# Dissecting the square into an odd number of triangles of almost equal area

Séminaire Francilien - Paris

Jean-Philippe Labbé, Günter Rote et Günter M. Ziegler

Université Libre de Berlin





28 mars 2019

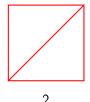
Let  $n \ge 2$ .

Let  $n \geq 2$ .

Task: Dissect the square into n triangles of equal area.

Let  $n \ge 2$ .

Task: Dissect the square into n triangles of equal area.



Let  $n \geq 2$ .

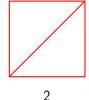
Task: Dissect the square into n triangles of equal area.

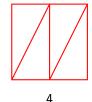




Let  $n \geq 2$ .

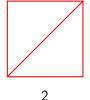
Task: Dissect the square into n triangles of equal area.

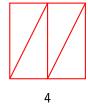


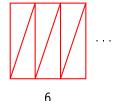


Let  $n \geq 2$ .

Task: Dissect the square into n triangles of equal area.

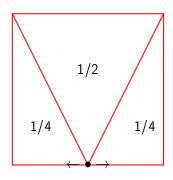




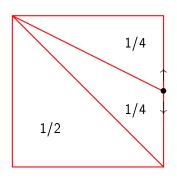


n=3:

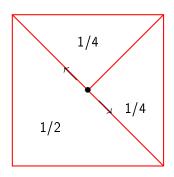
n=3:

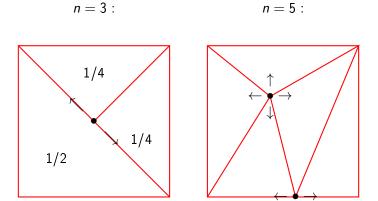


$$n=3$$
:



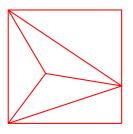
$$n=3$$
:

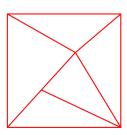




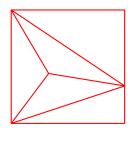
**Question**: Is it possible to dissect a square into an odd number of triangles of equal area?

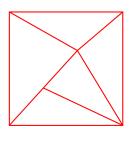
# Triangulation vs Dissection





# Triangulation vs Dissection





Face-to-face:

Triangulation

 $not\ face-to-face:$ 

Dissection

Theorem (Richman-Thomas, Monsky (1970))

It is not possible to dissect a square into an odd number of triangles of equal area.

Theorem (Richman-Thomas, Monsky (1970))

It is not possible to dissect a square into an odd number of triangles of equal area.

#### Theorem (Richman-Thomas, Monsky (1970))

It is not possible to dissect a square into an odd number of triangles of equal area.

- 1. A special 3 coloring of the square.
  - 1.1 using a 2-adic valuation on  $\mathbb{Q}$ , and extend coordinates of the dissection.

#### Theorem (Richman-Thomas, Monsky (1970))

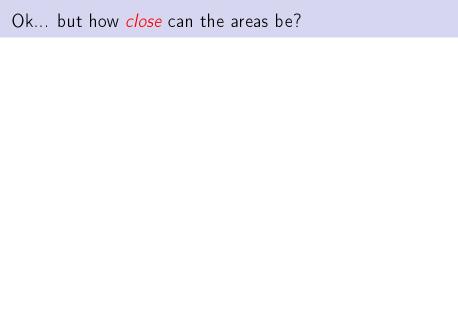
It is not possible to dissect a square into an odd number of triangles of equal area.

- 1. A special 3 coloring of the square.
  - 1.1 using a 2-adic valuation on  $\mathbb{Q}$ , and extend coordinates of the dissection.
- 2. A rainbow triangle cannot have area 0 or 1/n for odd n.

#### Theorem (Richman-Thomas, Monsky (1970))

It is not possible to dissect a square into an odd number of triangles of equal area.

- 1. A special 3 coloring of the square.
  - 1.1 using a 2-adic valuation on  $\mathbb{Q}$ , and extend coordinates of the dissection.
- 2. A rainbow triangle cannot have area 0 or 1/n for odd n.
- 3. Every finite dissection of the square contains an odd number of rainbow triangles. Thus at least one!



