IMC4-2RT

Real-time scheduling

Damien MASSON
http://esiee.fr/~massond/Teaching/

last modification: December 1, 2014

http://esiee.fr/~massond/Teaching/

References

@ Hard real-time computing systems: predictable scheduling
algorithms and applications, Giorgio C. Buttazzo, Springer,
2005 - 425 pages
(http://books.google.com/books/about/Hard_real_
time_computing_systems.html?id=fpJAZM6FK2sC)

@ Internet

http://books.google.com/books/about/Hard_real_time_computing_systems.html?id=fpJAZM6FK2sC
http://books.google.com/books/about/Hard_real_time_computing_systems.html?id=fpJAZM6FK2sC

Concurrency

Operating systems are mutlitasks, even on monoprocessors
architectures. How is it possible ? with processes !

Réveil

Déblocage

Election

Blocage

3/56

Real-Time

Real-Time: different from quick, more synonymous to deterministicJ

4/56

Real-Time

Several kind of real-time systems:

@ RTS with strict constraints (hard real-time systems): deadline
miss equal human life lost / mission failure (avionic industry)

@ RTS with relative constraints(soft real-time systems):
deadline misses are tolerated (multimedia)

@ RTS with mixed constraints

4/56

Real-Time

Several kind of real-time systems:

@ RTS with strict constraints (hard real-time systems): deadline
miss equal human life lost / mission failure (avionic industry)

@ RTS with relative constraints(soft real-time systems):
deadline misses are tolerated (multimedia)

@ RTS with mixed constraints

Standard DO-178B developed for the avionic industry in USA
distinguish 5 criticality levels, e.g:

e Safety Critical: failure = human lost (e.g. engines control,
automatic pilot)

@ Mission Critical: navigation systems, ...

4/56

Scheduling

@ Scheduling algorithm: the algorithm used to decide which task
is executed when

@ Schedule: the result of the scheduling algorithm (a sequence
of task)

@ Scheduler: the task responsible to apply the scheduling
algorithm to produce the schedule

o two families: preemptive, non preemptive

e two methodologies: offline / online

Scheduling

@ Scheduling algorithm: the algorithm used to decide which task
is executed when

@ Schedule: the result of the scheduling algorithm (a sequence
of task)

@ Scheduler: the task responsible to apply the scheduling
algorithm to produce the schedule

o two families: preemptive, non preemptive

e two methodologies: offline / online

In this class, we will study online preemptive algorithms)

5/56

Periodic Model

Real-Time: ensure constraints respect. Which constraints 7

The most studied model (from the control command field):
periodic task systems

A periodic task 7; is defined by:

its first release time instant: r;

its worst case execution time (WCET): G;
its period: T;

its relative deadline: D;

from which we can deduce the absolute deadline of its
instance k: dj x

the logic is: upper cases for durations, lower cases for instants

. (extensible model !)

Example

12

12
12

3

71

T2

73

|
I
|
|
|
[

LI

Round Robin

10

7/56

Example

12

12
12

3

71

T2

73

fixed priorities

g

LI

Round Robin

T1
T2

10

7/56

Online preemptive real-time scheduling

(Mono Processor)

Tasks instances (job) are sorted by priorities. At each time instant,
the scheduler gives CPU to the task with the highest priority.

o fixed priority: tasks priority are fixed once and for all
(according to a constant like period, deadline, importance...
or arbitrarily),

@ dynamic priority: priorities can change, they are given
according to a variable like the next deadline proximity, the
system laxity...

Evaluating a scheduling algorithm 77

8/56

Online preemptive real-time scheduling

(Mono Processor)

Tasks instances (job) are sorted by priorities. At each time instant,
the scheduler gives CPU to the task with the highest priority.

o fixed priority: tasks priority are fixed once and for all
(according to a constant like period, deadline, importance...
or arbitrarily),

@ dynamic priority: priorities can change, they are given
according to a variable like the next deadline proximity, the
system laxity...

