1.250 1.900 1.300 0.674
unrolled 6.316 0.633 1.917 1.317 0.683
guided 5.606 0.633 1.917 1.658 0.554

Figure 22: Statistics measured during 5.107 computations of xn with the three algorithms of
Fig. 21, using the PAPI library. The values of n are chosen uniformly at random in [0, 226[.
The number of branches is given excluding the loop ones, as they do not yield mispredictions.

4.2.2 Analysis of the average number of mispredictions in GuidedPow

For the analysis, we consider that n is taken uniformly at random in {0, . . . , N − 1}, for
N = 4k and with k ≥ 1. This model is exactly the same as choosing each of the 2k bits of
the binary representation of n uniformly at random and independently. We consider the local
predictors presented in Section 3.

Let Lk(n) be the number of loop iterations of GuidedPow. This is a random variable,
which is easy to analyze since it is equal to the smallest integer ℓ such that 4ℓ is greater
than n. In particular, we have E[Lk] = k − 1

3 + o(1) ∼ k.
As stated earlier, Markov chains are the key tools for that kind of analysis (as done

in [KS06, MNW15]). Let us consider the first conditional jump of line 4. In our model, at
each iteration, the condition is true with probability 3

4 , as it is not satisfied when the last two
bits are 00. It yields that the behavior of the predictor associated to this conditional jump is
exactly described by the Markov chain obtained when changing the edges labels T by 3

4 and
the labels N by 1

4 in the 2-bit saturating counter:

ν ν τ τ

N

T

N

T

N

T

N

T

ν ν τ τ

1/4

3/4

1/4

3/4

1/4

3/4

1/4

3/4

A misprediction occurs whenever an edge labeled by N (resp. T) is used from a state that
predicts the branch will be taken (resp. not taken). We also need to know the initial state of
the predictor, but it has no influence on our asymptotic results, as we shall see.

Hence, we reduced our problem to counting the number of times some particular edges are
taken in a Markov chain, when we perform a random walk of (random) length Lk. We can
therefore conclude using the version of the Ergodic Theorem (Th. 28) given in Section 5.2.3.

We consider the model where the condition is satisfied with probability p, we denote by Mp

the transition matrix of the Markov chain associated to the predictor, by π̂p its stationary vec-
tor and by µ(p) its expected misprediction probability defined by µ(p) =

∑
(i,j)∈E π̂p(i)Mp(i, j),

where E is the set of edges corresponding to mispredictions. As shown in [MNW15], the ex-
pected misprediction probability of the 2-bit saturating counter is

µ(p) =
p(1− p)

1− 2p(1− p)
. (7)

Applying this to GuidedPow yields the following results. The theorem is stated for
values of N that are not powers of 4, which is more complicated since the bits are not exactly
0’s and 1’s with probability 1

2 (and not independent). In Section 4.3 we show how to deal
with the cases where we slightly deviate from the ideal case.

49

Part II

Theorem 32. Assume that n is taken uniformly at random in {0, . . . , N − 1}. The expected
number of conditional jumps in ClassicalPow and UnrolledPow is asymptotically equiv-
alent to log2N , whereas it is asymptotically equivalent to 5

4 log2N for GuidedPow.
The expected number of mispredictions for a 2-bit saturating counter is asymptotically equiv-
alent to 1

2 log2N for ClassicalPow and UnrolledPow. For GuidedPow, it is asymp-
totically equivalent to α log2N , where α = 1

2µ(3/4) +
3
4µ(2/3).

These results can easily be extended to other local predictors described as automata.
For instance, the expected misprediction probability µ1(p) and µ3(p) of the 1-bit and 3-bit
saturating counters are

µ1(p) = 2p(1− p) and µ3(p) =
p(1− p) (1− 3p(1− p))

1− 2p(1− p) (2− p(1− p))
. (8)

Using Theorem 32 and Eq. (7), we get that for the 2-bit saturating counter, α is equal to
9
20 = 0.45, instead of 1

2 for the conditional jumps of the other two algorithms. With a 1-bit
predictor, the expected number of mispredictions for GuidedPow is 25

48 ≈ 0.52, which is
greater than for ClassicalPow or UnrolledPow. This predictor is not efficient enough
to offset the mispredictions caused by the additional conditional. And with a 3-bit saturating
counter, GuidedPow therefore uses ≈ 0.25 log2 n more comparisons than UnrolledPow,
but 1095

2788 ≈ 0.39 mispredictions, which is ≈ 0.11 log2 n less mispredictions.
These results might suggest that the branch predictor used on our machine behaves like

a 3-bit saturating counter. However, we cannot confirm this with certainty. Additionally,
since we introduced slight dependency between the outcomes of our conditional jumps, the
observed performance gains may in fact be due to the influence of a global predictor. We
will revisit this line of investigation at the end of the study. For now, we explore a different
approach to unbalancing the branches, this time by breaking the symmetry in binary search.

4.3 Skew binary search

Consider the classical binary search, which partitions a sorted array of size n into two parts
of size n

2 and compares the target value x with the middle element of the array to determine
in which part of the array the search should continue. As before, when the array consists of
uniform random floating-point numbers, the corresponding branch is taken with probability 1

2 .
Once again, we explore ways to break this perfect balance in order to give the local branch
predictor an advantage.

4.3.1 Unbalancing the binary search

A simple way to change the probabilities in the binary search is to partition the input dif-
ferently, for instance into parts of size roughly n

4 and 3n
4 , as in BiasedBinarySearch (see

Fig. 23). Carrying on with the divide-and-conquer strategy but partitioning the array into
three parts of size about n

3 , gives a ternary search. The main issue with this approach is that,
in practice, the division by 3 is expensive in hardware. Thus, to limit the cost of partitioning,
we choose to slice the array into two parts of size n

4 and one part of size n
2 . This can be done

using only divisions by powers of two, which are simple binary shifts, as in the initial binary
search (see SkewSearch in Fig. 23).

As expected at this point in our work, BiasedBinarySearch experimentally performs
slightly better than the classical binary search and SkewSearch is significantly faster. Unlike
our previous examples, the changes we brought in the binary search are quite sensitive to
cache effects, since the way we partition the array influences the location where the memory

50

Enhancing the Model with Computer Architecture Features

BiasedBinarySearch

Input: T, x

1 d← 0, f ← n

2 while d < f do
3 m← (3 ∗ d+ f)/4

4 if T [m] < x then
5 d← m+ 1

6 else
7 f ← m

8 return f

In both cases, T is an array of floats of size n
and x is the number that is searched for.
The classical binary search is obtained by re-
placing line 3 of BiasedBinarySearch by
m = (d+ f)/2.

SkewSearch

Input: T, x

1 d← 0, f ← n

2 while d < f do
3 m1 ← (3 ∗ d+ f)/4

4 if T [m1] > x then
5 f ← m1

6 else
7 m2 ← (d+ f)/2

8 if T [m2] > x then
9 f ← m2

10 d← m1 + 1

11 else
12 d← m2 + 1

13 return f

Figure 23: Algorithms for the biased binary search and skew search. Both return the position
where the element should be inserted.

is accessed. Thus we conducted experiments on arrays that fit in the last-level cache of our
machine5 in order to mostly measure the effects of branch prediction. The results are given
by Fig. 24 and we can see that, for medium-size arrays, SkewSearch is up to 23% faster
than the binary search (program compiled with gcc without optimization, in order to keep
track of what really happens during the execution). Experiments in Java using a dedicated
micro-benchmarking library9 gave roughly the same results (but with a lesser speedup of
about 12%), when comparing our skew search to the implementation of the binary search on
doubles in the standard library.

4.3.2 Average number of mispredictions in biased variants of binary search

As in Section 4.2, we rely on the Ergodic Theorem (page 42) to derive an accurate asymptotic
estimate of the number of mispredictions. To this end, we first need to compute the expected
number of times each conditional jump is executed in the different algorithms. We assume
that each possible output is equally likely i.e., that the distribution is uniform on {0, . . . , n}).

A first-order estimate of the expected number of executions of a given conditional jump can
be obtained using the following adaptation of Roura’s Master Theorem [Rou01], specialized
to our setting.10

Theorem 33 (Master Theorem). Let k ≥ 1, and a1, . . . , ak and b1, . . . , bk be positive real
numbers such that

∑k
i=1 ai = 1. For every i ∈ {1, . . . , k}, let also εi(n) be a real valued

sequence such that bin + εi(n) is a positive integer and εi(n) = O(1n). Let T (n) be the real

9Benchmark using jmh: http://openjdk.java.net/projects/code-tools/jmh/ Our algorithms are compared to
the method Arrays.binarySearch(double[] a, double key) of the Java standard API.

10For more general statements, see the seminal work of Roura [Rou01].

51

http://openjdk.java.net/projects/code-tools/jmh/

Part II

Figure 24: Execution time of the three searching algorithms of Fig. 23 for small-size arrays
(that fit in the first-level cache) and medium-size arrays (that fit in the last-level cache).

valued sequence that satisfies, for some positive constants c and d,

T (0) = c and T (n) = d+

k∑
i=1

aiT (bin+ εi(n)) +O
(
log n

n

)
for n ≥ 1.

Then T (n) ∼ d
h logn, with h = −

∑k
i=1 ai log bi.

Before stating our main result, we describe the main steps of our analysis on the algorithm
BiasedBinarySearch. The expected number of iterations L(n) of BiasedBinarySearch
satisfies the relation

L(n) = 1 +
an
n+ 1

L (an) +
bn

n+ 1
L (bn) , with an =

⌊n
4

⌋
+ 1, bn =

⌈
3n

4

⌉
and L(0) = 0.

Thus, Theorem 33 applies and L(n) ∼ λ logn, with λ = 4
4 log 4−3 log 3 ≈ 1.78.

Unfortunately, we cannot directly model the predictor as a Markov chain, as we did in
Section 4.2, because the probabilities an

n+1 and bn
n+1 are no longer fixed (they slightly depend

on n). However, since an
n+1 = 1

4 +O(1n) and bn
n+1 = 3

4 +O(1n), this Markov chain should still
provide a good approximation of the number of mispredictions with Theorem 28.

To formalize this idea, we introduce the decomposition tree T associated with the search
algorithms. If the input has size n, its root is labeled by the pair (0, n), and each node
corresponds to the possible values of d and f during one loop of the algorithm. The leaves
are the pairs (i, i), for i ∈ {0, . . . , n}; they are identified with the output of the algorithm in
{0, . . . , n}. There is a direct edge between (d, f) and (d′, f ′) whenever the variables d and f
can be changed into d′ and f ′ during the current iteration of the loop. Such an edge is labeled
with the probability f ′−d′+1

f−d+1 , which is the probability that this update happens in our model.
An example of such a decomposition tree for BiasedBinarySearch is depicted on Fig. 25.

By construction, following a path from the root to a leaf, choosing between left and right
according to the edge probability is exactly the same as choosing an integer uniformly at
random in {0, . . . , n}. Let u = (u0, u1, . . .) be an infinite sequence of elements of [0, 1] taken
uniformly at random and independently. To u is associated its path Pathn(T , u) in T where,
at step i, we go left if ui is smaller than the left child edge probability and right otherwise.
Let Ln(T , u) be the length of Pathn(T , u). Let also Pathn(I, u) be the path following the
values in u in the ideal (infinite) tree I where we go left with probability 1

4 and right with
probability 3

4 . The following lemma shows that these constructions agree for almost all steps.

52

Enhancing the Model with Computer Architecture Features

0, 8

0, 2 3, 8

0, 0 1, 2

1, 1 2, 2

3, 4

3, 3 4, 4

5, 8

3, 3 3, 3

1
3

2
3

1
3

2
3

1
2

1
2

1
3

2
3

1
2

1
2

1
4

3
4

Figure 25: The decomposition tree of BiasedBinarySearch for n = 8.

Lemma 34. The probability that Pathn(T , u) and Pathn(I, u) differ at one of the first
Ln(T , u)−

√
logn steps is O(1

logn).

Hence, for most iterations of its main loop, Algorithm BiasedBinarySearch behaves
almost exactly like its idealized version, and the error term can be estimated with suffi-
cient precision. This is enough to prove that the idealized version is a correct first order
approximation of the number of mispredictions. The same construction applies to all three
algorithms, leading to Theorem 35. For instance, with a 2-bit saturating counter, µ(14) =

3
10

and µ(13) = 2
5 , thus E[Cn]/ log(n) is around 1.44, 1.78 and 1.68 for the binary, biased and

skew search respectively, while E[Mn]/ log(n) is around 0.72, 0.53 and 0.58.

Theorem 35. Let Cn and Mn be the number of comparisons and mispredictions performed
in our model of randomness. The following table gives asymptotic equivalents,

BinarySearch BiasedBinarySearch SkewSearch

E[Cn] log n/log 2 4 log n/(4 log 4− 3 log 3) 7 log n/(6 log 2)

E[Mn] log n/(2 log 2) µ(1/4)E[Cn]
(
4µ(1/4)/7 + 3µ(1/3)/7

)
E[Cn]

where µ is the expected misprediction probability associated with the predictor.

4.3.3 Analysis of a global predictor for SkewSearch

In this section we intend to give hints about the behavior of a global branch predictor, such
as the one depicted on Fig. 26, for the algorithm SkewSearch. Notice in particular that the
predictor of each entry is a 2-bit saturating counter. This is not the only possible choice for
a global predictor, but it is simple enough without being trivial. We make the analysis in the
idealized framework that resembles the real case sufficiently well, by ignoring the rounding
effects of dealing with integers. We saw in the previous section why these approximations still
give the correct result for the first order asymptotic.

In our idealized model we only consider the sequence of choices produced by the two
conditional jumps of SkewSearch. We deliberately do not consider the branch induced by
the while loop, which would never be taken in our setting (except for the very last step).
Adding it would complicate the model without adding interesting information for the branch
predictor.11 The trace of an execution of the algorithm, in terms of jumps, is a non-empty
word on the binary alphabet B = {N,T}. Because of the way the two conditional jumps are
nested within the algorithm, we can keep track of the current if instruction using the simple
11Also, most modern architectures have loop detectors that are used to identify such conditional jumps.

