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Concurrency
Operating systems are mutlitasks, even on monoprocessors
architectures. How is it possible ? with processes !
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Real-Time

Real-Time: different from quick, more synonymous to deterministic
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Real-Time

Several kind of real-time systems:

RTS with strict constraints (hard real-time systems): deadline
miss equal human life lost / mission failure (avionic industry)

RTS with relative constraints(soft real-time systems):
deadline misses are tolerated (multimedia)

RTS with mixed constraints
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Real-Time

Several kind of real-time systems:

RTS with strict constraints (hard real-time systems): deadline
miss equal human life lost / mission failure (avionic industry)

RTS with relative constraints(soft real-time systems):
deadline misses are tolerated (multimedia)

RTS with mixed constraints

Example

Standard DO-178B developed for the avionic industry in USA
distinguish 5 criticality levels, e.g:

Safety Critical: failure = human lost (e.g. engines control,
automatic pilot)

Mission Critical: navigation systems, ...
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Scheduling

Scheduling algorithm: the algorithm used to decide which task
is executed when

Schedule: the result of the scheduling algorithm (a sequence
of task)

Scheduler: the task responsible to apply the scheduling
algorithm to produce the schedule

two families: preemptive, non preemptive

two methodologies: offline / online

In this class, we will study online preemptive algorithms
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Periodic Model

Real-Time: ensure constraints respect. Which constraints ?

The most studied model (from the control command field):
periodic task systems

A periodic task τi is defined by:

its first release time instant: ri

its worst case execution time (WCET): Ci

its period: Ti

its relative deadline: Di

from which we can deduce the absolute deadline of its
instance k : di ,k

the logic is: upper cases for durations, lower cases for instants

... (extensible model !)
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Example

Ci Ti Di
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Online preemptive real-time scheduling
(Mono Processor)

Tasks instances (job) are sorted by priorities. At each time instant,
the scheduler gives CPU to the task with the highest priority.

fixed priority: tasks priority are fixed once and for all
(according to a constant like period, deadline, importance...
or arbitrarily),

dynamic priority: priorities can change, they are given
according to a variable like the next deadline proximity, the
system laxity...

Evaluating a scheduling algorithm ??
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Online preemptive real-time scheduling
(Mono Processor)

Tasks instances (job) are sorted by priorities. At each time instant,
the scheduler gives CPU to the task with the highest priority.

fixed priority: tasks priority are fixed once and for all
(according to a constant like period, deadline, importance...
or arbitrarily),

dynamic priority: priorities can change, they are given
according to a variable like the next deadline proximity, the
system laxity...

Evaluating a scheduling algorithm ??

optimality

schedulability bound

easy or not to implement ?

execution overhead

jitter, stability, average response times...
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Main algorithms

Rate Monotonic (RM): priority to the task with the smallest
period

Deadline Monotonic (DM) : priority to the task with the
smallest relative deadline

EDF : priority to the most urgent JOB (not task)

LLF : priority to the task with the smallest laxity (variable
function of time)
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Main algorithms
Rate Monotonic (RM): priority to the task with the smallest
period
Deadline Monotonic (DM) : priority to the task with the
smallest relative deadline
EDF : priority to the most urgent JOB (not task)
LLF : priority to the task with the smallest laxity (variable
function of time)

Laxity

4
4
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Li(t) = Di(t) − C
∗

i
(t)

Li(t) Di(t)
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Exercises

Give the schedules obtain with these 4 algorithms between t = 0 et
t = 30 for taskset:

ri Ti Di Ci

τ1 0 6 6 2

τ2 0 7 4 3

τ3 0 15 15 3
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DM
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EDF
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LLF
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Schedulability (validity)
6= Feasibility

Feasibility: given a taskset, is it possible to propose a
schedule that respect all timing constraints?

Schedulability: given a taskset, is it possible to propose a
deterministic algorithm that generates a valid schedule?

Schedulability with A: given a taskset and an algorithm A, is
A produces a valid schedule?

Several approaches depending on the studied problem and the
system criticality:

sufficient condition for an admission control scheme,

fault and/or overload detection,

exact analysis with feasibility/schedulability analysis theory.
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System Load study

Processor load: U =
n∑

i=1

Ci

Ti

This can be enough to conclude under certain assumptions:

U ≤ n(2
1
n − 1) is sufficient (but not necessary) condition for

the schedulability iff ∀iDi = Ti (implicit deadlines) with a
fixed priority algorithm,

U ≤ 1 is a necessary and sufficient condition for the
schedulability under EDF iff ∀iDi = Ti ,

...