Evaluating a scheduling algorithm 77

optimality

schedulability bound

easy or not to implement ?

execution overhead

jitter, stability, average response times... 8/56

Main algorithms

e Rate Monotonic (RM): priority to the task with the smallest
period

@ Deadline Monotonic (DM) : priority to the task with the
smallest relative deadline

e EDF : priority to the most urgent JOB (not task)

@ LLF : priority to the task with the smallest laxity (variable
function of time)

9/56

Main algorithms

e Rate Monotonic (RM): priority to the task with the smallest
period

@ Deadline Monotonic (DM) : priority to the task with the
smallest relative deadline

e EDF : priority to the most urgent JOB (not task)

@ LLF : priority to the task with the smallest laxity (variable
function of time)

b Li(t) = butt) - C3(t) l W
T f L L L O B
: : i(t) Di(t)
% i
; ; 16 10
: 1 5 9
: : 4 8
: : 47
| | - @@ 4 6

9/56

Exercises

Give the schedules obtain with these 4 algorithms between t = 0 et
t = 30 for taskset:

ri| Ti | Di | G
71101 6 6 | 2
»|0| 7| 4|3
73| 0]15| 15| 3

10/56

RM

S

N

N

I\

30

95

50

15

10

0

DM

N |,

BN

SSES

30

25

20

15

10

EDF

S

SR

lewkwlk\\@ikQ\\

T3 I I ‘N I i

30

25

20

15

10

5

0

LLF

S,

Joosh o snis LSS, K os]

T3 I I ‘N I i

30

25

20

15

10

5

0

Schedulability (validity)

Feasibility

o Feasibility: given a taskset, is it possible to propose a
schedule that respect all timing constraints?

@ Schedulability: given a taskset, is it possible to propose a
deterministic algorithm that generates a valid schedule?

@ Schedulability with A: given a taskset and an algorithm A, is
A produces a valid schedule?
Several approaches depending on the studied problem and the
system criticality:
@ sufficient condition for an admission control scheme,
e fault and/or overload detection,
@ exact analysis with feasibility /schedulability analysis theory.

15/56

System Load study

P load: U = —
rocessor loa L

This can be enough to conclude under certain assumptions:

o UL n(2% — 1) is sufficient (but not necessary) condition for
the schedulability iff V;D; = T; (implicit deadlines) with a
fixed priority algorithm,

@ U < 1 s a necessary and sufficient condition for the
schedulability under EDF iff ¥V;D; = T;,

But if D; < T; (constrained deadlines), or when D; not related to
T; (general case) things are not so simple...

16/56

Schedulability study when D; = T,

(fixed priority)

o UL n(2% — 1) is a sufficient condition and U <1is a
necessary condition

owhen1§U>n(2%—1)?

e workload study: we are looking for a time instant before the
deadline where all the cumulated demand is satisfied
@ worst case response time computation
@ job j response time R,J.': time between the request and the end
of the job

o task worst case response time (WCRT;): maximum amongst
the R/ for all j

17/56

Demand study

If Vi, D; < T;, the system is schedulable with a fixed priority
algorithm iff it exists a time instant t in the interval (0, Di] such
that t = w;(t)

o with wi(t) =) [;J Cx

k<i

@ recursive algorithm: computation of t; = w;(0), then
th = W,'(tl), vy th = W,'(t,,,l)

@ the algorithms ends either when the deadline is reached or if a
t with t = w;(t) is found.

18/56

Demand study

If Vi, D; < T;, the system is schedulable with a fixed priority
algorithm iff it exists a time instant t in the interval (0, Di] such
that t = w;(t)

@ with W,'(t) = Z ’772“ Cy
k<i
@ recursive algorithm: computation of t; = w;(0), then
th = W,'(tl), vy th = W,'(tn_l)
@ the algorithms ends either when the deadline is reached or if a
t with t = w;(t) is found.

study the level 2 demand on the preceding example with RM

study the level 2 demand on the preceding example with DM
study the level 3 demand on the preceding example with RM
is the level 3 demand with DM different 7 1656

DM

N |,

BN

SSES

30

25

20

15

10

DM

‘W\\\

W; I

e N

I I ‘N I i

S\

1

T2

T3

30

25

20

15

10

15
18

13
15

8
13

t
W3(t)

19/56

Limitations

@ this test permits only to conclude on the schedulability, it
does not provide any other informations. It can be of interest
to compute the response times, allowing the system designer
to have a better idea of the tasks behaviors (jitter, average
response time...).