53

Part II

NNNN...NN
NNNN...NT

...

TTTT...TT

←− ℓ −→
Figure 26: A fully global predictor: the his-
tory table of size 2ℓ keeps track of the out-
comes of the last ℓ branches encountered dur-
ing the execution, the last one corresponding
to the rightmost bit. To each sequence of ℓ
branches is associated a global 2-bit predictor
(shared by all the conditional jumps).

deterministic automaton Aif with two states depicted in Fig. 27: main stands for the first if
and nested for the second one. In our model, the branch arising from main is taken with
probability 1

4 and the one from nested with probability 1
3 . As done in Section 4.2, Aif can be

changed into a Markov chain Mif using these transition probabilities. A direct computation
shows that its stationary vector π̂if satisfies π̂if(main) = 4

7 and π̂if(nested) = 3
7 .

(Aif) main nestedT

N

N, T

(Mif) main nestedT : 1
4

N : 3
4

N : 2
3 , T : 1

3

Figure 27: On the left, the automaton Aif. On the right, the Markov chainMif of transition
probabilities P(T | main) = 1

4 , P(N | main) =
3
4 , P(N | nested) =

2
3 and P(T | nested) = 1

3 .

For the same reason as above, in the global table, we only record the history for the two
conditional jumps main and nested. Let ℓ denote the history length, that is, the number of
bits used in the history table of Fig. 26. We assume that ℓ is even. An history h is thus seen
as a binary word of length ℓ. Let N ℓ be the history made of N ’s only.

When a test is performed at time t, the predictor uses the entry at position ht to make
the prediction, where ht is the current history. To track the evolution of the algorithm at
time t + 1, we therefore to maintain (1) the history table Ht, (2) the current history ht and
(3) which of the two conditional jumps IFt is currently under consideration. Knowing IFt is
required in order to compute the probability that the next outcome is N or T . This defines
a Markov chain Mup for the updates in the history table. From Mup, one can theoretically
estimate the expected number of mispredictions using the Ergodic Theorem, as we did for local
predictors. The main issue with this approach is that computing πup is typically in O(m3),
where m is the number of states of Mup. Since the number of states is exponential in ℓ, the
computations are completely intractable for reasonable history lengths (such as ℓ ≥ 6), even
if we first remove the unreachable states. However, Mup has a particular structure that we
can use to directly compute the typical number of mispredictions.

Let h ∈ Bℓ be a history that is not equal to N ℓ. There is at least one T in h. Since
reading a T always sends to state main in Aif, we know for sure the conditional IFt under
consideration when an occurrence of h has just happened at time t. Hence, we know the
probability of obtaining N or T at time t+1, given that ht = h. As a consequence, each entry
of h ̸= N ℓ in the table H behaves like a fixed-probability local 2-bit saturating predictor,
with probability 1

4 for histories associated with main and 1
3 for those associated with nested.

Therefore, h = N ℓ concentrates all the differences between the local and the global predictors.
What happens for the entryN ℓ is well described by considering the automaton on pairs (s, i),

where s is a state of the predictor and i is the current if instruction. This automaton can

54

Enhancing the Model with Computer Architecture Features

be turned into a Markov chain, and the Ergodic Theorem yields a precise estimation of the
number of mispredictions. Following this idea yields the following result.

Theorem 36. For the global predictor, the average number of mispredictions caused during
SkewSearch on an input of size n is asymptotically equivalent to (1235 + 1

595·2ℓ)E[Cn].

By Theorem 35, if we use a local 2-bit predictor for each conditional jump, the expected
number of mispredictions is asymptotically equivalent to 12

35E[Cn]. The difference with the
global predictor is therefore extremely small, which is not surprising as there is a difference
only when the history is N ℓ. However, if there is a competition between a global predictor
and a more accurate local predictor (a 3-bit saturating counter for instance), then the local
predictor performs better; it is probably slightly disrupted by the global one, as the dynamic
selector between both predictors can choose to follow the global predictor from time to time.

We have seen three examples of algorithms that rely heavily on conditional jumps, most
of which are independent, making them well-suited for analyzing the behavior of local branch
predictors. But what happens when the outcomes of these conditional jumps are correlated?
We address this question in the next section and then we will conclude with a more in-depth
discussion of global predictors.

55

Part II

5 Pattern Matching

To obtain meaningful results on the cost of branch prediction, we studied divide-and-conquer
algorithms, as they make frequent use of branching instructions. These algorithms are natu-
ral candidates for such an analysis; however, when assuming a uniform distribution over the
input, most of the conditional jumps they perform are independent. As a result, they do
not pose a significant challenge for local branch predictors, which are well-suited for handling
uncorrelated branches. Different branch behavior could be induced by refining the probabilis-
tic model to incorporate dependencies, using Markov chains for instance. Here, however, we
take a different approach: we explore another family of algorithms that inherently give rise
to correlated branch conditions, namely, pattern matching algorithms.

As an illustration, consider the most naive approach to pattern matching: the pattern
is compared to the text character by character, starting at the first position. If a mismatch
occurs, the pattern is shifted by one position and the process starts over. For example, with
the pattern aabaab, if a match occurs at the beginning of the text, then by the third alignment,
we already know that the fourth to sixth characters in the text will match the beginning of
the pattern again. One might imagine that a branch predictor capable of exploiting this kind
of correlation could perform very well on this type of algorithm.

This is the question we aim to address in this section. We begin with the most basic pattern
matching algorithm, examine the impact of branch prediction on its performance, and then
move on to more advanced algorithms, namely, Morris-Pratt and Knuth-Morris-Pratt.

This work was conducted with Cyril Nicaud and Stéphane Vialette [NPV24, NPV25].

Probabilistic model for the analysis of branch prediction We study textbook so-
lutions to the pattern matching problem, that is, counting the number of occurrences of a
pattern X in a text W [CR94, Gus97, CHL07]. We consider a probabilistic model where the
pattern is of length m ≥ 2, and the text W , of length n, is generated using a memoryless
source of non-degenerated probability distribution π on a fixed alphabet A. In our setting,
throughout this study, X is fixed while n tends to infinity.

Let π be a probability measure on A such that for all α ∈ A, 0 < π(α) < 1 (we also use
the notation πα := π(α) in formulas when convenient). For each n ≥ 0 and each W ∈ An, we
define πn(W) :=

∏n−1
i=0 π(Wi). For any n, the measure πn is a probability on An, where all

letters are chosen independently following π. We obtain the uniform distribution on An if π
is the uniform distribution on A, with π(α) = 1

|A| for all α ∈ A.
When considering texts and patterns, indices start at 0: if u is a word of length |u| = n

over the alphabet A, we represent it as u = u0 . . . un−1, where each ui is a letter of u. We
also use u[i] to denote the letter ui. If u = xyz where x, y and z are words, then x is a prefix
of u, y is a factor and z is a suffix. A prefix (resp. suffix) of u is strict if it differs from u. For
any i ∈ {0, . . . , n}, we denote by Pref(u, i) the prefix of u of length i. A (strict) border of u
is a word v that is both a (strict) prefix and a (strict) suffix of u.

As before, our analysis depends on the type of predictor used (see Section 3). All results
are stated for the local 2-bit saturating counter (see Fig. 17).

5.1 The sliding window algorithm

We begin with the most elementary pattern matching algorithm: the sliding window algo-
rithm. Not only is this still the algorithm used for simple pattern searches in a String in
Java,12 but analyzing it, even under a model restricted to local branch predictors, already
12Specifically, in the String.indexOf(String str) method of the Java standard API.

56

Enhancing the Model with Computer Architecture Features

Natural Sliding Window

Input: pattern X of size m,
text W of size n

1 i, nb← 0, 0

2 while i ≤ n−m do
3 j ← 0

4 while j < m and
5 X[j] =W [i+ j] do
6 j ← j + 1

7 if j = m then nb← nb+ 1

8 i← i+ 1

9 return nb

On the left is a natural way to write the algo-
rithm and SlidingWindow is a variation that
splits the condition of the window loop.

SlidingWindow

Input: pattern X of size m,
text W of size n

1 i, nb← 0, 0

2 while i ≤ n−m do
3 j ← 0

4 while True do
5 if j = m then
6 nb← nb+ 1

7 break

8 if X[j] =W [i+ j] then
9 j ← j + 1

10 else break

11 i← i+ 1

12 return nb

Figure 28: Two versions of the sliding window algorithm to count the number of occurrences
of a pattern X in the text W .

leads to nontrivial results. There are two main reasons for this. First, since we are interested
in average-case behavior, we must estimate the number of mispredictions on random inputs:
in our setting, the pattern is fixed while the text is randomly generated. Second, the instruc-
tions exhibit inherent correlations, depending on autocorrelations within the pattern or its
prefixes, which makes accurate prediction more difficult.

The sliding window algorithm is given by Fig. 28, along with the implementation variant
we study. Natural Sliding Window is the plain algorithm, where the pattern is checked
letter by letter against the window at position i in the text, for each eligible position. The
window loop condition is a dual check on the length of the pattern and a matching of letters.
Usually, this pseudo-code is sufficient for analysis. However, for the purpose of our study, we
are interested in the exact branching structure of the code. In particular, the condition j < m
and X[j] =W [i+ j] can be evaluated as a single test (as in Natural Sliding Window) or
split into two consecutive tests by moving the check X[j] =W [i+j] inside the loop. It is easy
to see that, after that change, the while condition becomes redundant with the one at line 7,
which leads to the reorganization in SlidingWindow, where one conditional instruction is
eliminated. This matters in our model, as there will now be two distinct local predictors: one
for j < m and one for X[j] =W [i+ j].

Observe that when using a language like C, the compiler will almost surely translate and
conditions into two jumps, since the second part should not be evaluated if the first part is
false. This lazy behavior can be implemented with only one jump, using a cmov instruction,
but unless explicitly forced, the (slightly optimized) compiled version will more likely resemble
SlidingWindow, which is why we focus on this version of the algorithm from now on. Finally,
we recall that, for consistency, we define a successful condition (i.e., when a test evaluates to
true) as always leading to a taken branch.

57

Part II

5.1.1 Average number of comparisons in SlidingWindow

Let us begin with the average number of letter comparisons performed by the algorithm.All
the results presented here are more or less folklore, we include them as an introductory step
toward the analysis of mispredictions.

Assuming that the text is composed of letters chosen uniformly at random from an alpha-
bet A, the sliding window algorithm runs in expected linear time, as stated in the following
proposition which follows from linearity of expectation.

Lemma 37 ([CHL07]). For any pattern, if the text W is chosen uniformly at random, then the
average number of letter comparisons performed by the two algorithms is less than |A|

|A|−1 |W |.

The upper bound given by Lemma 37 is obtained by assuming that the nested while,
line 4, halts only when two letters differ, i.e., by considering an infinite pattern X. This can
be refined by taking into account the halting condition j < m in the analysis, yielding that
the expected number of letter comparisons is |A|

|A|−1 (n−m+1) (1− |A|−m). The upper bound
from Lemma 37 remains sufficiently tight, except for small alphabets and very short patterns.

We refine our model with different probabilities for each letter: the text is generated by a
so-called memoryless source, where each letter is drawn independently of the others according
to a fixed, non-degenerate probability distribution π : A → (0, 1). The expected number of
comparisons performed by the algorithms is still linear for a text generated by a memoryless
source, but it now depends directly on the pattern: a pattern composed mostly of frequent
letters induces more comparisons in expectation than a pattern with rare letters only.

Lemma 38. For any pattern X of length m, if the text is generated by a memoryless source of
probability distribution π, then the average number of letter comparisons performed by the two
algorithms, for a text of length n, is γ(π,X) (n−m+1), with γ(π,X) =

∑m−1
j=0 π(Pref(X, j)).

Consider the pattern X = aba over the alphabet A = {a, b, c}. For any starting index i in
the text, there is always at least one comparison, i.e., with probability 1. Two comparisons
occur when the first character matches, with probability π(a), and three when the first two
characters match, with probability π(a)π(b). Since there cannot be more than three compar-
isons for a given index i, and there are n−m+1 possible values for i, linearity of expectation
yields γ(π,X) = 1 + π(a) + π(a)π(b) expected comparisons.

A possible way to handle the pattern-dependent results is to choose the pattern randomly
as well. This approach is standard in the analysis of text algorithms (see, for instance, the
analysis of KMP [Rég89]). However, this is not the direction we pursue here, as our goal is
to study how the pattern itself influences the results.

5.1.2 Average number of mispredictions in SlidingWindow

First, if we look at the if instruction at line 5 in SlidingWindow, the condition is tested at
each increment of j: if the pattern is found at position i, this condition evaluates to false m
times then true once; if not, it remains false throughout the loop (at least one iteration). As
a result, the predictor quickly settles in the subset of states {ν, ν} that predict the branch as
not taken, and it produces a misprediction if and only if the pattern is found:

Lemma 39. The average number of mispredictions caused by the counter update in Sliding-
Window is asymptotically equivalent to π(X) |W |.

Then, the analysis of the total number of mispredictions of SlidingWindow amounts to
considering the condition of the while loop of line 8.

58

Enhancing the Model with Computer Architecture Features

ε a aba

b

b

a a

b

ε a ab
a : T

b : N

b : T

a : NT a : TNT

b : NNN

Figure 29: On the left, the finite-state automaton Aaba recognizing the language A∗ab; on the
right, its associated transducer Taba, enriched to indicate whether the branch is taken or not
for the condition W [i+ j] = X[j] in SlidingWindow.

Our main result here is an algorithm that computes the expected number of mispredictions
for the condition W [i+ j] = X[j], given a fixed pattern X = x0 · · ·xm−1. The approach relies
on the construction of two transducers TX and PX : while reading a text W , the transducer TX
outputs the corresponding sequence of true/false evaluations of the condition (i.e., T/N ,
depending on whether the branch is taken or not), and PX processes this output to compute
the number of mispredictions.