#### Ok... but how *close* can the areas be?

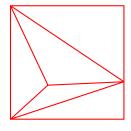


#### Ok... but how *close* can the areas be?



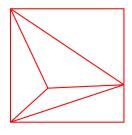
"A difference between two things that should be the same."

# Intuition of low discrepancy

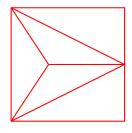


seems not optimal

# Intuition of low discrepancy



seems not optimal



seems the best possible

# Measuring area deviation

D: dissection with triangle areas  $A_1, \ldots, A_n$ 

► Root-mean-square error (RMS, standard deviation):

$$RMS(D) := \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(A_i - \frac{1}{n}\right)^2}$$

Range:

$$R(D) = \max_{i,j \in [n]} |A_i - A_j|$$

# Measuring area deviation

D: dissection with triangle areas  $A_1, \ldots, A_n$ 

Root-mean-square error (RMS, standard deviation):

$$RMS(D) := \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(A_i - \frac{1}{n}\right)^2}$$

Range:

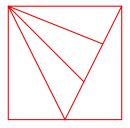
$$R(D) = \max_{i,j \in [n]} |A_i - A_j|$$

$$\left|\frac{\mathrm{R}(D)}{2\sqrt{n}} \le \mathrm{RMS}(D) \le \mathrm{R}(D)\right|$$

#### Definition (Graph $\Gamma$ of a dissection)

Nodes: corners of triangles

Edge: between corners of a triangle not containing side nodes

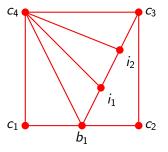


Dissection

#### Definition (Graph $\Gamma$ of a dissection)

Nodes: corners of triangles

Edge: between corners of a triangle not containing side nodes

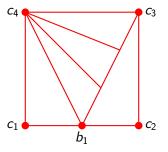


Nodes

#### Definition (Graph $\Gamma$ of a dissection)

Nodes: corners of triangles

Edge: between corners of a triangle not containing side nodes

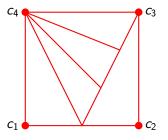


Boundary nodes

#### Definition (Graph $\Gamma$ of a dissection)

Nodes: corners of triangles

Edge: between corners of a triangle not containing side nodes

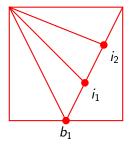


Corner nodes

#### Definition (Graph $\Gamma$ of a dissection)

Nodes: corners of triangles

Edge: between corners of a triangle not containing side nodes

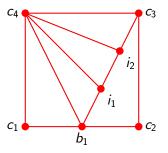


Side nodes

#### Definition (Graph $\Gamma$ of a dissection)

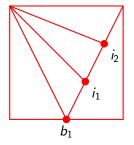
Nodes: corners of triangles

Edge: between corners of a triangle not containing side nodes



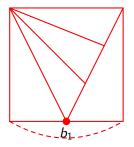
Edges

Side nodes → linear constraints



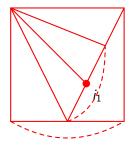
Side nodes

Side nodes → linear constraints



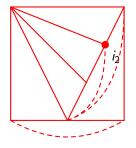
$$b_1 \longrightarrow (b_1,(c_1,c_2))$$

Side nodes → linear constraints



$$i_1 \longrightarrow (i_1,(b_1,i_2))$$

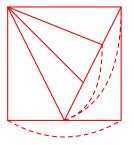
Side nodes → linear constraints



$$i_2 \longrightarrow (i_2,(b_1,c_3))$$

## Simplicial graph of a dissection

Side nodes → linear constraints



Another planar graph with more triangles: a simplicial graph of the dissection

 $V(\Gamma):=$  nodes of the graph  $\Gamma$  of a fixed dissection

 $V(\Gamma) := \text{nodes of the graph } \Gamma \text{ of a fixed dissection}$ 

Definition (Framed map)

A framed map is a map  $\phi \colon V(\Gamma) \to \mathbb{R}^2$  that sends the corner nodes of  $\Gamma$  to the corners of the square.

 $V(\Gamma) := \text{nodes of the graph } \Gamma \text{ of a fixed dissection}$ 

### Definition (Framed map)

A framed map is a map  $\phi \colon V(\Gamma) \to \mathbb{R}^2$  that sends the corner nodes of  $\Gamma$  to the corners of the square.