But if Di ≤ Ti (constrained deadlines), or when Di not related to
Ti (general case) things are not so simple...
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Schedulability study when Di = Ti
(fixed priority)

U ≤ n(2
1
n − 1) is a sufficient condition and U ≤ 1 is a

necessary condition

when 1 ≤ U > n(2
1
n − 1) ?

workload study: we are looking for a time instant before the
deadline where all the cumulated demand is satisfied
worst case response time computation

job j response time R j
i : time between the request and the end

of the job
task worst case response time (WCRTi ): maximum amongst
the R j

i for all j
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Demand study

If ∀i ,Di ≤ Ti , the system is schedulable with a fixed priority
algorithm iff it exists a time instant t in the interval (0,Di ] such
that t = wi (t)

with wi (t) =
∑
k≤i

⌈
t

Tk

⌉
Ck

recursive algorithm: computation of t1 = wi (0), then
t2 = wi (t1), ..., tn = wi (tn−1)

the algorithms ends either when the deadline is reached or if a
t with t = wi (t) is found.
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Demand study

If ∀i ,Di ≤ Ti , the system is schedulable with a fixed priority
algorithm iff it exists a time instant t in the interval (0,Di ] such
that t = wi (t)

with wi (t) =
∑
k≤i

⌈
t

Tk

⌉
Ck

recursive algorithm: computation of t1 = wi (0), then
t2 = wi (t1), ..., tn = wi (tn−1)

the algorithms ends either when the deadline is reached or if a
t with t = wi (t) is found.

Exercises

study the level 2 demand on the preceding example with RM

study the level 2 demand on the preceding example with DM

study the level 3 demand on the preceding example with RM

is the level 3 demand with DM different ?
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DM
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DM
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Limitations

this test permits only to conclude on the schedulability, it
does not provide any other informations. It can be of interest
to compute the response times, allowing the system designer
to have a better idea of the tasks behaviors (jitter, average
response time...).

it works only for tasks with implicit deadlines Di ≤ Ti

to convince yourself, try to analyze this example:

ri Ci Ti Di Priority Pi

τ1 0 4 8 10 high

τ2 0 3 6 8 low

What is the value of w2(7) ? Is it relevant to compare this to
D2 ?

anyway this system is not schedulable, but one has to wait
until time t = 21 to see that the second instance of task τ2
misses its deadline (the worst response time is no longer the
one of the first job!)
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Computing response times

recursive computation very similar to the demand analysis

a task may be delayed only by tasks with an higher priority

we will compute the response time of task τi ’s job number j ,
job 1 being the one starting at ri . Its termination instant,
denoted F j

i , is given by equation:

F j
i = min

t>0
{t = wi−1(t) + j ∗ Ci} (1)

its response time, R j
i , is then the difference between its

termination instant and its release instant:

R j
i = F j

i − (ri + (j − 1)Ti ) (2)
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Busy Period
processor continuous activity

a level i busy period is the time interval between two level-i
idle time: the processor is idle or occupied with lower priorities
Level-i idle times are solution of the equation wi (t) = t

we want to compute the duration of the one starting at time
t = 0, because the worst scenario for task τi must occur
during it (assuming a synchronous activation scenario). The
algorithm is the same as the one used for the demand analysis
excepted that we do not stop when the deadline is reached.

It is sufficient to study a task during the first busy period to
encounter its worst case response time.
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Busy Period
processor continuous activity

a level i busy period is the time interval between two level-i
idle time: the processor is idle or occupied with lower priorities
Level-i idle times are solution of the equation wi (t) = t
we want to compute the duration of the one starting at time
t = 0, because the worst scenario for task τi must occur
during it (assuming a synchronous activation scenario). The
algorithm is the same as the one used for the demand analysis
excepted that we do not stop when the deadline is reached.

It is sufficient to study a task during the first busy period to
encounter its worst case response time.