If w ∈ A+ is a non-empty word written as w = w0 · · ·wℓ−1, let s(w) = w1 . . . wℓ−1 denote
the suffix of w obtained by removing its first letter, and p(w) = w0 . . . wℓ−2 denote the prefix
of w obtained by removing its last letter. The first step of the algorithm consists in building the
minimal finite-state automaton AX that recognizes the language A∗ · p(X). Let δX denote
the transition function of AX , which is classically extended to words. The construction is
standard [CHL07] and can be carried out in O(m) time, based on the following properties:

• The set of states QX consists of the m prefixes of p(X); the initial state is ε, and the
final state is p(X).

• For any prefix w of p(X) and any letter α ∈ A:

– if wα is a prefix of p(X) then δX(w,α) = wα, which is called a forward transition,

– else it is a backward transition δX(w,α) = δX(ε, s(w)α) if w ̸= ε, and δX(ε, α) = ε.

For example, the automaton Aaba is depicted in Fig. 29, on the left.
When reading the path labeled byW in AX , after each letter ofW is read in the algorithm,

the current state q encodes the part of the sliding window which has already been parsed
immediately before reading the next letter of W , i.e., the prefix of length j where j is the
variable used in SlidingWindow (see Fig. 30 for an illustration):

• following a forward transition w α−→ wα corresponds to a match W [i+ j] = X[j]. Thus
the if condition is true at line 8, hence j is incremented;

• otherwise the window is shifted to the right either due to a letter mismatch or because
the pattern X has been found, and the algorithm continues until the next letter of W
is queried. At that precise moment, the value of j is the length of the longest suffix of
wα that belongs to QX , which by construction corresponds exactly to δX(w,α).

The second step consists in transforming the automaton AX into a transducer TX that
maps a word w ∈ A∗ to a binary word of {N,T}∗. Let γX : QX ×A→ {N,T}∗ be the output
function of TX , which associates a binary word with each transition as follows:

1. If w α−→ wα is a forward transition, then γX(w,α) = T .

2. If w α−→ v is a backward transition and wα /∈ {ε,X}, then γX(w,α) = N · γX(ε, s(w)α).

3. If wα = X then γX(w,α) = T · γX(ε, s(w)α), and if |X| > 1 and α ̸= x0, γX(ε, α) = N .

59

Part II

a b a ?

a b a
j

i

X

W a b a ?

a b a
j

i+ 1

X

W a b a ?

a b a
j

i+ 2

X

W

Figure 30: The link between the sliding window algorithm for X = aba and the automaton
AX of Fig. 29 is illustrated through three successive steps. On the left, the prefix ab has
already been matched and the red letter a at position i+2 is queried for the first time in W .
Since the pattern is found, the window shifts one position to the right, as shown in the center.
There, an immediate mismatch occurs at the first position (j = 0), so the window advances
once more. On the right, the first character matches, and the next letter of W needs to be
queried to proceed. Before reading the red a, the window matched with ab, which corresponds
to the state ab of the automaton. When the red a is read, the algorithm continues until it
queries the unknown W [i + 3], and at this point, it reaches the state a of AX . This part of
the algorithm’s execution corresponds to the transition ab a−→ a in AX .

This construction can be computed in O(m2), from left to right. It is designed so that
each occurrence of T (resp. N) corresponds to the evaluation of W [i+j] = X[j] as true (resp.
false). Indeed, one can easily check that:

• If w α−→ wα is a forward transition, the interpretation is that after having matched w in
the text, we read α in W , which is also the next letter in X, so the condition is true.

• If w α−→ v is a backward transition and wα ̸= X, then we have a mismatch (producing
a N) then we move the window one step to the right, aligning it with s(w) in W .

• If wα = X then we have a match (producing a T) immediately followed by j = m which
implies moving the window as in the previous case.

If w is a word on A, let ϕX(w) denote the concatenation of the outputs produced when
following the path labeled by w in TX . From the observation above, ϕX(W) is almost the
sequence of evaluations of W [i + j] = X[j] when calling SlidingWindow(X, W), the only
difference being that we possibly do a few more steps in the transducer output because the
algorithm halts as soon as i > n−m. This is formalized as follows.

Lemma 40. Let w be the binary sequence of the evaluations of the condition W [i+ j] = X[j]

in SlidingWindow(X, W). Then w is a prefix of ϕX(W) and |ϕX(W)| − |w| ≤ |X|2.

Recall that we use the 2-bit saturating counter below as our local branch predictor. Let ξ
denote its transition function, extended to binary words. For example, ξ(ν,NNNTT) = τ .
Additionally, let µ(λ, s) denote the number of mispredictions encountered when following the
path in the predictor starting from state λ ∈ {ν, ν, τ, τ} and labeled by s ∈ {N,T}∗. For
instance, µ(ν,NNNTT) = 2.

ν ν τ τN

N N N

T T T

T

We now build a kind of product of the transducer TX and the predictor. This is a trans-
ducer PX , whose states are of the form (w, λ) where w is a state of TX and λ ∈ {ν, ν, τ, τ}.
Its transition function ζX is defined by ζX((w, λ), α) = (δX(w,α), ξ(λ, γX(w,α))). In other
words, the first coordinates change along with the states in TX , and the second ones come

60

Enhancing the Model with Computer Architecture Features

from the update of the current state of the predictor according to the output of the transition
in TX . From the example of Fig. 29, for instance ζaba((ab, τ), a) = (a, τ), as the transition in
Taba is ab a:TNT−−−−→ a and ξ(τ , TNT) = τ .

The output function ψX of PX accounts for the number of mispredictions performed during
the updates. Formally, we have ψX((w, λ), α) = µ(λ, γX(w,α)). To follow our example, as
reading TNT from τ produces one misprediction, we have ψX((ab, τ), a) = 1. Finally, we
restrict PX to the states accessible from (ε, ν): we fix the predictor’s initial state to ν and only
retain states that can be reached in PX during an execution of SlidingWindow. Choosing
to start the predictor in state ν is arbitrary, but does not change the asymptotic results (as
Theorem 27 does not depend on the initial conditions). It simply makes PX smaller, while
still yielding the correct asymptotic estimates.

ε, ν

a, ν

a, τ

ab, τ

ab, τ

b : 0

a : 1

a : 1

b : 1

a : 1 b : 0

a :
1

b : 1

a : 1b : 2



ε,ν a,ν a,τ ab,τ ab,τ

ε,ν π(b) π(a) 0 0 0
a,ν 0 π(a) 0 π(b) 0
a,τ 0 0 π(a) 0 π(b)

ab,τ π(b) 0 π(a) 0 0

ab,τ π(b) 0 π(a) 0 0



Figure 31: On the left, the transducer Paba. Its states encode both the letters seen in the
window and the state of the predictor just before each letter of W is read. The output is the
number of mispredictions made by SlidingWindow when reading the letter. On the right,
the transition matrix of the associated Markov chain, obtained directly from the probabilities
of the letters labeling each transition.

The transducer Paba is depicted in Fig. 31. Let ξX(W) denote the sum of the outputs pro-
duced while following the path that starts from (ε, ν) and labeled by W in Paba. Then ξX(W)
gives a good estimation of the number of mispredictions produced on W by SlidingWindow,
by Lemma 40 (and by Theorem 27, to ignore the predictor’s starting state).

Proposition 41. For a fixed pattern X, the expected number of mispredictions performed by
SlidingWindow at line 8 for a random text W is asymptotically equivalent to ξX(W).

At this point, completing the computations is straightforward: ξX(W) is obtained from
a long trajectory in the Markov chain MX obtained from TX by changing the transitions

p
α:t−−→ q into p

π(α)−−−→ q, or by making the sum of the probabilities if several letters label
a transition between p and q. Computing the stationary distribution π̂X of MX gives the
asymptotic number of times each state is visited with high probability. This, in turn, yields
the asymptotic number of times each transition is taken: a transition p

α:t−−→ q is typically
taken π̂X(p) · π(α)n times, producing asymptotically t · π̂X(p) · π(α)n mispredictions. For
instance, the stationary distribution π̂ := π̂aba of the transition matrix of Maba (Fig. 31) is:

π̂(ε, ν) = (1− p)2; π̂(a, ν) = (1− p)p; π̂(a, τ) = p2; π̂(ab, τ) = (1− p)2p; π̂(ab, τ) = (1− p)p2,

where p := π(a) is the probability of generating the letter a. From this, we obtain that the
expected number of mispredictions is asymptotically (p4 − p3 − p2 + 3p)n for A = {a, b}.

The bottleneck in the running time of this construction lies in computing the stationary
vector, which amounts to solving the equation M t

X · π̂ = π̂. This can be done in O(|Q|3) time

61

Part II

0.0 0.2 0.4 0.6 0.8 1.0
probability of a

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

nu
m

be
r o

f m
isp

re
di

ct
io

n
/ s

ym
bo

l

aaa
aab
aba
abb

0.0 0.2 0.4 0.6 0.8 1.0
probability of a

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

nu
m

be
r o

f m
isp

re
di

ct
io

n
/ s

ym
bo

l

aaaa
aaab
aaba
aabb
abaa
abab
abba
abbb

Figure 32: Variations of the expected number of mispredictions per symbol of W , depending
on π(a), for all pattern shapes of size 3 and 4 and A = {a, b}.

using Gauss elimination. Since |Q| ≤ 4m, the following result summarizes what has been
done so far.

Proposition 42. There exists an algorithm of cost O(|X|3), which given a pattern X computes
the asymptotic equivalent of the expected number of mispredictions ξX(W) performed by line 8
of SlidingWindow(X, W), where W is produced by a memoryless source.

Together with Lemma 39, this yields our main result for the sliding window algorithm:

Theorem 43. Let X be a pattern of length m ≥ 1. As n tends to infinity, the expected
numbers of mispredictions produced by line 8 and line 5 in SlidingWindow(X, W) are
asymptotically equivalent to µX n and π(X) |W |, respectively, when W is a text of size n

generated by a memoryless source of probability π.

The value of µX depends solely on the pattern and can be computed using the procedure
described above. Here are some examples of the expression of µX for small patterns, assuming
the alphabet is {a, b, c}, with p := π(a), q := π(b) and r := π(c):

X µX X µX

a p(1−p)
1−2p(1−p) aa p(1 + 2p− 2p2 − 3p3 + 2p4)

ab p(1+2q−2p−4pq+p2−3pq2+2p2q+3p2q2+p2q3)
1−2p−pq+p2+p2q+p2q2

aaa p(1+3p−5p2−p3+4p4−2p5)
1−p2+p3

aab p(1+3p−pq−3p2+2p2q−2p3+p3q−p3q2+2p4−2p4q)
1−p2+p2q+p3

abb p(1+2q+q2−p−3pq−2pq2−2pq3+pq4)
1−p−pq

aba p((1−p)2+2q−3pq+p2q−2pq2+p2q2(p+q+pq+p2−1)
(1−p)2

abc p(1−p+2q+qr−3pq−2pq2(1+r)−pq2r2)
1−p−pq

For instance, the computations for the uniform distribution on {a, b} gives µaba ≈ 0.813,
µabaa ≈ 0.938 and µabab ≈ 1.063. The table below shows the numerical values of the ratio of
mispredictions per letter of W for patterns of size up to 4 assuming a uniform distribution
for W . Fig. 32 presents the same ratios for a non-uniform distribution. In both cases, the
number of mispredictions clearly depends on the pattern. For some patterns, such as abb or
abab for instance, the number of mispredictions even exceeds n, which is quite an underperfor-
mance. Indeed, since the expected number of letter comparisons is 2n, the predictor performs

62

Enhancing the Model with Computer Architecture Features

worse than flipping a coin, suggesting that the local 2-bit saturating counter is misled by the
dependencies arising in SlidingWindow.

X |A| = 2 |A| = 4 |A| = 26 X |A| = 2 |A| = 4 |A| = 26

aa 0.6265 0.3355 0.04278 aaab 0.8125 0.3883 0.04273
ab 0.9181 0.3910 0.04296 aaba 0.8594 0.4011 0.04279
aaa 0.7501 0.3766 0.04273 aabb 0.8594 0.4011 0.04279
aab 0.7970 0.3894 0.04279 abaa 0.9375 0.3951 0.04153
aba 0.8126 0.3814 0.04153 abab 1.0625 0.3971 0.04153
abb 1.1876 0.3946 0.04154 abba 1.1875 0.3945 0.04148
aaaa 0.8125 0.3883 0.04273 abbb 1.1250 0.3906 0.04148

Since this is the algorithm used for Strings in Java, it would be interesting to further
investigate whether it actually performs poorly in practice, especially given that modern
branch predictors are likely far more sophisticated. However, as much more efficient pattern
matching algorithms exist in the literature, we will first turn our attention to these before
exploring the possible impact of global branch prediction.

5.2 Morris-Pratt and Knuth-Morris-Pratt algorithms

We proceed with the study of less naive pattern matching algorithms, and we start with the
classical Morris-Pratt (MP) and Knuth-Morris-Pratt (KMP) algorithms [MP70, KJP77].13

Once again, we focus on quantifying mispredictions for random text inputs for the 2-bit
saturating counter of Fig. 17 (page 40).

5.2.1 Algorithms and their encoding using transducers

Unlike the naive algorithm discussed in the previous section, MP and KMP algorithms both
rely on precomputing a failure function, which helps identify candidate positions for the
pattern X within the text W . The general strategy consists in scanning W from left to
right, one character at a time. Before advancing to the next character in W , the algorithm
determines the longest prefix of X that is also a suffix of the discovered prefix of W . The
failure function is the key component that allows this step to be performed efficiently.

The function mpX maps each prefix of X to its longest strict border, with the convention
that mpX(ε) = ⊥. The function kmpX is a refinement of the function mpX , defined by
kmpX(X) = mpX(X), kmpX(ε) = ⊥, and for all prefixes uα of X, where u ∈ A∗ and α ∈ A,
kmpX(u) is the longest strict suffix of u that is also a prefix of u but such that kmpX(u)α
is not. If no such strict suffix exists, then kmpX(u) = ⊥. For a more detailed discussion of
these failure functions, see [Gus97]. In the following, we only require that Algorithm Find
remains correct regardless of which failure function is used. Within the algorithm, the function
b := mpX (or b := kmpX) is transformed into a precomputed integer-valued array B, defined
as B[i] = |b(Pref(X, i))| for i ∈ {0, . . . , |X|}, with the convention that |⊥| = −1.