### Definition (Constrained framed map)

A framed map  $\phi$  is constrained if  $\phi$  sends the side nodes and the two corners of that side to a line, for every side node.

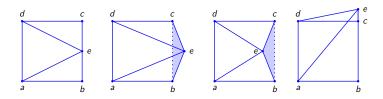
 $V(\Gamma) := \text{nodes of the graph } \Gamma \text{ of a fixed dissection}$ 

### Definition (Framed map)

A framed map is a map  $\phi \colon V(\Gamma) \to \mathbb{R}^2$  that sends the corner nodes of  $\Gamma$  to the corners of the square.

### Definition (Constrained framed map)

A framed map  $\phi$  is constrained if  $\phi$  sends the side nodes and the two corners of that side to a line, for every side node.



## How to measure discrepancy?

 $D=\{t_1,t_2,\ldots,t_n\}$  : dissection of the square with n triangles L : triangles from linear constraints C= set of corner nodes  $\Gamma_D$ 

## How to measure discrepancy?

 $D = \{t_1, t_2, \dots, t_n\}$ : dissection of the square with n triangles

L: triangles from linear constraints

 $C = \text{set of corner nodes } \Gamma_D$ 

Definition (Area difference polynomial)

The area difference polynomial  $\pi_D \in \mathbb{R}[X_D]$  of D is the polynomial

$$\pi_D(X_D) = \sum_{i \in [n]} \left( A(t_i) - \frac{1}{n} \right)^2 + \sum_{\ell \in L} A(\ell)^2 + \sum_{\nu \in C} \left( (x_{\nu} - p_{\nu})^2 + (y_{\nu} - q_{\nu})^2 \right).$$

where  $(p_c,q_c)$  are the coordinates of the corners of the square

## How to measure discrepancy?

 $D = \{t_1, t_2, \dots, t_n\}$ : dissection of the square with n triangles

L: triangles from linear constraints

 $C = \text{set of corner nodes } \Gamma_D$ 

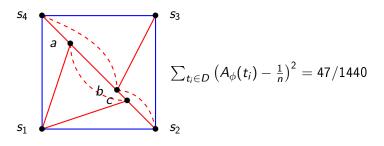
### Definition (Area difference polynomial)

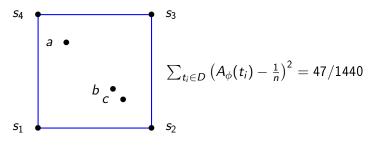
The area difference polynomial  $\pi_D \in \mathbb{R}[X_D]$  of D is the polynomial

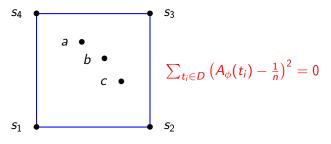
$$\pi_D(X_D) = \sum_{i \in [n]} \left( A(t_i) - \frac{1}{n} \right)^2 + \sum_{\ell \in L} A(\ell)^2 + \sum_{\nu \in C} \left( (x_{\nu} - p_{\nu})^2 + (y_{\nu} - q_{\nu})^2 \right).$$

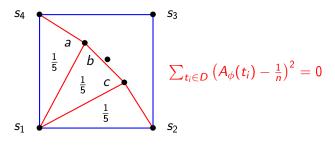
where  $(p_c, q_c)$  are the coordinates of the corners of the square and  $A(t_i)$  denotes the area of triangle  $t_i$ , i.e. a determinant of size 3

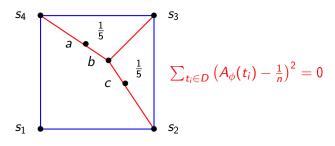
$$A(t_i) = rac{1}{2} \left| egin{array}{cccc} 1 & 1 & 1 & 1 \ x_1 & x_2 & x_3 \ y_1 & y_2 & y_3 \end{array} \right|$$



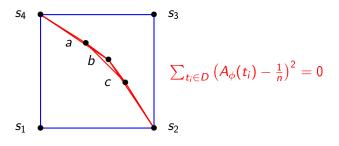








Consider the graph of the dissection:



In the discrepancy polynomial:

$$\pi_D(X_D) = \sum_{t_i \in D} \left( A_{\phi}(t_i) - \frac{1}{n} \right)^2 + \sum_{\ell \in I} A_{\phi}(\ell)^2 + \sum_{v \in C} \left( (x_{\phi(v)} - p_v)^2 + (y_{\phi(v)} - q_v)^2 \right).$$

 $\pi_D(X_D) \geq 0$  by definition

 $\pi_D(X_D) \geq 0$  by definition

$$\pi_D(X_D) = 0 \iff X_D$$
 describes a constrained framed map, and all signed areas of triangles of  $D$  are equal to  $1/n$ .