@ it works only for tasks with implicit deadlines D; < T;

@ to convince yourself, try to analyze this example:

rr| G| T; | D Priority P;

0| 4| 8|10 high

3168 low

What is the value of wy(7) ? Is it relevant to compare this to
D, ?

@ anyway this system is not schedulable, but one has to wait
until time t = 21 to see that the second instance of task 7

misses its deadline (the worst response time is no longer the
one of the first job!)

™ | 0

20/56

Computing response times

@ recursive computation very similar to the demand analysis
@ a task may be delayed only by tasks with an higher priority

@ we will compute the response time of task 7; 's job number j,
job 1 being the one starting at r;. Its termination instant,
denoted F/, is given by equation:

F/ = min{t = wi_1(t) +j * G} (1)

! t>0

@ its response time, R,J is then the difference between its
termination instant and its release instant:

Ri=F —(r+(-1)T) (2)

21/56

Busy Period

processor continuous activity

@ a level i busy period is the time interval between two level-i
idle time: the processor is idle or occupied with lower priorities
Level-i idle times are solution of the equation w;(t) =t

@ we want to compute the duration of the one starting at time
t = 0, because the worst scenario for task 7; must occur
during it (assuming a synchronous activation scenario). The
algorithm is the same as the one used for the demand analysis
excepted that we do not stop when the deadline is reached.

It is sufficient to study a task during the first busy period to
encounter its worst case response time.

22/56

Busy Period

processor continuous activity

@ a level i busy period is the time interval between two level-i
idle time: the processor is idle or occupied with lower priorities
Level-i idle times are solution of the equation w;(t) =t

@ we want to compute the duration of the one starting at time
t = 0, because the worst scenario for task 7; must occur
during it (assuming a synchronous activation scenario). The
algorithm is the same as the one used for the demand analysis
excepted that we do not stop when the deadline is reached.

It is sufficient to study a task during the first busy period to
encounter its worst case response time.

v

Exercise

@ compute the level 2 busy period (bp;) for the previous
example

@ compute Q;, the 7 activations number during bpo

22/56

@ combpute the Q: first response times of 7

Other Task Models

@ until now, we made the hypothesis that tasks were
independants, but other constraints can exists:

e precedence constraints between tasks
e resource sharing with mutual exclusion

@ non periodic task have to be handle:
e by setting a bound on their interarrival time, and worst case
study (sporadis model)
e encapsulate their handling inside a server with limited
ressources
e handling in backgroud or with a slack stealing algorithm

23/56

ressource sharing

@ when two concurrent task access ressources, we have to
protect the resources accesses with lock (semaphore, mutex,

)

@ to access a ressource, a task have to obtain the associated
lock

@ one task at once ca have a given lock
@ when asking a lock, a task is blocked until the lock is available

@ special attention must be given to the lock attribution
algorithm

24/56

Issues and solution with fixe priorities

@ Bounding the priority inversions
@ Avoid deadlocks

@ Prevent blocking chains

25/56

Issues and solution with fixe priorities

@ Bounding the priority inversions

when a task execute whereas another one with an higher priority is
blocked

@ Avoid deadlocks

@ Prevent blocking chains

25/56

Issues and solution with fixe priorities

@ Bounding the priority inversions
@ Avoid deadlocks

when a task has a first lock, and ask for another one previously
given to a second task, which waits for the first lock J

@ Prevent blocking chains

25/56

Issues and solution with fixe priorities

@ Bounding the priority inversions
@ Avoid deadlocks

@ Prevent blocking chains

When a task instance is blocked several times

25/56

Issues and solution with fixe priorities

@ Bounding the priority inversions
@ Avoid deadlocks

@ Prevent blocking chains

Three algorithms :

@ Priority Inheritance Protocol (PIP)
@ Priority Ceiling Protocol (PCP)
@ Priority Ceiling Emulation (PCE)

25/56

Issues and solution with fixe priorities

@ Bounding the priority inversions
@ Avoid deadlocks

@ Prevent blocking chains

Three algorithms :

@ Priority Inheritance Protocol (PIP)
@ Priority Ceiling Protocol (PCP)
@ Priority Ceiling Emulation (PCE)

25/56

Issues and solution with fixe priorities

@ Bounding the priority inversions
@ Avoid deadlocks

@ Prevent blocking chains

Three algorithms :