Algorithm Find utilizes the precomputed table B from either mpX or kmpX to efficiently
locate potential occurrences of X in W . The indices i and j are the current positions in X and
W , respectively. Each iteration of the main while loop (line 2) corresponds to the discovery
of exactly one letter in W . At the beginning of each iteration, index i stores the length of
the longest matching prefix of X. The inner while loop (line 3) updates i using the table B.
Finally, the if statement (line 6) is executed when an occurrence of X is found, updating i
13We could also look at Boyer-Moore [CHL07] since they both have interpretations in terms of automata that

we should be able to exploit in a similar way

63

Part II

Find

Input: pattern X of size m, text W of size n, border table B

1 i, j, nb← 0, 0, 0

2 while j < n do
3 while i ≥ 0 and X[i] ̸=W [j] do
4 i← B[i]

5 i, j ← i+ 1, j + 1

6 if i = m then
7 i, nb← B[i], nb+ 1

8 return nb

accordingly. For both algorithms, the table B can be computed in O(m) time and Find runs
in O(n) time. In the worst case, it performs at most 2n−m character comparisons [CR94].

As already mentioned, in any programming language supporting short-circuit evaluation
of boolean operators, the condition i ≥ 0 and X[i] ̸= W [j] at line 3 of Algorithm Find is
evaluated as two separate jumps by the compiler. As a result, Algorithm Find contains a total
of four branches: one at line 2, two at line 3, and one at line 6. In our model, each of these
four branches is assigned a local predictor, and all may potentially lead to mispredictions.
Recall finally that our convention is that a successful condition (when the test evaluates to
true) always leads to a taken branch.

Associated automata At the beginning of each iteration of the main while loop in Algo-
rithm Find, the prefix of W of length j (from W [0] to W [j−1]) has been discovered, and i is
the length of the longest suffix of Pref(W, j) that is also a strict prefix of X: we cannot have
i = m, because finding the pattern immediately triggers the update of i to B[i] in line 6.

The evolution of i at each iteration of the main while loop is encoded by a deterministic
and complete automaton AX . Its set of states is the set QX of strict prefixes of X, identified
by their unique lengths if necessary. Its transition function δX maps a pair (u, α) to the
longest suffix of uα which is in QX . Its initial state is ε. If X = Y α, where α ∈ A is a letter,
then when following the path labeled by W starting from the initial state of AX , there is an
occurrence of X in W exactly when the transition Y α−→ δX(Y, α) is used. This variant of the
classical construction is more relevant here than the usual one [CR94, Sec. 7.1] which also has
the state X. The transition Y α−→ δX(Y, α) is the accepting transition to identify occurrences
of X. The automaton AX tracks the value of i at the beginning of each iteration of the main
loop, where i corresponds to the length of the current state label. This value remains the
same for both MP and KMP. An example of AX is depicted in Fig. 33.

ε a ab aba abab
a

b
b

a
a

b

a

b

a

b

Figure 33: The deterministic and complete automaton AX for X = ababb.

64

Enhancing the Model with Computer Architecture Features

⊥ ε a ab aba ababa, b
a b a b

Figure 34: The automata Fmp
X and Fkmp

X for X = ababb; the failure transitions of Fmp
X are

shown as dotted red lines above, while those of Fkmp
X appear as dashed blue lines below. To

read the letter a from state aba in Fmp
X , we follow the failure transition aba→ a, then a→ ε

until finally reaching the transition ε a−→ a where the letter a can be read. In Fkmp
X , only one

failure transition aba→ ε is needed, instead of two.

To refine the simulation of Algorithm Find using automata, we incorporate the failure
functions. This is achieved by constructing the failure automaton. Specifically, for Algo-
rithm MP, let Fmp

X be the automaton defined by:

• A state set QX ∪ {⊥} and an initial state ε.
• Transitions ⊥ α−→ ε for every α ∈ A.
• Transitions u α−→ uα for every u ∈ QX such that uα ∈ QX .
• A failure transition u → mpX(u) for every u ∈ QX , used when attempting to read a

letter α where uα /∈ QX .

The automaton Fkmp
X associated with KMP is identical to Fmp

X , except that its failure tran-
sitions are defined as u → kmpX(u) for every u ∈ QX . Both automata serve as graphical
representations of the failure functions mpX and kmpX , structured in a way that aligns
with AX . An example of Fmp

X and Fkmp
X is illustrated in Fig. 34.

When reading a letter α from a state u in Fmp
X or Fkmp

X , if the transition u
α−→ uα does

not exist, the automaton follows failure transitions until a state with an outgoing transition
labeled by α is found. This process corresponds to a single backward transition in AX .
Importantly, using a failure transition directly mirrors the execution of the nested while loop
in Algorithm Find (line 3) or triggers the if statement at line 6 when an occurrence of X is
found. This construction captures what we need for the forthcoming analysis.

5.2.2 Expected number of letter comparisons for a given pattern

We begin by analyzing the expected number of letter comparisons made by Algorithm Find
for a given pattern X of length m and a random text W of length n. The average-case
complexity of classical pattern matching algorithms has been explored before, particularly in
scenarios where both the pattern and the text are randomly generated. Early studies [Rég89,
RS98] examined the expected number of comparisons in Algorithms MP and KMP under
memoryless or Markovian source models, employing techniques from analytic combinatorics.
Prior attempts based on Markov chains introduced substantial approximations, limiting their
accuracy compared to more refined combinatorial methods [Rég89, RS98]. Here, we refine
and extend this Markov chain-based methodology, providing a more precise foundation for
analyzing the expected number of mispredictions (see Section 5.2.3).

Recall that π is a probability measure on A such that for all α ∈ A, 0 < π(α) < 1, and
for each n ≥ 0 and each W ∈ An, πn(W) :=

∏n−1
i=0 π(Wi).

Encoding the letter comparisons with transducers Letter comparisons occur at line 3
only if i ≥ 0, due to the lazy evaluation of the and operator (when i < 0, W [j] is not compared

65

Part II

⊥ ε a ab aba ababa, b
a : N b : N a : N b : N

T T
T T T

T T

T T
T

Figure 35: The automata Fmp
X and Fkmp

X transformed into transducers by adding the result
of letter comparisons in Find as output of each transition.

toX[i]). We encode these comparisons within the automata of Section 5.2.1 by adding outputs
to the transitions, thereby transforming them into transducers. In both Fmp

X and Fkmp
X , each

transition u
α−→ uα corresponds to matching letters, meaning the test X[i] ̸= W [j] evaluates

to false. As before, we denote this with the letter N for a not taken branch. Conversely,
following a failure transition indicates that the test X[i] ̸= W [j] is true, which we denote by
T for taken. Transitions from ⊥ correspond to cases where i ≥ 0 is false, meaning no letter
comparisons occur, as noted above. This construction is illustrated in Fig. 35.

We keep track of the results of the comparisons X[i] ̸= W [j] in AX by simulating the
reading of each letter in the transducer associated with Fmp

X and concatenating the outputs.
This transforms AX into the transducer T mp

X for MP, by adding an output function ∇T mp
X

to
AX as follows (see Fig. 36 for an example).

∇T mp
X

(
u

α−→
)
=


N if uα ∈ QX or uα = X,

T if uα /∈ QX and mp(u) = ⊥,
T · ∇T mp

X

(
mp(u) α−→

)
otherwise.

(9)

Instead of ∇T mp
X

we can use ∇T kmp
X

defined as ∇T mp
X

except that mp is changed into kmp.

This yields the transducer T kmp
X associated with KMP.

Recall that the output of a path in a transducer is the concatenation of the outputs of its
transitions. As the transducers T mp

X and T kmp
X are (input-)deterministic and complete, the

output of a word is the output of its unique path that starts at the initial state. From the
classical link between AX and Algorithm Find [CR94] we have the following key statement.

Lemma 44. The sequence of results of the comparisons X[i] ̸= W [j] when applying Al-
gorithm Find to the pattern X and text W is equal to the output of the word W in the
transducer T mp

X for MP, and in the transducer T kmp
X for KMP .

ε a ab aba abab
a : N

b : T

b : N

a : TN

a : N

b : T

a : TTN (mp)

a : TN (kmp)

b : N

a : TN

b : N

Figure 36: The transducers T mp
X and T kmp

X for X = ababb. The only difference between them
lies in the transition aba a−→ a, for which MP uses one more letter comparison.

66

Enhancing the Model with Computer Architecture Features

4/16 6/16 3/16 2/16 1/16

1
2 : 1

1
2 : 1

1
2 : 1

1
2 : 2

1
2 : 1

1
2 : 1

1
2 : 3 (mp)
1
2 : 2 (kmp)

1
2 : 1

1
2 : 2

1
2 : 1

Figure 37: A graphical representation for the computation of the expected number of com-
parisons for the uniform distribution on {a, b}: in T mp

X and T kmp
X the state labels u have been

replaced by their probabilities pX(u), the letters by their probabilities 1/2, and the output
by their lengths. For instance, the transition aba

a−→ a has probability 2
16 ·

1
2 = 1

16 yielding 3

comparisons for MP or 2 for KMP. Thus, its contribution to CX in Proposition 46 is 3
16 or 1

8 .

State probability and expected number of comparisons Since we can use exactly
the same techniques, from now on we focus on KMP in our presentation. Recall that if
we reach the state u after reading the first j letters of W in AX , and hence in T kmp

X , then
at the next iteration of the main while loop, index i contains the value |u|. For u ∈ QX

and j ∈ {0, . . . , n − 1}, we are thus interested in the probability pX(j, u) that after reading
Pref(W, j) in T kmp

X we end in a state u. Slightly abusing notation, we write π(u) = π|u|(u).
For any u ∈ QX let bord(u) denote the longest strict border of u, with the convention that
bord(ε) = ⊥.

Lemma 45. For any u ∈ QX and any j ≥ m, pX(j, u) does not depend on j and we have
pX(j, u) = pX(u) with pX(u) := π(u)−

∑
v∈QX

bord(v)=u

π(v).

From Lemma 45 we can easily estimate the expected number of comparisons for any fixed
pattern X, when the length n of W tends to infinity. Indeed, except when j < m, the
probability pX(j, u) does not depend on j. Moreover, if we are in state u, from the length
of the outputs of T kmp

X we can directly compute the expected number of comparisons during
the next iteration of the main while loop. See Fig. 37 for a graphical representation.

Proposition 46. As n → ∞, the expected number of letter comparisons performed by Algo-
rithm Find with KMP (or MP with T mp

X) is asymptotically equivalent to CX · n, where

CX =
∑

u∈QX

pX(u)
∑
a∈A

π(a) ·
∣∣∣∇T kmp

X

(
u

a−→
)∣∣∣ , and 1 ≤ CX ≤ 2.

Observe that Lemma 45 can also be derived by transforming T kmp
X into a Markov chain

and computing its stationary distribution [LPW08]. However, Lemma 45 provides a more
direct and simpler formula, which appears to have gone unnoticed in the literature. Markov
chains will also prove very useful in Section 5.2.3.

5.2.3 Expected number of mispredictions

We now turn to our main objective: a theoretical analysis of the number of mispredictions
for a fixed pattern X of length m and a random text W of length n.

67

Part II

Recall that we use the following local branch predictor and that ξ denote its transition
function extended to binary words. As before, µ(λ, s) is the number of mispredictions en-
countered when following the path in the predictor starting from state λ ∈ {ν, ν, τ, τ} and
labeled by s ∈ {N,T}∗.

ν ν τ τN

N N N

T T T

T

As previously noted, Algorithm Find contains four branches in total: one at line 2, two at
line 3, and one at line 6. Each of these branches is assigned a local predictor, and all have the
potential to generate mispredictions. The mispredictions generated by the main while loop
(i.e., line 2) are easily analyzed. Indeed, the test holds true for n times and then becomes
false. Hence, the sequence of taken/not taken outcomes for this branch is TnN . Therefore,
starting from any state of the 2-bit saturating predictor, at most three mispredictions can
occur. It is asymptotically negligible, as we will demonstrate that the other branches produce
a linear number of mispredictions on average.

Mispredictions of the counter update We analyze the expected number of mispredic-
tions induced by the counter update at line 6. The sequence s of taken/not-taken outcomes
for this if statement is defined by sj = T if and only if Pref(W, j) ends with the pattern X,
for all j ∈ {0, . . . , n−1}. This is easy to analyze, especially when the pattern X is not the rep-
etition of a single letter. Proposition 47 establishes that, on average, there is approximately
one misprediction for each occurrence of the pattern in the text.

Proposition 47. If X contains at least two distinct letters, then the expected number of
mispredictions caused by the counter update is asymptotically equivalent to π(X) · n.

Proof (sketch). Since X contains at least two distinct letters, it cannot be a suffix of both
Pref(W, j) and Pref(W, j + 1). Hence, the sequence s is of the form (N+T)∗N∗. This means
that every step to the right in the local predictor (for every T in sequence s), which corresponds
to a match, is followed by a step to the left, except possibly for the last step. Thus, if the local
predictor reaches state ν, it remains in ν or ν forever. Having three consecutive positions in W
without an occurrence of X is sufficient to reach state ν. This happens in fewer than O(logn)
iterations with high probability, and at this point there is exactly one misprediction each time
the pattern is found. This concludes the proof, as the expected number of occurrences of X
in W is asymptotically equivalent to π(X) · n.

The analysis of the case X = αm, where X consists of a repeated single letter, is more
intricate. We present the proof sketch for X = αα, which captures all the essential ideas. Let
A′ = A\{α} and write W = β1β2 . . . βℓα

x, where βi = αkiα with ki ≥ 0 and α ∈ A′. Depend-
ing on the value of ki, one can compute the sequence of taken/not taken outcomes induced by
a factor αkiα, which is either preceded by a letter α or nothing: α yields N , αα yields NN ,
α2α yields NTN , and so on. Thus, more generally, α yields N and αkiα yields NT ki−1N for
ki ≥ 1. We then examine the state of the predictor and the number of mispredictions produced
after each factor βi is read. For instance, if just before reading βi = α3α the predictor state
is ν, then the associated sequence NTTN produces three mispredictions and the predictor
ends in the same state ν, which can be seen on the path ν N−−−→ ν

T−−−→
misp.