 $\pi_D(X_D) \geq 0$  by definition

$$\pi_D(X_D)=0 \iff X_D \text{ describes a constrained framed map, and}$$
 all signed areas of triangles of  $D$  are equal to  $1/n$ .

Monsky's theorem + some computation  $\Longrightarrow \pi_D(X_D) > 0$ 

 $\pi_D(X_D) \geq 0$  by definition

$$\pi_D(X_D) = 0 \iff X_D$$
 describes a constrained framed map, and all signed areas of triangles of  $D$  are equal to  $1/n$ .

Monsky's theorem + some computation  $\Longrightarrow \pi_D(X_D) > 0$ 

$$\mathcal{D}_n := \{ \text{ all dissections of the square with } n \text{ triangles } \}.$$

$$\Delta(n) := \min \{ \pi_D(X_\phi) \mid D \in \mathcal{D}_n, \ \phi \text{ constr. framed map of } \Gamma_D \}$$

$$\pi_D(X_D) \ge 0$$
 by definition

$$\pi_D(X_D) = 0 \iff X_D$$
 describes a constrained framed map, and all signed areas of triangles of  $D$  are equal to  $1/n$ .

Monsky's theorem + some computation  $\Longrightarrow \pi_D(X_D) > 0$ 

$$\mathcal{D}_n := \{ \text{ all dissections of the square with } n \text{ triangles } \}.$$

$$\Delta(n) := \min \{ \pi_D(X_\phi) \mid D \in \mathcal{D}_n, \ \phi \text{ constr. framed map of } \Gamma_D \}$$

$$\Delta(n) \stackrel{n \to \infty}{\longrightarrow} 0$$
 ?

Numerical experiments and exhaustive enumeration

Mansow (2003) used Matlab to study the range of triangulations

Numerical experiments and exhaustive enumeration

Mansow (2003) used Matlab to study the range of triangulations

$$M(n) = \min_{T \in \mathcal{D}_n} \Big\{ \max_{t_i, t_j \in T} |A(t_i) - A(t_j)| \Big\}.$$

Numerical experiments and exhaustive enumeration

Mansow (2003) used Matlab to study the range of triangulations

$$M(n) = \min_{T \in \mathcal{D}_n} \Big\{ \max_{t_i, t_j \in T} |A(t_i) - A(t_j)| \Big\}.$$

$$M(5) \leq 0.0225$$



Numerical experiments and exhaustive enumeration

Mansow (2003) used Matlab to study the range of triangulations

$$M(n) = \min_{T \in \mathcal{D}_n} \Big\{ \max_{t_i, t_j \in T} |A(t_i) - A(t_j)| \Big\}.$$

$$M(5) \le 0.0225$$
  $M(7) \le 0.0031$ 





# Numerical experiments and exhaustive enumeration

Mansow (2003) used Matlab to study the range of triangulations

$$M(n) = \min_{T \in \mathcal{D}_n} \Big\{ \max_{t_i, t_j \in T} |A(t_i) - A(t_j)| \Big\}.$$

$$M(5) \le 0.0225$$
  $M(7) \le 0.0031$   $M(9) \le 0.00014$ 







Numerical experiments and exhaustive enumeration

Mansow (2003) used Matlab to study the range of triangulations

$$M(n) = \min_{T \in \mathcal{D}_n} \Big\{ \max_{t_i, t_j \in T} |A(t_i) - A(t_j)| \Big\}.$$

$$M(5) \le 0.0225$$
  $M(7) \le 0.0031$   $M(9) \le 0.00014$ 

and  $M(11) \le 4.2 \times 10^{-6}$ , (weakly) suggesting an exponential decrease.