@ Priority Inheritance Protocol (PIP)
@ Priority Ceiling Protocol (PCP)
@ Priority Ceiling Emulation (PCE)

25/56

Issues and solution with fixe priorities

@ Bounding the priority inversions
@ Avoid deadlocks

@ Prevent blocking chains

Three algorithms :

@ Priority Inheritance Protocol (PIP)
@ Priority Ceiling Protocol (PCP)
@ Priority Ceiling Emulation (PCE)

25/56

Unbound Inversion

1

2

T3

l:l Execution normale

- Execution en section critique, ressource bleue

- Blocage

26/56

Unbound Inversion

Th

l:l Execution normale

- Execution en section critique, ressource bleue

- Blocage

27/56

Priority Inheritance Protocol (PIP)

@ when 77 asks for a ressource used by a lower priority task 7,
71 is blocked and 7, inherits 71 priority

@ the inheritance is transitive, when 73 blocks 7 and 7 blocks
71, then 73 inherits 71 priority from 7, (with Py > P, > P3)

@ when 7 free the ressource, it goes back to its initial priority

@ when a ressource is free, it is allocated to the task with the
highest priority (amongs ones waiting for it)

28/56

Priority Inheritance Protocol (PIP)

. —
m -

l:l Execution normale
- Execution en section critique, ressource bleue

- Blocage

29/56

Priority Ceiling Emulation (PCE)

@ a ceiling priority is statically computed for each ressources

@ when a task enters a critical section, it takes the ceiling
priority of the ressource

30/56

Priority Ceiling Emulation (PCE)

. [m— —

l:l Execution normale
- Execution en section critique, ressource bleue

- Blocage

31/56

Priority Ceiling Protocol (PCP)

@ a ceiling priority is statically computed for each ressources

@ a task can enter into a critical section iff its priority is greater
than all the ceiling priorities of currently used ressources

@ as with PIP, there is priority inheritance

@ when a task is already into a critical section, it can obtain
other lock without verifying the preceeding condition

32/56

Priority Ceiling Protocol (PCP)

Example 1

. —
m -
o

l:l Execution normale
- Execution en section critique, ressource bleue

- Blocage

33/56

Priority Ceiling Protocol (PCP)

Example 2

RB RR DB

DR

1

2
T3

|
I
l:l Execution normale

- Execution en section critique, ressource bleue

- Blocage

- Execution en section critique, ressource rouge

l:l Execution en section critique, ressource jaune

34/56

Chaine de blocage

PIP

1

T2

T3

I
|
- Blocage

- Execution en section critique, ressource bleue

l:l Execution normale

l:l Execution en section critique, ressource jaune

35/56

(Pas de) Chaine de blocage

PCE

1

T2
T3

- Blocage

- Execution en section critique, ressource bleue

l:l Execution normale

l:l Execution en section critique, ressource jaune

36/56

(Pas de) Chaine de blocage

PCP

1

T2
T3

- Blocage

- Execution en section critique, ressource bleue

l:l Execution normale

l:l Execution en section critique, ressource jaune

37/56

Interblocage
PIP

1

-

T2

- Execution en section critique, ressource bleue - Blocage

l:l Execution en section critique, ressource jaune l:l Execution normale

38/56

(Pas d")Interblocage

PCE

1

T2

DJ DB
|

.

RB RI DB

i L | |

Execution en section critique, ressource bleue

Execution en section critique, ressource jaune

[
]

Blocage

Execution normale

39/56

(Pas d")Interblocage

PCP

1

T2

- Execution en section critique, ressource bleue

l:l Execution en section critique, ressource jaune

Blocage

Execution normale

40/56

RB RJ
|
|
|
|
|
|
|
|
|
|
|
- Blocage

m
~ . . .
(5]
E= SaR n EEb by R 5
) 2
c [N E R - &
+ a .5
Sz
=
) A] -- 8
w T R e T8
X - R -
.. 2
(a1 _ &
O
(el -
< & &
(o
i~
o x

41/56

I:l Execution normale

I:l Execution en section critique, ressource jaune

Aperiodic Model

Mix Scheduling Periodic/aperiodic

@ ensure deadlines respect for the periodic traffic

@ minimize the response times for the aperiodic traffic

@ Impossible to offer temporal warranty for an aperiodic task:

e it can arrive at any instant
e an unbounded number can arrive simultaneously at any instant