ν
T−−−→

misp.
τ

N−−−→
misp.

ν.

Since τ cannot be reached except at the very beginning or at the very end, it has a negligible

68

Enhancing the Model with Computer Architecture Features

ν̃ τk ≤ 3

k ≤ 2

k ≥ 3

k ≥ 4

ν̃ τ1− p4

1− p3
p3

p4

Figure 38: On the left, the transition system determined by the factor αkα; on the right, the
corresponding Markov chain. For clarity, we denote p := π(α).

contribution to the expectation, and we can list all the relevant possibilities as follows:

k = 0 k = 1 k = 2 k = 3 k ≥ 4
N NN NTN NTTN NT k−1N

ν → ν 0 misp. → ν 0 misp. → ν 1 misp. → ν 3 misp. → τ 3 misp.
ν → ν 0 misp. → ν 0 misp. → ν 1 misp. → ν 3 misp. → τ 3 misp.
τ → ν 1 misp. → ν 1 misp. → ν 3 misp. → τ 3 misp. → τ 3 misp.

In the table above, the states ν and ν produce identical outcomes and can therefore be
merged into a single state, denoted as ν̃, for the analysis. The resulting transitions form a
graph with two vertices, which is then converted into a Markov chain by incorporating the
transition probabilities αkα, as illustrated in Fig. 38.

The stationary distribution π̂ of this Markov chain is straightforward to compute, yielding
π̂(ν̃) = 1−p3

1−p3+p4
and π̂(τ) = p4

1−p3+p4
, where p := π(α). From each state, the expected number

of mispredictions can be computed using the transition table. For instance, starting from
ν̃, a misprediction occurs when k = 2 with probability (1 − p)p2, and three mispredictions
occur when k ≥ 3 with probability p3. Therefore, the expected number of mispredictions
when reading the next factor αkα from ν̃ is given by (1 − p)p2 + 3p3. Finally, with high
probability there are around (1 − p)n factors of the form α∗α in the decomposition of W ,
which corresponds to roughly the same number of steps in the Markov chain. The general
statement for X = αm is as follows.

Proposition 48. If X = αm, the expected number of mispredictions caused by the counter
update is asymptotically κm(π(α)) · n, with κm(p) = pm(1− p)(1 + p)2 for m ≥ 3, and

κ1(p) =
p(1− p)

1− 2p(1− p)
, and κ2(p) =

p2(1− p)
(
1 + 2p+ p2 − p3

)
1− p3 + p4

.

Expected number of mispredictions during letter comparisons In this section, we
analyze the expected number of mispredictions caused by letter comparisons in KMP (similar
results can be derived for MP).

According to Lemma 44, the outcome of letter comparisons in KMP is encoded by the
transducer T kmp

X . More precisely, following a transition u
α:s−−→ v in this transducer simulates

a single iteration of the main loop of Algorithm Find, starting with i = |u| and processing
the letter α :=W [j]. At the end of this iteration, i = |v|, and s ∈ {N,T}∗ is the sequence of
taken/not-taken outcomes for the test X[i] ̸=W [j].

The mispredictions occurring during this single iteration of the main loop depend on the
predictor’s initial state λ and the sequence s which is computed using T kmp

X . The number
of mispredictions µ(λ, s) is retrieved by following the path starting from state λ and labeled
by s in the predictor, corresponding to the transition ξ(λ, s). This is formalized by using a
coupling of T kmp

X with the predictor in Fig. 17, forming a product transducer Pkmp
X , defined

as follows (see Fig. 39 for an example):

69

Part II

• the set of states is QX × {ν, ν, τ, τ},

• there is a transition (u, λ)
α:µ(λ,s)−−−−−→ (δX(u), ξ(λ, s)) for every state (u, λ) and every

letter α, where s is the output of the transition u α:s−−→ δX(u) in T kmp
X .

By construction, at the beginning of an iteration of the main loop in Algorithm Find, if i = |u|,
λ is the initial state of the 2-bit saturating predictor, and α = W [j], then, during the next
iteration, µ(λ, s) mispredictions occur, and the predictor terminates in state ξ(λ, s), where
u

α:s−−→ δX(u) in T kmp
X . This leads to the following statement.

Lemma 49. The number of mispredictions caused by letter comparisons in KMP, when ap-
plied to the text W and the pattern X, is given by the sum of the outputs along the path that
starts at (ε, λ0) and is labeled by W in Pkmp

X , where λ0 ∈ {ν, ν, τ, τ} is the initial state of the
local predictor associated with the letter comparison.

ε, ν

ε, ν

ε, τ

ε, τ

a, ν

a, ν

a, τ

ab, ν

ab, ν

aba, ν abab, ν

b : 1

b : 1

b : 0

b : 0

a : 1

a : 1

a : 0

a : 0

a : 1

a : 2

a : 1

b : 0

b : 0

b : 1

b : 1

b : 1

a : 0

a : 0

a : 1 (kmp)

a : 3
(mp)

a : 1

b : 0

b : 0

Figure 39: The strongly connected terminal component of Pkmp
X in black and blue, for X =

ababb. In black and red, the variant for Pmp
X .

We can then proceed as in Proposition 48: the transducer Pkmp
X is converted into a Markov

chain by assigning a weight of π(α) to the transitions labeled by a letter α. From this, we
compute the stationary distribution π̂ over the set of states, allowing us to determine the
asymptotic expected number of mispredictions per letter of W . This quantity, LX , satisfies

LX =
∑

u∈QX

∑
λ∈{ν,ν,τ,τ}

π̂(u, λ)×
∑
α∈A

π(α) · ∇Pkmp
X

((u, λ)
α−→). (10)

Observe that when processing a long sequence of letters different from X[0], the letter
comparisons produce a sequence of T ’s, causing the 2-bit saturating predictor to settle in
state τ while i = 0 in the algorithm. Consequently, the state (ε, τ) is reachable from every
other state. Hence, the Markov chain has a unique terminal strongly connected component
(i.e., there are no transitions from any vertex in this strongly connected component to any
vertex outside of it), which includes (ε, τ) along with a self-loop at this state. Thus, our
analysis focuses on this component, allowing us to apply classical results on primitive Markov
chains [LPW08], ultimately leading to Eq. (10). Notably, this result is independent of the
predictor’s initial state. The computation of LX can be easily carried out using computer
algebra, since computing the stationary probability reduces to inverting a matrix.

Proposition 50. The expected number of mispredictions caused by letter comparisons in
KMP on a random text of length n and a pattern X, is asymptotically equivalent to LX · n.

70

Enhancing the Model with Computer Architecture Features

Expected number of mispredictions of the test i ≥ 0 We conclude the analysis by
examining the mispredictions caused by the test i ≥ 0 at line 3 of Algorithm Find. To this
end, we use the previously constructed transducer T kmp

X (or equivalently T mp
X , as the approach

remains the same) to capture the behavior of this test through a straightforward transforma-
tion of the outputs. Recall that a transition u

α:s−−→ v in T kmp
X , with s ∈ {N,T}∗ indicates

that when reading the letter α, the inner while loop performs |s| character comparisons, with
the result encoded by the symbols of s. Due to the loop structure, s always takes one of two
forms:

• T ∗N and the loop terminates because X[i] =W [j] eventually, or

• T+ and the loop terminates because i = −1 eventually.

In the first case, the condition i ≥ 0 holds for |s| iterations. In the second case, it also holds for
|s| iterations, before failing once. Thus, we define the transducer T̃ kmp

X identically to T kmp
X ,

except for its output function:

∇T̃ kmp
X

(
u

α−→
)
=

T
|s| if s = ∇T kmp

X

(
u

α−→
)
∈ T ∗N,

T |s|N if s = ∇T kmp
X

(
u

α−→
)
∈ T+.

(11)

The same transformation can be applied to T mp
X for MP. At this stage, we could directly reuse

the framework from Section 5.2.3 to compute the asymptotic expected number of mispredic-
tions for any given pattern X. However, a shortcut allows for a simpler formulation while
offering deeper insight into the mispredictions caused by the test i ≥ 0.

Since each output is either T kN for some k ≥ 1 or T k, the local predictor state generally
moves toward τ , except in the case of TN . In this latter case, the predictor either remains
in the same state or transitions from τ to τ . Moreover, from any state s of AX , there always
exists a letter α such that s α:T−−→ in T̃ mp

X or T̃ kmp
X (for instance, the transition that goes to the

right or when the pattern is found). As a result, with high probability, the predictor reaches
the state τ in at most O(logn) iterations of the main loop of Algorithm Find. Once in τ ,
the predictor remains confined to the states τ and τ indefinitely. Thus, with high probability,
except for a small number of initial steps, the predictor consistently predicts that the branch
is taken. At this point, a misprediction occurs if and only if the output belongs to T ∗N ,
which happens precisely when a non-accepting transition in T̃ kmp

X leads to the state ε. Since
T̃ kmp
X and T̃ mp

X differ only in their output functions, this result holds for both MP and KMP,
allowing us to work directly with AX . Applying Lemma 45, we obtain the following statement.

Proposition 51. When Algorithms MP or KMP are applied to a random text W of length n
with a given pattern X, the expected number of mispredictions caused by the test i ≥ 0 is equal
to the expected number of times a transition ending in ε is taken along the path labeled by W in
AX , up to an error term of O(logn). As a result, the expected number of such mispredictions
is asymptotically equivalent to GX · n, where GX =

∑
u∈QX

pX(u)
∑

u
α−→ε

uα̸=X

π(α).

5.2.4 Results for small patterns, discussion and perspectives

We conducted a comprehensive study of local branch prediction for MP and KMP and provide
the code14 that allows to quantify mispredictions for any alphabet size, any given pattern and
any memoryless source for the input text (as for the examples given in Table 2).

14Python notebook (using sympy), available at https://github.com/vialette/branch-prediction/

71

https://github.com/vialette/branch-prediction/

Part II

X i = m i >= 0 Algo. X[i] ̸=W [j]

aa κ2(p) 1− p
MP p(1− p)(1 + 2p)/(1− p2 + p3)

KMP p(1− p)/(1− 2p+ 2p2)

ab p(1− p) (1− p)2 both p(3− 7p+ 7p2 − 2p3)/(1− p+ 2p2 − p3)

aaa κ3(p) 1− p
MP p(1− p)(1 + p)2

KMP p(1− p)/(1− 2p+ 2p2)

aab p2 (1− p) (1− p)2(1 + p)
MP p(1 + 2p− p2 − 8p3 + 6p4 + 5p5 − 5p6 + p7)

KMP p(1− 2p2 − p3 + 5p4 − 3p5 + p6)/(1− 2p+ 3p2 − 2p3 + p4)

aba p2 (1− p) (1− p)2
MP p(3− 7p+ 8p2 − 4p3 + p4)/(1− p+ p2)

KMP p(3− 7p+ 7p2 − 2p3)/(1− p+ 2p2 − p3)

abb p(1− p)2 (1− p)3 both p(4− 13p+ 21p2 − 16p3 + 6p4 − p5)

Table 2: Asymptotic expected number of mispredictions per symbol in the text for each
branch of Algorithm Find, for all normalized patterns of length 2 and 3 over the alphabet
A = {a, b}. For readability, we set p := π(a) = 1 − π(b). Notably, for patterns ab and abb,
the failure functions used by MP and KMP coincide, resulting in identical behavior. The
functions κ2 and κ3 are defined in Proposition 48.

Notably, the expressions for the number of mispredicted letter comparisons become in-
creasingly complex as the pattern length grows and as the alphabet size increases. For in-
stance, for the pattern X = abab, with πa := π(a) and πb := π(b), we obtain:

Labab =
πa(−π3aπb + 2π2aπ

3
b + 4π2aπ

2
b + 3π2aπb + π2a − 5πaπ

2
b − 4πaπb − 2πa + 2πb + 1)

(1− πa)(π2aπ2b + π2aπb − πaπb − πa + 1)
.

The results given in Table 3 illustrate this for the uniform distribution, for small patterns
and alphabets. In particular, the branch i ≥ 0, which is poorly predicted by its local predictor,
exhibits a very high number of mispredictions when |A| = 4, while the branch that comes from
letter comparisons, X[i] ̸=W [j], experiences fewer mispredictions. This trend becomes more
pronounced as the size of the alphabet increases: for X = abb and |A| = 26, the misprediction
rate for the test i ≥ 0 reaches 0.96, whereas for X[i] ̸=W [j], it drops to 0.041.

Our work presents an initial theoretical exploration of pattern matching algorithms within
computational models enhanced by local branch prediction. However, modern processors often
employ hybrid prediction mechanisms that integrate both local and global predictors, with
global predictors capturing correlations between branch outcomes across different execution
contexts. In our simulations with PAPI15 on a personal computer, the actual number of
mispredictions is roughly divided by |A| in practice. A key direction for further research is
to develop a theoretical model that incorporates both predictors, allowing for more precise
measurement in real-world scenarios. Another important line of research is to account for more
sophisticated probabilistic distributions for texts, as real-world texts are often badly modeled
by memoryless sources. For instance, Markovian sources should be manageable within our
model and could provide a more accurate framework for the analysis.

In the first series of four figures below (Fig. 40), we used our formulas to compute the
expected number of mispredictions for each branch, as well as the total number of mispredic-
15PAPI 5.4.1.0 , see http://icl.cs.utk.edu/papi.