#### Upper bound for triangulations

Easy constructions: an upper bound of the form  $O(1/n^2)$ .

#### Upper bound for triangulations

Easy constructions: an upper bound of the form  $O(1/n^2)$ .

Schulze (2011) obtained a family of triangulations with range of area at most  $O(1/n^3)$ .

#### Upper bound for triangulations

Easy constructions: an upper bound of the form  $O(1/n^2)$ .

Schulze (2011) obtained a family of triangulations with range of area at most  $O(1/n^3)$ .

<u>Proof technique:</u> used the theory of continued fractions.

#### New results - Lower bound

Because  $R(D) \ge RMS(D)$  and  $nRMS(D)^2 = \pi_D(X_D)$ , it suffices to get a lower bound for  $\pi_D(X_D)$  to bound R(D). We get

$$R(D) \ge \frac{1}{2^{2^{O(n)}}}$$
 (doubly exponential)

#### New results - Lower bound

Because  $R(D) \ge RMS(D)$  and  $nRMS(D)^2 = \pi_D(X_D)$ , it suffices to get a lower bound for  $\pi_D(X_D)$  to bound R(D). We get

$$R(D) \ge \frac{1}{2^{2^{O(n)}}}$$
 (doubly exponential)

Proof technique: Gap theorems from real algebraic geometry.

"An algebraic number  $\alpha \neq 0$  can not be arbitrarily close to 0."

...depending on the degree and the size of the coefficients of its minimal polynomial.

## New results - Upper bound

To provide an upper bound it requires to construct a family of dissections with very small range.

### New results - Upper bound

To provide an upper bound it requires to construct a family of dissections with very small range.

Using intuitions from exhaustive generation and exceptional properties of the Thue–Morse sequence,

### New results - Upper bound

To provide an upper bound it requires to construct a family of dissections with very small range.

Using intuitions from exhaustive generation and exceptional properties of the Thue-Morse sequence,

we provide a family of dissections  $Z_n$  for every odd n with

$$R(Z_n) \le \frac{1}{n^{\log_2 n - 5}} = \frac{1}{2^{\Omega(\log^2 n)}}$$
 (superpolynomial)

How to get a lower bound on  $\pi_D(X_D)$ ?

... back to the area difference polynomial.

## Ansatz: gap theorem in real algebraic geometry

### Theorem (Emiris-Mourrain-Tsigaridas, 2010)

If  $f \in \mathbb{Z}[x_1, \dots, x_k]$  is strictly positive on the k-simplex:

$$\left\{x \in \mathbb{R}^k_{\geq 0} \ : \ \sum_{i=1}^k x_i \leq 1\right\},\,$$

and f is of degree d, with coefficients bounded by  $2^{\tau}$ ,

## Ansatz: gap theorem in real algebraic geometry

#### Theorem (Emiris-Mourrain-Tsigaridas, 2010)

If  $f \in \mathbb{Z}[x_1, \ldots, x_k]$  is strictly positive on the k-simplex:

$$\left\{x \in \mathbb{R}^k_{\geq 0} : \sum_{i=1}^k x_i \leq 1\right\},\,$$

and f is of degree d, with coefficients bounded by  $2^{\tau}$ ,

then the minimum  $m_{DMM}$  of f on the k-simplex satisfies

$$-\log m_{DMM} < (k^2 + k) \log \sqrt{d} + [k^2 \log d + k(3 + 3 \log d + \tau + d \log k) + d(\log k + 1) + \log d + \tau + 2] d(d - 1)^{k-1}.$$

 $m_{DMM}$  is the Davenport-Mahler-Mignotte bound.

# Ansatz: gap theorem in real algebraic geometry

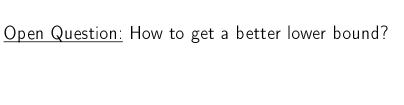
#### Corollary

The minimum M for the discrepancy polynomial  $\pi_D(X_D)$  satisfies

$$-\log M = O(n^29^n).$$

In other words,

$$\Delta(n) = \frac{1}{2^{O(n^29^n)}} = \frac{1}{2^{2^{O(n)}}}.$$



- Extend the computations of Mansow to dissections
- Find good candidates for upper bounds

- Extend the computations of Mansow to dissections
- Find good candidates for upper bounds
- Use a combination of plantri, and Sage to generate all dissections with n triangles and k vertices

- Extend the computations of Mansow to dissections
- Find good candidates for upper bounds
- Use a combination of plantri, and Sage to generate all dissections with n triangles and k vertices
- 2. Use Bertini and scipy to find optima for each dissection

- Extend the computations of Mansow to dissections
- Find good candidates for upper bounds
- Use a combination of plantri, and Sage to generate all dissections with n triangles and k vertices
- 2. Use Bertini and scipy to find optima for each dissection
- → Abuse and automatize ssh, and screen on 36 processors in the institute.