Exercise

compute the level 2 busy period (bp2) for the previous
example

compute Qi , the τ2 activations number during bp2

compute the Qi first response times of τ2

conclude



23/56

Other Task Models

until now, we made the hypothesis that tasks were
independants, but other constraints can exists:

precedence constraints between tasks
resource sharing with mutual exclusion

non periodic task have to be handle:

by setting a bound on their interarrival time, and worst case
study (sporadis model)
encapsulate their handling inside a server with limited
ressources
handling in backgroud or with a slack stealing algorithm
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ressource sharing

when two concurrent task access ressources, we have to
protect the resources accesses with lock (semaphore, mutex,
...)

to access a ressource, a task have to obtain the associated
lock

one task at once ca have a given lock

when asking a lock, a task is blocked until the lock is available

special attention must be given to the lock attribution
algorithm
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Issues and solution with fixe priorities

Bounding the priority inversions

Avoid deadlocks

Prevent blocking chains
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Issues and solution with fixe priorities

Bounding the priority inversions

when a task execute whereas another one with an higher priority is
blocked

Avoid deadlocks

Prevent blocking chains
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Issues and solution with fixe priorities

Bounding the priority inversions

Avoid deadlocks

when a task has a first lock, and ask for another one previously
given to a second task, which waits for the first lock

Prevent blocking chains
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Issues and solution with fixe priorities

Bounding the priority inversions

Avoid deadlocks

Prevent blocking chains

When a task instance is blocked several times
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Issues and solution with fixe priorities

Bounding the priority inversions

Avoid deadlocks

Prevent blocking chains

Three algorithms :

Priority Inheritance Protocol (PIP)

Priority Ceiling Protocol (PCP)

Priority Ceiling Emulation (PCE)
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Prevent blocking chains

Three algorithms :
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Unbound Inversion

Execution normale

Execution en section critique, ressource bleue

Blocage

D R RD

τ1

τ2

τ3
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Unbound Inversion

Execution normale

Execution en section critique, ressource bleue

Blocage

DD

τ3

τ1

τa

τb

τc

τd
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Priority Inheritance Protocol (PIP)

when τ1 asks for a ressource used by a lower priority task τ2,
τ1 is blocked and τ2 inherits τ1 priority

the inheritance is transitive, when τ3 blocks τ2 and τ2 blocks
τ1, then τ3 inherits τ1 priority from τ2 (with P1 > P2 > P3)

when τ2 free the ressource, it goes back to its initial priority

when a ressource is free, it is allocated to the task with the
highest priority (amongs ones waiting for it)
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Priority Inheritance Protocol (PIP)

Execution normale

Execution en section critique, ressource bleue

Blocage

D RD R

τ1

τ2

τ3
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Priority Ceiling Emulation (PCE)

a ceiling priority is statically computed for each ressources

when a task enters a critical section, it takes the ceiling
priority of the ressource
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Priority Ceiling Emulation (PCE)

Execution normale

Execution en section critique, ressource bleue

Blocage

RD R D

τ1

τ2

τ3
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Priority Ceiling Protocol (PCP)

a ceiling priority is statically computed for each ressources

a task can enter into a critical section iff its priority is greater
than all the ceiling priorities of currently used ressources

as with PIP, there is priority inheritance

when a task is already into a critical section, it can obtain
other lock without verifying the preceeding condition
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Priority Ceiling Protocol (PCP)
Example 1

Execution normale

Execution en section critique, ressource bleue

Blocage

D RD R

τ1

τ2

τ3
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Priority Ceiling Protocol (PCP)
Example 2

DJ DJ DB DR RB RR DB RB RJ RJ

Execution normale

Blocage

Execution en section critique, ressource bleue

Execution en section critique, ressource rouge

Execution en section critique, ressource jaune

τ1

τ2

τ3
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Châıne de blocage
PIP

Execution en section critique, ressource jaune

Execution en section critique, ressource bleue

Execution normale

Blocage

DB DJ RJRJDJRBDB RB

τ1

τ2

τ3
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(Pas de) Châıne de blocage
PCE

Execution en section critique, ressource jaune

Execution en section critique, ressource bleue

Execution normale

Blocage

DB DJRB RJ DB RB DJ RJ

τ1

τ2

τ3
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(Pas de) Châıne de blocage
PCP

Execution en section critique, ressource jaune

Execution en section critique, ressource bleue

Execution normale

Blocage

DB DJ RJDBRB RJ DJRB

τ1

τ2

τ3
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Interblocage
PIP

Execution en section critique, ressource jaune

Execution en section critique, ressource bleue

Execution normale

Blocage

DJ DB DJ DB

τ1

τ2
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(Pas d’)Interblocage
PCE

Execution en section critique, ressource jaune

Execution en section critique, ressource bleue

Execution normale

Blocage

DJ DB RB RJ DJDB RJ RB

τ1

τ2
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(Pas d’)Interblocage
PCP

Execution en section critique, ressource jaune

Execution en section critique, ressource bleue

Execution normale

Blocage

DJ DB DB RB RJ DJ RJ RB

τ1

τ2
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PIP & PCP : Héritage transitif
PIP