72

http://icl.cs.utk.edu/papi

Enhancing the Model with Computer Architecture Features

|A| = 2 |A| = 4

X i=m i>=0 algo X [i]!=W[j] Total i=m i>=0 algo X [i]!=W [j] Total

aa 0.283 0.5
MP 0.571 1.353

0.073 0.75
MP 0.295 1.117

KMP 0.5 1.283 KMP 0.3 1.123

ab 0.25 0.25 both 0.571 1.321 0.062 0.688 both 0.375 1.186

aaa 0.14 0.5
MP 0.563 1.202

0.018 0.75
MP 0.293 1.06

KMP 0.5 1.14 KMP 0.3 1.068

aab 0.125 0.375
MP 0.605 1.23

0.015 0.734
MP 0.322 1.086

KMP 0.542 1.166 KMP 0.322 1.086

aba 0.125 0.25
MP 0.708 1.083

0.015 0.688
MP 0.367 1.068

KMP 0.571 0.946 KMP 0.375 1.076

abb 0.125 0.125 both 0.547 0.921 0.015 0.672 both 0.397 1.098

Table 3: Asymptotic expected number of mispredictions per input symbol in a random textW ,
using Algorithm Find, assuming a uniform distribution over alphabets of size 2 and 4.

tions. We ran our code for the patterns aaaa, aaab, abab, and abbb, each plot being generated
in a few seconds on a standard laptop. The results displayed are the expected numbers of
mispredictions per text symbol as π(a) varies. In the last two figures (Fig. 41), we consider
all prefixes of length at least 2 of abababb and compute the variation of the expected total
number of mispredictions per text symbol, for both the MP and KMP. The results suggest
a form of convergence as the length of the prefix increases, which is expected since reaching
the rightmost states of AX becomes increasingly unlikely.

Figure 40: Expected number of mispredictions per text symbol as π(a) varies, shown per
branch and in total, for the patterns aaaa (top left), abab (top right), aaab (bottom left), and
abbb (bottom right).

73

Part II

Figure 41: Expected number of mispredictions of MP (left) and KMP (right) in total, for the
prefixes of abababb.

Summary of Our Results on Branch Prediction Analysis

Our goal was to refine the model used for algorithm analysis to gain deeper insights into real-
world performance. To this end, we presented a set of results that explicitly integrate features
of modern computer architecture. We studied variants of fundamental algorithms designed
to improve their performance by accounting for branch prediction mechanisms. We obtained
surprising theoretical improvements, such as an altered binary search where the split is not
made exactly at the midpoint. These enhancements were validated through experiments im-
plemented in both C and Java. Additionally, we measured the impact of branch prediction
on classical pattern matching algorithms, starting with the naive sliding window method and
moving on to the more sophisticated Morris-Pratt and Knuth-Morris-Pratt algorithms. The
conditional instructions in these algorithms display strong correlations, making their analy-
sis both challenging and distinct from previous theoretical work. In this second part of our
study, a common feature is the reliance on probabilistic methods, exploiting Markov chain
properties that emerge when 2-bit saturating predictors interact with the algorithmic steps
under study. To our knowledge, existing theoretical analyses have not yet addressed more
advanced prediction schemes, which are those currently implemented in modern computers.
As an example among many others, the global two-level predictor of Fig. 26 maintains a
history of recent branch outcomes across the entire program, enabling it to capture inter-
actions between distinct conditional instructions and autocorrelations such as those present
in pattern-matching algorithms. One of our objectives is to develop methods and results
applicable to these more involved prediction mechanisms. We provided an initial glimpse of
techniques relevant for such predictors in our analysis of binary search (see Section 4.3.3),
and we intend to explore them further. In particular, we expect that these developments will
yield theoretical insights more closely aligned with our experimental observations, especially
in scenarios involving correlated branching instructions.

74

Ongoing Work

By choosing to focus here on realistic analysis of algorithms, I set aside another significant
part of my work, namely analytic combinatorics and random generation. These topics are
not entirely unrelated: random generation appeared in the discussion on record-biased per-
mutations, and analytic combinatorics often provides powerful tools for average-case analysis.
Nevertheless, the work presented here leans more toward a probabilistic approach. To ac-
knowledge this other line of research, I will briefly comment on it here.

In the early stages of my work, I was naturally drawn to combinatorics. However, with a
strong background in computer science, I always kept the practical aspects in mind. I began
by working on automatic methods for the random generation of combinatorial structures,
with the goal of providing ready-to-use libraries for researchers and developers. In particular,
I focused on the Boltzmann method [DFLS04], which is based on results from Analytic Com-
binatorics [FS09], a field that studies the asymptotic properties of families of combinatorial
objects using complex analysis on their generating functions.

Implementing the Boltzmann method requires evaluating these generating functions nu-
merically at points inside their disk of convergence. Since they are often defined by implicit
systems of equations, computing their values is nontrivial and requires computer algebra tech-
niques such as Newton’s method. Together with Bruno Salvy and Michèle Soria, we obtained
significant results on this topic [PSS12], most notably the so-called Boltzmann oracle, which
also turned out to be the first step toward automatically computing the radius of convergence
of the generating series, a missing ingredient for much broader applications.

In their reference book Analytic Combinatorics [FS09], Flajolet and Sedgewick present a
general approach that starts from a combinatorial specification, translates it into equations
satisfied by generating functions, interprets these generating functions as analytic objects,
and exploits their singular behavior to deduce asymptotic properties of the underlying com-
binatorial structures as their size grows. Continuing this line of work with Bruno Salvy, we
developed computational tools to automate large parts of this approach. The outcome is an
almost complete algorithmic chain that takes a combinatorial system and produces asymptotic
expansions [PS25]. Below is an outline of these results.

Effective Asymptotics of Combinatorial Systems We begin by precisely characterizing
the set of well-founded combinatorial systems that actually define combinatorial structures,
and we use the dictionary from [FS09] to translate them into systems of equations on expo-
nential generating functions. We then determine the radius of convergence of these generating
functions, viewed as analytic functions, as this governs the exponential growth of their coef-
ficients. For a given a > 0 inside the domain of convergence of Y , the system Y = H(a,Y)
has Y (a) as a solution, i.e., the value of the generating function at a. It may also admit other
solutions with nonnegative coordinates inside the domain of convergence of H . However, for a
larger than the radius of convergence of Y , we prove that no such solution exists. This is a
basis for computing of the radius of convergence by dichotomy, provided one can detect the
existence of nonnegative solutions to such systems.

The systems we consider have strong positivity properties. This has an important con-
sequence for Newton’s iteration: for a ∈ [0, ρ) where ρ is the radius of convergence of Y ,
Newton’s iteration started at Y = 0 converges to the solution we want. We establish a
converse of this result: if Newton’s iteration started at Y = 0 converges to a point B with
nonnegative coordinates inside the domain of convergence of H , then a ≤ ρ and B = Y (a).
In practice, one still needs to determine when to stop the iteration, but we can compute a
posteriori bounds that guarantee correctness.

75

Ongoing Work

Newton’s iteration can likewise be used to find the radius of convergence. In this case,
however, the system no longer has the strong positivity property, so unconditional convergence
from the origin is not guaranteed. Nevertheless, we prove that quadratic convergence holds
in a neighborhood of the solution.

While the exponential growth of the coefficients of a generating function is determined by
its radius of convergence ρ, subexponential terms in their asymptotic behavior are governed
by the local behavior of the generating function at all the singularities on the circle |z| = ρ,
called dominant singularities. The point ρ is always one such singularity, but others may
also occur on this circle. Generating functions arising from combinatorial systems have a
nice behavior: the arguments of their dominant singularities are rational multiples of π, and
these rational numbers are induced by periodicity properties that can be computed from the
combinatorial equations.

Once the dominant singularities are located, the next step is to compute the expansions
of the generating functions in their neighborhood. For positive systems involving only poly-
nomial or entire functions, the possible singular behaviors at finite singularities have been
classified [BD15]. In that case, the exponents appearing in the expansions are rational num-
bers whose denominators are powers of 2. For combinatorial systems that may involve sets an
cycles, the possibilities are much more diverse and we extends the classification to the general
setting. There is a gap property: roughly speaking, as z → ρ, either the generating function
grows at least as fast as exp(c ln2(1− z/ρ)) for some c > 0, or it has an algebraic-logarithmic
behavior. In the latter case, as in [BD15], the exponent 1/r is a power of 2; in the former,
less regular exponents may occur. Another difference with the case of systems of polynomial
or entire functions is that the exponents at nonreal dominant singularities can be nonreal as
well. Despite these seemingly intricate exponents, we provide algorithms that compute the
singular expansions of generating functions, provided they are of algebraic-logarithmic type.

Expansions of algebraic-logarithmic type are precisely those to which the transfer theorems
of Flajolet and Odlyzko [FO90] apply. The end result of our work is that asymptotic expan-
sions at arbitrary precision can be computed for the coefficients of all constructible generating
functions that have algebraic-logarithmic dominant singularities. The only assumption is that
Schanuel’s conjecture [MW96] holds, or that the system contains neither sets nor cycles.

Other related work The automation of the treatment of combinatorial systems has been a
recurring thread throughout my research. In particular, it led me to collaborate with Florent
Koechlin and Pablo Rotondo on a computational approach to evaluating the expressiveness
of systems of equations that generate random regular expressions (viewed as trees) [KPR25].
More concretely, we established bounds on the proportion of universal expressions, i.e., those
that recognize every word over the alphabet, produced by such systems. The motivation
behind this result, directly linked to the first part of the present study, is to provide concrete
evidence that the uniform model may be inadequate for randomly testing algorithms that
process regular expressions, due to the limited variety of languages it generates. This follows
earlier work by my co-authors showing that, under the uniform model, universal expressions
are overabundant. The bounds we obtained build on heuristics developed by my co-authors to
refine the system of expression trees so as to distinguish, within each class, those that can be
identified as universal. We extend this to more general systems involving several equations,
which are more challenging to study, in a spirit similar to the results I obtained with Bruno
Salvy, as described above.

My work on the Boltzmann method is another example of my ongoing effort to automate
processes in combinatorics. Shortly after my PhD, I began working on Boltzmann samplers for
classes of pattern-avoiding permutations [BBP+17]. These permutation classes have the par-

76

ticularity that, in general, they do not admit a proper combinatorial specification in the sense
of [FS09]. With Frédérique Bassino, Mathilde Bouvel, Adeline Pierrot, and Dominique Rossin,
we developed a methodology that automatically derive such a specification for a permutation
class, given its basis of excluded patterns and the set of simple16 permutations in the class,
when both sets are finite. Only a small proportion of these classes, called substitution-closed
classes, can be translated directly into specifications. In this case, we define a specification for
the trees coming from the substitution decomposition of the permutations, that is, trees whose
nodes correspond to permutations of size 2 or to the simple permutations in the class. For
classes that are not substitution-closed, the process yields an ambiguous system of equations.
We resolve this by transforming ambiguous unions into disjoint unions of terms that involve
both pattern avoidance and pattern containment constraints. This somehow allows to inter-
pret, on the combinatorial objects themselves, the result of applying the inclusion-exclusion
to their generating functions. The outcome is a fully algorithmic approach that produces a
positive system, from which a random sampler can be obtained directly via the Boltzmann
method. This allowed us to observe various asymptotic behaviors in permutation diagrams,
for which an explicit limit shape result was later established [BBF+22].

Recently, with Éric Fusy, we revisited the idea of extending the Boltzmann method from
yet another perspective. Boltzmann samplers can generate random objects of any size, with
the property that all objects of the same size are equally likely. A uniform random sampler for
a given size n can therefore be obtained by rejection sampling: keep only the objects of size n
and discard the others. Naturally, the efficiency of this approach is governed by the number
and sizes of the discarded objects, i.e., by the size distribution in the Boltzmann model. For
tree-like structures, this distribution heavily favors very small trees, so generating an object of
size n typically requires discarding others whose total size is of order n. A remarkable aspect
of the method is that all subtrees of a tree follow the same distribution as the tree itself. This
means that the trees discarded during rejection have the same distribution as the nodes of
any accepted tree. This naturally suggests reusing the rejected trees to help build a uniform
tree of size n rather than discarding them. Using the idea behind the efficient generator
for super-critical sequences from [DFLS04] and building on [BD24] by combining labelled
and unlabelled trees via a bijection based on Prüfer code, we implemented an approach for
designing almost-uniform samplers for several classes of unlabeled tree-like structures. This
is still an ongoing project, but our experiments so far are very promising.

Implementations One common denominator across all these works is that they involved
a substantial amount of coding. From the very beginning, I have implemented numerous
random samplers, particularly Boltzmann samplers, tested them extensively, and used them
to observe the behavior of other algorithms. And more recently, with Éric Fusy, we have
been experimenting with our new samplers to precisely quantify how close our samples are
to the uniform distribution. As explained earlier, doing so required the Boltzmann oracle.
Together with Bruno Salvy, we spent almost ten years on its implementation, resulting in
the Maple library NewtonGF17. While the algorithmic core is based on our theoretical
results [PSS12], a major part of the effort went into automatically detecting whether Newton’s
iteration converges numerically. This aspect goes beyond the “simple” scope of computer
algebra and proved to be particularly challenging. In the end, our library also computes the
radius of convergence of the generating series for all systems treated in [FS09], which is the
basis needed for implementing our new results on their asymptotic expansions.

In a different direction, our work on integrating architectural features into the analysis

16A permutation is simple if it has size at least 4 and contains no interval other than the trivial ones.
17Available at https://perso.ens-lyon.fr/bruno.salvy/software/the-newtongf-package/

77

https://perso.ens-lyon.fr/bruno.salvy/software/the-newtongf-package/

Ongoing Work

of algorithms led to another kind of development. We spent a significant amount of time
simulating and benchmarking branch predictor behavior across various algorithms. Using
Python, we modeled different types of branch predictors, both local and global, with automata
or history tables such as the one shown in Fig. 42. Together with Cyril Nicaud, we supervised
two Master’s internships: Victor Veillerette focused on pattern matching algorithms, and
Tom Redon worked on classifying all possible k-bit predictors (viewed as Markov chains) by
their misprediction rate in the stationary distribution, in an effort to explain empirical design
choices made by processor manufacturers. When running benchmarks, a major difficulty
is that many architectural features influence the speed during the execution of a program,
including cache behavior, vectorization, and even the specific machine instructions generated
by the compiler. Most of our code was written in C and was relatively straightforward, but
we also had to examine large amounts of assembly code, in particular that produced by the
gcc compiler, to study jump structures and propose a realistic predictor model. Another
challenge was the lack of public information about the actual predictor implementations,
which are proprietary. We began with a local branch prediction model, as it is easier to
analyze, but it is very likely that our hardware uses global predictors or hybrids of local
and global schemes. Using the PAPI library, we could access dynamic counters for the total
number of branches and mispredictions, but this data is only partial: it does not reveal which
branch caused a misprediction, whether a cache miss was linked to a mispredicted branch,
or even which type of predictor was in use, for instance. While this experimental work does
not appear directly in our theoretical results, they provided important groundwork toward a
better understanding of modern processors, which we view as essential for building accurate
models for algorithm analysis.