#### Original goals:

- Extend the computations of Mansow to dissections
- Find good candidates for upper bounds
- Use a combination of plantri, and Sage to generate all dissections with n triangles and k vertices
- 2. Use Bertini and scipy to find optima for each dissection
- → Abuse and automatize ssh, and screen on 36 processors in the institute.

Generate and optimize the dissections with 9 triangles and 8 vertices took 3 days

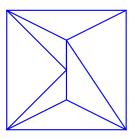
We now know more on the gradient variety:

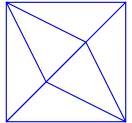
We now know more on the gradient variety:

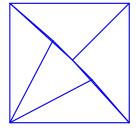
► Can have dimension > 0

We now know more on the gradient variety:

- ► Can have dimension > 0
- ► Some dissections degenerate or flip-over

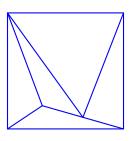


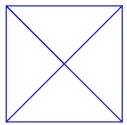


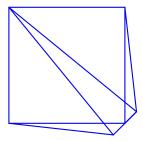


We now know more on the gradient variety:

- ► Can have dimension > 0
- ► Some dissections degenerate or flip-over
- ► Some dissections have minima outside the square





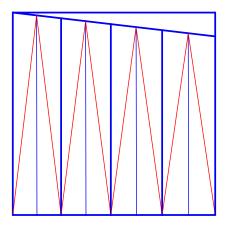


## Dissections achieve better bounds

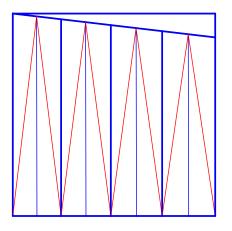
| 7 triangles |              | Triangulations  | Dissections                 |
|-------------|--------------|-----------------|-----------------------------|
| 7 vertices  | $\pi_D(X_D)$ | 0.0000114433268 | 0.000183330891              |
|             | Range        | 0.00400810      | 0.0127879                   |
| 8 vertices  | $\pi_D(X_D)$ | 0.0000753290    | $4.23566898 \times 10^{-6}$ |
|             | Range        | 0.0102149       | 0.00232068                  |

| n  | RMS                       |  |  |
|----|---------------------------|--|--|
| 3  | $1.17851 	imes 10^{-1}$   |  |  |
| 5  | $1.0295 	imes 10^{-2}$    |  |  |
| 7  | $7.778788 \times 10^{-4}$ |  |  |
| 9* | $2.736839 \times 10^{-4}$ |  |  |

# A nice family of dissections



# A nice family of dissections

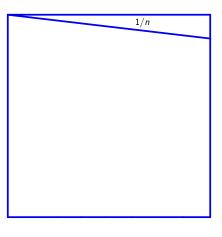


Theorem (L.-Rote-Ziegler)

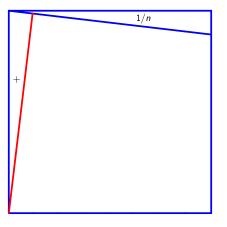
This family of dissertions has a

This family of dissections has a range order of  $O(1/n^5)$ .