42/56

Schedule in background (BS)

Background Scheduling
the lowest priorities are reserved for aperiodic tasks

@ very simple to setup

@ there is no interference with the periodic traffic (warning: no
resource sharing between periodic and aperiodic is permitted)

@ just solve the first point! nothing is done to minimizing the
aperiodic response times

43/56

BS

20

10

Aperiodic-task server

@ resource reservation

@ bound the interference on other tasks

The aperiodic traffic is delegated to an other specific task with:
@ a budget
@ a policy to replenish this budget

Lot of algorithms available: PS, DS, SS, PE, EPE...

45/56

Polling Server (PS)

Ou serveur a scrutation

Il s'agit d'une tache périodique et il s'analyse comme telle.
o PS={(rs,Cs, Ts)}
e éventuellement : PS = {(rs, Cs, Ts, Ps)}

@ les apériodiques sont ajoutées dans une file d'attente lors de
leur activation,

@ lorsque le serveur obtient le processeur, il exécute les taches
de la file dans la limite de sa capacité,

@ la capacité revient au maximum périodiquement,

@ si la file est vide alors que le serveur a la main, la capacité
tombe a zéro.

46/56

Polling Server (PS)

| i | | ‘
T S T W W R RENR AN

h\

l

e

20

10

Deferrable Server (DS)

Ou serveur ajournable

o DS = {(rsa G, Ts)}

e éventuellement : DS = {(rs, Cs, Ts, Ps)}

@ identique au PS, mais conserve sa capacité lorsque la file est
vide,

@ n'est plus une tache périodique, et ne s'analyse plus comme
telle.

48/56

Deferrable Server (DS)

SIS P NN T

LI L R O

B

DS

20

10

s

Deferrable Server

7

RIS AN .

DS: Schedulability analysis

@ Sufficient condition on the load with Rate Monotonic :
n 1
G Us+2 \n
= < st e -1
U L&+Z;ﬂ__%+nx<<mk+l>) (3)

with Us = % and n the number of periodic tasks (without the
server).

@ when n tends to infinity:

Ug¢+m<%+2>

2Us +1

@ For the response time analysis, the worst case now is:
e for periodic task with lesser priorities than the server,
synchronous activation at t = rs + T5 — G,
o for the server, synchronous activation with higher priority tasks,
e equivalent to feasibility analysis for tasks with activation jitters.

51/56

Slack stealing

Slack Stealing

@ no reservation

@ dynamic computation of the system laxity (additional load the
system can handler at time t)

@ better performances (average random case)

@ but no more reservation (no more “warranty”)

52/56

Laxity

Definitions

@ Si(t) : additional possible work at priority levels > i until next
7; deadline

3ut

7
IRRREEEY

0 2

53/56

Laxity

Definitions

@ Si(t) : additional possible work at priority levels > i until next

7; deadline
e 5; = min 5;(t)
3ut

ﬁhihih;h o 1- h.

0 2 4 6 8 10

53/56

Laxity

Definitions

@ Si(t) : additional possible work at priority levels > i until next
7; deadline

e 5; = min 5;(t)

3ut

s
ﬁ ;h;m n
L TM

53/56

Dynamic computation

Si(t) computation

@ polynomial time complexity

@ principle: compute the duration of the next busy period, then
the one of the following idle period, and so on until the next

deadline.

@ the complexity of the wall process is too high to be usable in
practice
@ solution: use a lower bound on the slack time

54/56

Principle

@ S;(t) increase only when 7; complete an instance

@ between two time instants, S; decrease by the time spent to
execute higher priority tasks

@ S; must so be recomputed at the end of each periodic tasks

@ we need to know at each instant how much processor time
each time has consumed (not so easy to implement)

55/56

Going further

@ multiprocessor real-time scheduling,
@ more complex arrival time patterns: activation jitter...
@ more complex constraints model: (m,k)firm model...

o temporal fault tolerance, overload detection, ...

56/56

	Introduction
	Main algorithms
	Schedulability analysis
	Load
	Processor Demand
	Response time analysis

	Other Models
	Ressources
	Non periodic Tasks
	Dynamic approximation (DASS)

	Conclusions