78

Future Work

Real-World Data and Implementations The works presented here open up many re-
search directions. In the area of data-oriented analysis, our study of record-biased permu-
tations has already led to a full characterization of the limit shape via the definition of a
permuton (see [BNP25]). In addition, the methodology based on generative processes that
we developed appears promising for designing and analyzing other models of biased distri-
butions on permutations. As new sorting algorithm implementations employing heuristics to
exploit input structure continue to emerge in widely used programming languages, developing
corresponding analytical models appears both natural and necessary.

Focusing on the number of records was a good starting point, as it provided a way to obtain
biased permutations toward nearly sorted inputs, which was a central concern in the design
of TimSort. However, as shown by its analysis and by those of ShiversSort [Jug24] and
PowerSort [MW18], it is even more natural to consider distributions in which the number
of runs can be directly controlled. These algorithms aim to minimize the time complexity as a
function of both the input length and the run-length entropy, achieving worst-case guarantees
and supported by empirical evidence that the entropy is typically small. Therefore, developing
and studying biased distributions over permutations with weights depending on the entropy of
the run lengths, and potentially favoring permutations with low entropy, would be a valuable
extension to our analytical framework.

Almost-sorted inputs are not the only examples of non-uniform inputs frequently encoun-
tered in practice. In his work introducing PatternDefeatingQuicksort [Pet21], Peters
observes that inputs with many equal keys, and thus few distinct elements, occur frequently,
as data are often sorted according to shared attributes (for example, car color). The galloping
routine analyzed in [GJKY25] was, for instance, introduced in TimSort to improve efficiency
on arrays with few distinct values. A natural extension of our work would be to model this
regime explicitly by considering distributions over permutations with repetitions, i.e., multiset
permutations, governed by a parameter controlling the number of distinct elements.

Since the models proposed above aim at reflecting the structure of real-world inputs,
designing efficient random samplers within these models (following our approach using gen-
erative processes for record-biased permutations) would also provide useful tools for testing
and potentially developing new sorting algorithms tailored to exploit such structure in their
input. This would also make it possible to assess whether algorithms that are well-behaved
in terms of complexity achieve good performance with respect to architectural measures such
as cache hits or branch mispredictions, for instance.

Regarding TimSort, significant progress has already been achieved by Vincent Jugé and
collaborators, who refined its analysis [GJKY25] and proposed a new variant [Jug24]. At
the same time, as we already mentioned, new algorithms and heuristics, such as Pattern-
DefeatingQuicksort which is implemented in both Rust and C++, continue to appear in
modern programming languages. Existing libraries (algorithms and data structures) are also
regularly refined, updated, or fully re-engineered. We believe that the choices made by the
developers of these languages are often guided by their understanding of the application con-
text and by benchmarks that are not necessarily publicly available. As the case of TimSort
has shown, some of these choices could be particularly interesting to investigate.

For instance, if one takes a close look at Java’s implementation of the dual-pivot Quick-
Sort for primitive arrays, it is actually a variant of IntroSort [Mus97], which switches to
HeapSort when the recursion stack becomes too deep. As noted by Musser, a key parameter
for this approach to be effective is the depth at which the switch occurs, which he determined
empirically, observing that it may strongly depend on the underlying hardware architecture.
A fine-grained theoretical analysis of HeapSort, in both the worst and average cases, could

79

Future Work

NNNN...NN

NNNN...NT
...

TTTT...TT

←− ℓ −→ Figure 42: Two-level predictor: a history
table of size 2ℓ records the outcomes of the
last ℓ branches, with the most recent out-
come in the rightmost bit. Each sequence
of ℓ branch outcomes is associated with a
2-bit saturated counter.

shed light on these questions. Moreover, incorporating architectural considerations, as we did
in the second part of this study, could further enrich such an analysis, since cache handling
is one of the main drawbacks of HeapSort, due to the underlying data structure.

These kinds of questions are in fact among the main objectives of a new ANR Project in
which I am involved, PLASMA18, which focuses on developing relevant models for realistic
inputs and computer architecture features.

Enhancing the Model with Computer Architecture Features Obviously, I am also
particularly interested in the second aspect addressed by our PLASMA project, as it aligns
with the focus of the second part of this presentation, namely branch prediction analysis. The
work we have carried out has provided a solid theoretical understanding of local predictors,
as illustrated here on classical divide-and-conquer algorithms such as binary search, as well
as on more intricate pattern-matching algorithms like KMP, for instance. Even though the
technical steps for a full analysis can be quite involved for the latter, due to the high correlation
between its branches, we established fundamental tools for analyzing such mechanisms. In
particular, Markov chains naturally emerge as the appropriate framework for this type of
analysis. We consider these first results as preliminary, in the sense that branch predictors
found in contemporary processors, even the simplest ones, employ far more sophisticated
schemes. One natural next step is therefore to extend our results on local predictors to other,
more realistic types of predictors.

Two-level predictors make their predictions using a limited history of recent branch out-
comes (see Fig. 42). They are generally classified as either local or global, depending on
whether each branch has its own history-based prediction table or whether all branches share
the same table. In both cases, unlike a simple saturated-counter predictor, a sufficiently long
history table can accurately capture correlations between branches, such as those occurring in
pattern matching. This ability could explain the differences we observed between our theoreti-
cal results and our empirical measurements. In principle, two-level predictors can be analyzed
using Markov chains, but with realistic history sizes the resulting chains become prohibitively
large. During his internship, Victor Veillerette studied this approach and found that with an
8-bit history (a size that appears to be standard), even a small pattern of length 6 leads to a
chain with roughly 105 states. Our preliminary work suggests, however, that such chains often
have a rich symmetry structure. The objective is to systematically identify these symmetries
to make the analysis tractable. Since such predictors are implemented in current processors,
the results should be directly observable and have practical impact.

Many other prediction schemes are either already in use or have been proposed in the liter-
ature. Some, such as neural-network–based predictors [ESQ+03], are probably beyond math-
ematical tractability. Others, like schemes using multiple history sizes [SM06], are natural
generalizations of the predictors described above and should be amenable to our methodology.
18PLASMA (Programming Languages, Algorithms and Structures: Models and Analysis) is an ANR research

project that will begin in 2026. See https://protondo.github.io/anr-plasma/

80

https://protondo.github.io/anr-plasma/

The results we obtained so far concern isolated cases in which the analysis of branch
predictions was tractable. A longer-term objective would be to develop a more general frame-
work encompassing these results. This could be achieved by analyzing broader classes of
algorithms within a unified setting, allowing for the derivation of more general conclusions.
For instance, many pattern-matching algorithms share the property of inducing correlations
between branches. One could aim to quantify algorithmic complexity with respect to a mea-
sure of this correlation. As an example, it would be interesting to determine the expected
number of mispredictions when the probability of correlation between successive branches
decreases exponentially. Another promising direction would be to generalize the type of anal-
ysis we conducted for binary search by defining an ideal path in the branching process of an
algorithm and bounding its deviation from actual execution paths. Pursuing such ideas could
lead to results of broader applicability and deeper theoretical insight.

Finally, since our work focused on branch predictor behavior, we isolated it from other
architectural effects, particularly its interactions with the cache. However, during our exper-
iments on binary search, we observed that the algorithm’s performance was strongly affected
by the cache accesses occurring during the execution of mispredicted branches, which calls for
further investigation in this direction.

More broadly, pursuing realistic analyses would naturally involve cache-aware modeling.
A still not so much looked direction would be to develop analyses that more faithfully capture
cache behavior by incorporating additional parameters beyond cache and block size. Much
of the existing work on cache-oblivious and cache-aware algorithms assumes a fully asso-
ciative cache, meaning that each memory block can be loaded into any cache line (see, for
example, [Dem02, FLPR12, BDE+16]). While this model has produced valuable theoretical
insights, it fails to capture the actual behavior of modern hardware, where caches typically
have low associativity, i.e., each memory block can be stored only in a limited subset of cache
lines (see, for example, [SCD02, MS03]). When associativity is taken into account, another
common simplifying assumption is the use of a fully random hash function to determine the
destination subset, whereas in practice, this mapping is usually achieved through direct ad-
dressing based on specific bits of the memory address. Beyond being more realistic, this
mechanism imposes a strong structural constraint on data placement that could be fruitfully
captured and studied using combinatorial methods. Finally, the cache replacement policy
used in analyses involving associativity is almost always LRU (Least Recently Used), mean-
ing that when the cache is full, the block that has not been accessed for the longest time is
evicted and replaced by a new one. Although LRU is conceptually simple and analytically
convenient, it is rarely implemented in its pure form on modern processors due to hardware
complexity. Instead, real systems often employ pseudo-LRU or alternative strategies such as
random or FIFO, whose influence on algorithmic behavior remains largely unexplored.

To conclude, I would like to emphasize how strongly my research directions are influenced
by my teaching. As is probably clear from the preceding discussion, I teach algorithmics,
programming in various languages, and computer architecture, all of which give a distinctive
orientation to my work. In addition, my courses on network programming (including the
design of client–server applications) and concurrent programming constitute a continuous
source of real-world problems and applications (such as parallel cache management, scheduling
strategies, or data management for servers, for instance) that will, I hope, continue to inspire
and enrich my future research.

81

Future Work

82

Bibliography

[ABNP16] Nicolas Auger, Mathilde Bouvel, Cyril Nicaud, and Carine Pivoteau. Analy-
sis of Algorithms for Permutations Biased by Their Number of Records. In
27th International Conference on Probabilistic, Combinatorial and Asymptotic
Methods for the Analysis of Algorithm (AofA), Cracovie, Poland, July 2016.
Available at http://hal.archives-ouvertes.fr/hal-01838692.

[ABT03] Richard Arratia, A. D. Barbour, and Simon Tavaré. Logarithmic combinatorial
structures: a probabilistic approach. EMS Monographs in Mathematics. EMS,
Zürich, 2003.

[AJNP18] Nicolas Auger, Vincent Jugé, Cyril Nicaud, and Carine Pivoteau. On the worst-
case complexity of timsort. In 26th Annual European Symposium on Algorithms,
ESA 2018, August 20-22, 2018, Helsinki, Finland, volume 112 of LIPIcs, pages
4:1–4:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. Extended
version available at: http://arxiv.org/abs/1805.08612.

[ANP15] Nicolas Auger, Cyril Nicaud, and Carine Pivoteau. Merge strategies: From
Merge Sort to TimSort. Research Report hal-01212839, hal, 2015. Available at
http://hal.science/hal-01212839.

[ANP16] Nicolas Auger, Cyril Nicaud, and Carine Pivoteau. Good predictions are worth
a few comparisons. In 33rd Symposium on Theoretical Aspects of Computer
Science, STACS 2016, February 17-20, 2016, Orléans, France, volume 47 of
LIPIcs, pages 12:1–12:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016. Available at: http://doi.org/10.4230/LIPIcs.STACS.2016.12.

[AV88] Alok Aggarwal and S. Vitter, Jeffrey. The input/output complexity of sorting
and related problems. Commun. ACM, 31(9):1116–1127, September 1988.

[AWFS17] Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders. In-Place
Parallel Super Scalar Samplesort (IPSSSSo). In 25th Annual European Sympo-
sium on Algorithms (ESA 2017), volume 87 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 9:1–9:14, Dagstuhl, Germany, 2017. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik.

[BBF+22] Frédérique Bassino, Mathilde Bouvel, Valentin Féray, Lucas Gerin, and Adeline
Pierrot. Scaling limits of permutation classes with a finite specification: a
dichotomy. Advances in Mathematics, 405:Article 108513, 2022.

[BBP+17] Frédérique Bassino, Mathilde Bouvel, Adeline Pierrot, Carine Pivoteau, and
Dominique Rossin. An algorithm computing combinatorial specifications of
permutation classes. Discret. Appl. Math., 224:16–44, 2017. Available at http:
//arxiv.org/abs/1506.00868.

[BD15] Cyril Banderier and Michael Drmota. Formulae and asymptotics for coefficients
of algebraic functions. Combinatorics, Probability and Computing, 24:1–53, 1
2015.

[BD24] Laurent Bartholdi and Persi Diaconis. An algorithm for uniform generation of
unlabeled trees (pólya trees), with an extension of cayley’s formula, 2024. To
appear Forum of Math. Sigma, available at: http://arxiv.org/abs/2411.17613.

83

http://hal.archives-ouvertes.fr/hal-01838692
http://arxiv.org/abs/1805.08612
http://hal.science/hal-01212839
http://doi.org/10.4230/LIPIcs.STACS.2016.12
http://arxiv.org/abs/1506.00868
http://arxiv.org/abs/1506.00868
http://arxiv.org/abs/2411.17613

Future Work

[BDE+16] Michael A. Bender, Erik D. Demaine, Roozbeh Ebrahimi, Jeremy T. Fineman,
Rob Johnson, Andrea Lincoln, Jayson Lynch, and Samuel McCauley. Cache-
adaptive analysis. In Proceedings of the 28th ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’16, page 135–144, New York, NY, USA,
2016. Association for Computing Machinery.

[BFM08] Gerth Stølting Brodal, Rolf Fagerberg, and Gabriel Moruz. On the adaptiveness
of quicksort. ACM Journal of Experimental Algorithmics, 12, 2008.