DB DJ DB DJ RB RB RJ RJ

Execution en section critique, ressource bleue

Execution en section critique, ressource jaune Execution normale

Blocage

τ1

τ2

τ3
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Aperiodic Model

Mix Scheduling Periodic/aperiodic

1 ensure deadlines respect for the periodic traffic

2 minimize the response times for the aperiodic traffic

Impossible to offer temporal warranty for an aperiodic task:

it can arrive at any instant
an unbounded number can arrive simultaneously at any instant
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Schedule in background (BS)

Background Scheduling

the lowest priorities are reserved for aperiodic tasks

very simple to setup

there is no interference with the periodic traffic (warning: no
resource sharing between periodic and aperiodic is permitted)

just solve the first point! nothing is done to minimizing the
aperiodic response times
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Aperiodic-task server

Task server

resource reservation

bound the interference on other tasks

The aperiodic traffic is delegated to an other specific task with:

a budget

a policy to replenish this budget

Lot of algorithms available: PS, DS, SS, PE, EPE...
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Polling Server (PS)

Ou serveur à scrutation

Il s’agit d’une tâche périodique et il s’analyse comme telle.

PS = {(rs ,Cs ,Ts)}
éventuellement : PS = {(rs ,Cs ,Ts ,Ps)}
les apériodiques sont ajoutées dans une file d’attente lors de
leur activation,

lorsque le serveur obtient le processeur, il exécute les tâches
de la file dans la limite de sa capacité,

la capacité revient au maximum périodiquement,

si la file est vide alors que le serveur a la main, la capacité
tombe à zéro.
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Polling Server (PS)
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Deferrable Server (DS)

Ou serveur ajournable

DS = {(rs ,Cs ,Ts)}
éventuellement : DS = {(rs ,Cs ,Ts ,Ps)}
identique au PS, mais conserve sa capacité lorsque la file est
vide,

n’est plus une tâche périodique, et ne s’analyse plus comme
telle.
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Deferrable Server (DS)
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Deferrable Server (DS)
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DS: Schedulability analysis

Sufficient condition on the load with Rate Monotonic :

U = Us +
n∑

i=1

Ci

Ti
≤ Us + n ×

((
Us + 2

2Us + 1

) 1
n

− 1

)
(3)

with Us = Cs
Ts

and n the number of periodic tasks (without the
server).

when n tends to infinity:

U ≤ Us + ln

(
Us + 2

2Us + 1

)
(4)

For the response time analysis, the worst case now is:

for periodic task with lesser priorities than the server,
synchronous activation at t = rs + Ts − Cs ,
for the server, synchronous activation with higher priority tasks,
equivalent to feasibility analysis for tasks with activation jitters.
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Slack stealing

Slack Stealing

no reservation

dynamic computation of the system laxity (additional load the
system can handler at time t)

better performances (average random case)

but no more reservation (no more “warranty”)
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Laxity

Definitions

Si (t) : additional possible work at priority levels ≥ i until next
τi deadline

St = min Si (t)
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1 2
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3ut
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Laxity

Definitions

Si (t) : additional possible work at priority levels ≥ i until next
τi deadline

St = min Si (t)
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Laxity

Definitions

Si (t) : additional possible work at priority levels ≥ i until next
τi deadline

St = min Si (t)

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
� ������

������

������

3ut

SS

τ2

τ1



54/56

Dynamic computation

Si(t) computation

polynomial time complexity

principle: compute the duration of the next busy period, then
the one of the following idle period, and so on until the next
deadline.

the complexity of the wall process is too high to be usable in
practice

solution: use a lower bound on the slack time
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Principle

Si (t) ≥

di (t)− t −
∑
j≤i

I ij (t, di (t))


0

O(n)

Si (t) increase only when τi complete an instance

between two time instants, Si decrease by the time spent to
execute higher priority tasks

Si must so be recomputed at the end of each periodic tasks

we need to know at each instant how much processor time
each time has consumed (not so easy to implement)
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Going further

multiprocessor real-time scheduling,

more complex arrival time patterns: activation jitter...

more complex constraints model: (m,k)firm model...

temporal fault tolerance, overload detection, ...
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