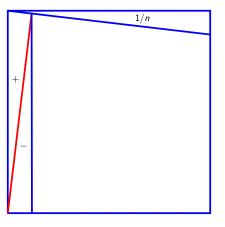
Thue-Morse sequence:



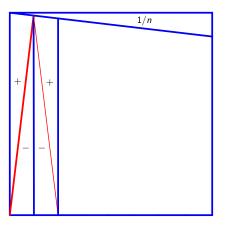
Thue-Morse sequence: +



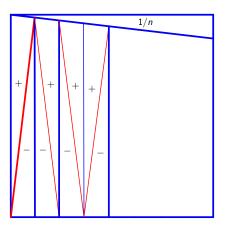
Thue-Morse sequence: +,-



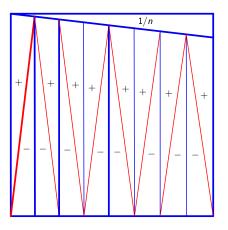
Thue-Morse sequence: +,-,-,+



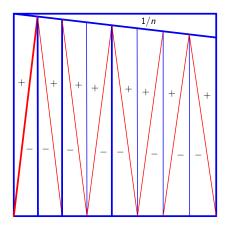
Thue–Morse sequence: +,-,-,+,-,+,-,



Thue–Morse sequence: +,-,-,+,-,+,-, etc.



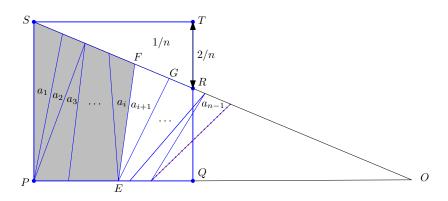
Thue–Morse sequence: +, -, -, +, -, +, -, etc.



### Theorem (L.-Rote-Ziegler)

This family of dissections has minimal range at most  $\frac{1}{n^{\Omega(\log_2 n)}}$ .

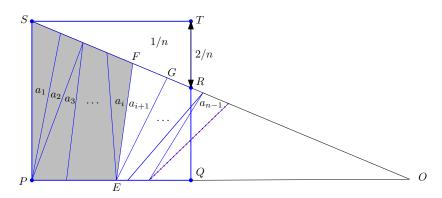
# Estimating the error



Set 
$$A_i := a_1 + \cdots + a_i$$
, we have

$$rac{ riangle EGO}{ riangle EFO} = rac{n/4 - A_{i+1}}{n/4 - A_{i}}$$
 and  $\overline{RO}/\overline{SO} = \overline{QO}/\overline{PO}$ 

# Estimating the error



To end with a vertical segment, the product of the ratios of "+" and "-" should equal  $\overline{RO}/\overline{SO}$  and  $\overline{QO}/\overline{PO}$ :

$$\prod_{i=1}^{n-1} \left( \frac{n/4 - A_{i+1}}{n/4 - A_i} \right)^{\tau_i} \stackrel{!}{=} 1.$$

### The key property

The Thue–Morse sequence  $\{s_i\}_{i\geq 1}$  annihilates powers:

### Lemma (Prouet (1851))

Let  $k \ge 0$ ,  $b \ne 0$ , and let f(x) be a polynomial of degree d. If  $d \ge k$ , then there is a polynomial F(x) of degree d - k such that the following identity holds for all  $x_0$ :

$$\sum_{i=1}^{2^{k}} s_{i} f(x_{0} + ib) = F(x_{0}).$$

Otherwise, if d < k, the above sum is zero.

### The key property

The Thue–Morse sequence  $\{s_i\}_{i\geq 1}$  annihilates powers:

#### Lemma (Prouet (1851))

Let  $k \ge 0$ ,  $b \ne 0$ , and let f(x) be a polynomial of degree d. If  $d \ge k$ , then there is a polynomial F(x) of degree d - k such that the following identity holds for all  $x_0$ :

$$\sum_{i=1}^{2^{\kappa}} s_i f(x_0 + ib) = F(x_0).$$

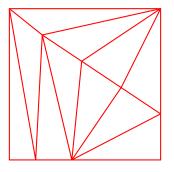
Otherwise, if d < k, the above sum is zero.

- ▶ Set  $u := 4/n^2$  and write  $\Phi := \prod_{i=1}^{n-1} \left(\frac{1-iu}{1-(i-1)u}\right)^{s_i}$
- ▶ Take the logarithm of  $\Phi$  and express it as a Taylor expansion around 1/n
- ▶ Use the lemma to make the areas  $a_i$ 's be close to 1/n to a "high degree"

#### Open Question

- ► Can a family of triangulation with exponentially decreasing discrepancy be constructed?
- ► That is, is the smallest discrepancy *really* exponential?

## Merci!



A small discrepancy triangulation with 11 triangles