[BHS07] Bernhard Beckert, Reiner Hähnle, and Peter H Schmitt. Verification of Object-
Oriented Software. The KeY Approach: Foreword by K. Rustan M. Leino, vol-
ume 4334. Springer, 2007.

[Bil12] Patrick Billingsley. Probability and Measure. John Wiley and Sons, anniversary
edition, 2012.

[BK19] Sam Buss and Alexander Knop. Strategies for stable merge sorting. In Proceed-
ings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’19, page 1272–1290, USA, 2019. Society for Industrial and Applied
Mathematics.

[BM05] Gerth Stølting Brodal and Gabriel Moruz. Tradeoffs between branch mispre-
dictions and comparisons for sorting algorithms. In Algorithms and Data Struc-
tures, 9th International Workshop (WADS), Waterloo, Canada, August 15-17,
2005, Proceedings, volume 3608 of Lecture Notes in Computer Science, pages
385–395. Springer, 2005.

[BM06] Gerth Stølting Brodal and Gabriel Moruz. Skewed Binary Search Trees. In
Algorithms ESA 2006, volume 4168, pages 708–719. Springer Berlin Heidelberg,
2006.

[BN13] Jérémy Barbay and Gonzalo Navarro. On compressing permutations and adap-
tive sorting. Theor. Comput. Sci., 513:109–123, 2013.

[BNP25] Mathilde Bouvel, Cyril Nicaud, and Carine Pivoteau. Record-biased permu-
tations and their permuton limit. Combinatorics, Probability and Computing,
2025. To appear.

[BNWG08] Paul Biggar, Nicholas Nash, Kevin Williams, and David Gregg. An experimen-
tal study of sorting and branch prediction. Journal of Experimental Algorith-
mics, 12:1, June 2008.

[Bón12] Miklós Bóna. Combinatorics of permutations. Chapman-Hall and CRC Press,
second edition, 2012.

[CHL07] Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on
strings. Cambridge University Press, 2007.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press, Cambridge, MA, 4th edition, 2009.

[Cor22] Benoît Corsini. The height of record-biased trees. Random Structures and
Algorithms, on-line first, August 2022.

84

[CR94] Maxime Crochemore and Wojciech Rytter. Text Algorithms. Oxford University
Press, 1994.

[Dem02] Erik D. Demaine. Cache-oblivious algorithms and data structures. In Lecture
Notes from the EEF Summer School on Massive Data Sets. BRICS, University
of Aarhus, Denmark, June 27–July 1 2002.

[DFLS04] Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaeffer. Boltz-
mann samplers for the random generation of combinatorial structures. Combi-
natorics, Probability and Computing, 13(4–5):577–625, 2004.

[DGRdB+15] Stijn De Gouw, Jurriaan Rot, Frank S de Boer, Richard Bubel, and Reiner
Hähnle. Openjdk’s java.utils.collection.sort() is broken: The good, the bad and
the worst case. In International Conference on Computer Aided Verification,
pages 273–289. Springer, 2015.

[EKS12] Amr Elmasry, Jyrki Katajainen, and Max Stenmark. Branch Mispredictions
Don’t Affect Mergesort. In Experimental Algorithms, volume 7276, pages 160–
171. Springer Berlin Heidelberg, 2012.

[ESQ+03] Colin Egan, Gordon Steven, Patrick Quick, Rubén Anguera, Fleur Steven, and
Lucian Vintan. Two-level branch prediction using neural networks. Journal of
Systems Architecture, 49(12–15):557–570, December 2003.

[EW19] Stefan Edelkamp and Armin Weiß. Blockquicksort: Avoiding branch mispre-
dictions in quicksort. Journal of Experimental Algorithmics (JEA), 24:1–22,
2019.

[Ewe72] Warren J Ewens. The sampling theory of selectively neutral alleles. Theoretical
population biology, 3(1):87–112, 1972.

[Fér13] Valentin Féray. Asymptotics of some statistics in Ewens random permutations.
Electronic Journal of Probability, 18(76):1–32, 2013.

[FLPR12] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachan-
dran. Cache-oblivious algorithms. 8(1), January 2012.

[FM70] W. D. Frazer and A. C. McKellar. Samplesort: A sampling approach to minimal
storage tree sorting. J. ACM, 17(3):496–507, July 1970.

[FO90] Philippe Flajolet and Andrew M. Odlyzko. Singularity analysis of generating
functions. SIAM Journal on Discrete Mathematics, 3(2):216–240, 1990.

[FS09] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge
University Press, 2009.

[GJK22] Elahe Ghasemi, Vincent Jugé, and Ghazal Khalighinejad. Galloping in fast-
growth natural merge sorts. In 49th International Colloquium on Automata,
Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France,
volume 229 of LIPIcs, pages 68:1–68:19. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2022.

[GJKY25] Elahe Ghasemi, Vincent Jugé, Ghazal Khalighinejad, and Helia Yazdanyar.
Galloping in fast-growth natural merge sorts. Algorithmica, 87(2):242–291,
2025.

85

Future Work

[Gus97] Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science
and Computational Biology. Cambridge University Press, 1997.

[HP17] John L. Hennessy and David A. Patterson. Computer Architecture, Sixth Edi-
tion: A Quantitative Approach. Morgan Kaufmann Publishers Inc., 6th edition,
2017.

[JKB95] Norman L. Johnson, Samuel Kotz, and N. Balakrishnan. Continuous Univariate
Distributions. John Wiley and Sons, second edition, 1995.

[Jug20] Vincent Jugé. Adaptive shivers sort: An alternative sorting algorithm. In Pro-
ceedings of the 31th ACM-SIAM Symposium on Discrete Algorithms, (SODA),
Salt Lake City, UT, USA, January 5-8, 2020, pages 1639–1654. SIAM, 2020.

[Jug24] Vincent Jugé. Adaptive shivers sort: An alternative sorting algorithm. ACM
Trans. Algorithms, 20(4):31:1–31:55, 2024.

[KJP77] Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern
matching in strings. SIAM J. Comput., 6(2):323–350, 1977.

[Knu98] Donald E. Knuth. The Art of Computer Programming, Volume 3: (2nd Ed.)
Sorting and Searching. Addison Wesley Longman Publish. Co., Redwood City,
CA, USA, 1998.

[KPR25] Florent Koechlin, Carine Pivoteau, and Pablo Rotondo. Heuristic universality
detection over regular expressions specified by systems. In Developments in
Language Theory (DLT) - 29th International Conference, Seoul, South Korea,
August 19–22, 2025, Proceedings, volume 16036 of Lecture Notes in Computer
Science. Springer, 2025. Available at http://hal.science/hal-05211135.

[KS06] Kanela Kaligosi and Peter Sanders. How Branch Mispredictions Affect Quick-
sort. In Algorithms ESA 2006, volume 4168, pages 780–791. Springer Berlin
Heidelberg, 2006.

[LL99] Anthony LaMarca and Richard E Ladner. The influence of caches on the per-
formance of sorting. Journal of Algorithms, 31(1):66–104, 1999.

[Lot97] Monsieur Lothaire. Combinatorics on words, volume 17. Cambridge university
press, 1997.

[LPW08] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov Chains and
Mixing Times. American Mathematical Society, 2008.

[Mal57] Colin L Mallows. Non-null ranking models. I. Biometrika, 44(1/2):114–130,
1957.

[Man85] Heikki Mannila. Measures of presortedness and optimal sorting algorithms.
IEEE Trans. Computers, 34(4):318–325, 1985.

[Mit18] Sparsh Mittal. A survey of techniques for dynamic branch prediction. Concur-
rency and Computation: Practice and Experience, 31, 2018.

[MNW15] Conrado Martínez, Markus E. Nebel, and Sebastian Wild. Analysis of branch
misses in quicksort. In Proceedings of the Twelfth Workshop on Analytic Al-
gorithmics and Combinatorics (ANALCO), San Diego, CA, USA, January 4,
2015, pages 114–128, 2015.

86

http://hal.science/hal-05211135

[MP70] James H Morris, Jr and Vaughan R Pratt. A Linear Pattern-Matching Algo-
rithm. Technical report, University of California, Berkeley, CA, 01 1970.

[MS03] Kurt Mehlhorn and Peter Sanders. Scanning multiple sequences via cache
memory. Algorithmica, 35(1):75–93, 2003.

[Mus97] David R. Musser. Introspective sorting and selection algorithms. Softw. Pract.
Exper., 27(8):983–993, August 1997.

[MW96] Angus Macintyre and A. J. Wilkie. On the decidability of the real exponential
field. In Kreiseliana, pages 441–467. A K Peters, Wellesley, MA, 1996.

[MW18] J. Ian Munro and Sebastian Wild. Nearly-optimal mergesorts: Fast, practical
sorting methods that optimally adapt to existing runs. In 26th Annual European
Symposium on Algorithms (ESA 2018), Leibniz International Proceedings in
Informatics (LIPIcs), pages 63:1–63:15, 2018.

[NPV24] Cyril Nicaud, Carine Pivoteau, and Stéphane Vialette. Theoretical Analysis of
Branch Prediction in the Sliding Window Algorithm. Working paper, available
at http://hal.science/hal-05170281, February 2024.

[NPV25] Cyril Nicaud, Carine Pivoteau, and Stéphane Vialette. Branch prediction
analysis of morris-pratt and knuth-morris-pratt algorithms. In 36th An-
nual Symposium on Combinatorial Pattern Matching, CPM 2025, June 17-19,
2025, Milan, Italy, volume 331 of LIPIcs, pages 8:1–8:17. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2025. Version with appendices available at:
http://hal.science/hal-05147509.

[OLBC10] Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark,
editors. NIST Handbook of Mathematical Functions. Cambridge University
Press, 2010.

[Pet] Tim Peters. Timsort description, accessed july 2025. http://svn.python.org/
projects/python/trunk/Objects/listsort.txt.

[Pet15] T. Kyle Petersen. Eulerian Numbers. Birkhäuser Advanced Texts Basler
Lehrbücher, Springer, New York, first edition, 2015.

[Pet21] Orson RL Peters. Pattern-defeating quicksort. arXiv preprint
arXiv:2106.05123, 2021.

[PM95] O. Petersson and A. Moffat. A framework for adaptive sorting. Discrete Applied
Mathematics, 59(2):153–179, may 1995.

[Poh72] Ira Pohl. A sorting problem and its complexity. Communications of the ACM,
15(6):462–464, 1972.

[PS25] Carine Pivoteau and Bruno Salvy. Effective asymptotics of combinatorial sys-
tems, 2025. 78 pages. Submitted. Available at: http://arxiv.org/abs/2508.
20008.

[PSS12] Carine Pivoteau, Bruno Salvy, and Michèle Soria. Algorithms for combinato-
rial structures: Well-founded systems and newton iterations. Journal of Com-
binatorial Theory, Series A, 119(8):1711 – 1773, 2012. 62 pages. Available at
http://arxiv.org/abs/1109.2688.

87

http://hal.science/hal-05170281
http://hal.science/hal-05147509
http://svn.python.org/projects/python/trunk/Objects/listsort.txt
http://svn.python.org/projects/python/trunk/Objects/listsort.txt
http://arxiv.org/abs/2508.20008
http://arxiv.org/abs/2508.20008
http://arxiv.org/abs/1109.2688

Future Work

[Rég89] Mireille Régnier. Knuth-Morris-Pratt algorithm: An analysis. In Mathematical
Foundations of Computer Science 1989, MFCS’89, Porabka-Kozubnik, Poland,
August 28 - September 1, 1989, Proceedings, volume 379 of Lecture Notes in
Computer Science, pages 431–444. Springer, 1989.

[Rou01] Salvador Roura. Improved master theorems for divide-and-conquer recurrences.
Journal of the ACM, 48(2):170–205, 2001.

[RS98] Mireille Régnier and Wojciech Szpankowski. Complexity of sequential pat-
tern matching algorithms. In Randomization and Approximation Techniques in
Computer Science, Second International Workshop, RANDOM’98, Barcelona,
Spain, October 8-10, 1998, Proceedings, volume 1518 of Lecture Notes in Com-
puter Science, pages 187–199. Springer, 1998.

[SCD02] Sandeep Sen, Siddhartha Chatterjee, and Neeraj Dumir. Towards a theory of
cache-efficient algorithms. J. ACM, 49(6):828–858, November 2002.

[Sed77] Robert Sedgewick. The analysis of quicksort programs. Acta Informatica,
7(4):327–355, 1977.

[SM06] André Seznec and Pierre Michaud. A case for (partially) tagged geometric
history length branch prediction. The Journal of Instruction-Level Parallelism,
8:23, February 2006.

[SW04] Peter Sanders and Sebastian Winkel. Super scalar sample sort. In Algorithms –
ESA 2004, volume 3221 of Lecture Notes in Computer Science, pages 784–796.
Springer Berlin Heidelberg, 2004.

[Yar] Vladimir Yaroslavskiy. Dual-pivot quicksort algorithm, 2009. URL: http://
codeblab.com/wp-content/uploads/2009/09/DualPivotQuicksort.pdf.

88

http://codeblab.com/wp-content/uploads/2009/09/DualPivotQuicksort.pdf
http://codeblab.com/wp-content/uploads/2009/09/DualPivotQuicksort.pdf

	Résumé
	Introduction
	Real-World Data and Implementations
	Record-Biased Permutations
	Background and definition of record-biased permutations
	Generative processes for record-biased permutations
	Behavior of some classical statistics

	Complexity Analysis of TimSort
	TimSort core algorithm
	TimSort runs in O(n log n)
	TimSort runs in O(nH + n)
	Further developments
	Conclusion on TimSort

	Summary of Our Results on Data Oriented Analysis

	Enhancing the Model with Computer Architecture Features
	Branch Prediction
	Unbalancing the Jumps
	A case study : simultaneous minimum and maximum searching
	Exponentiation by squaring with a twist
	Skew binary search

	Pattern Matching
	The sliding window algorithm
	Morris-Pratt and Knuth-Morris-Pratt algorithms

	Summary of Our Results on Branch Prediction Analysis

	On-going and Future Work
	Bibliography

