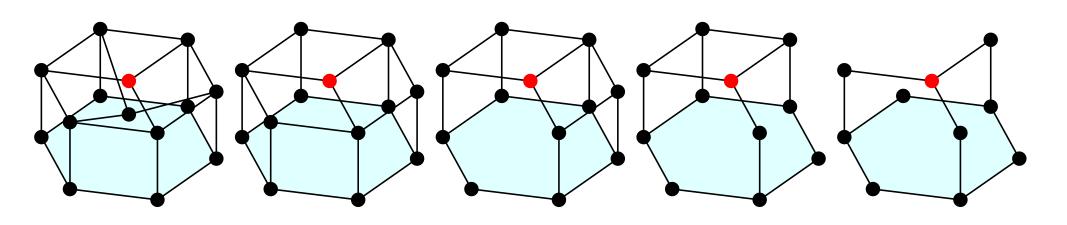
Oriented matroids and beyond

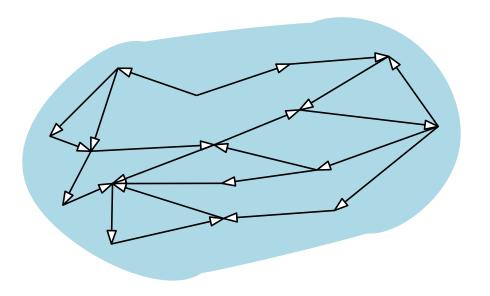
Kolja Knauer

LIS, Aix-Marseille Université

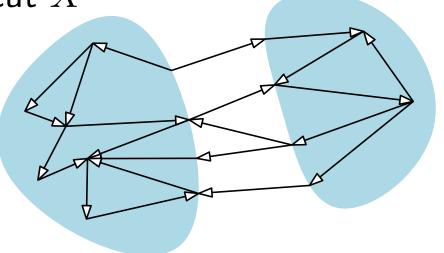
Hans-Jürgen Bandelt
Universität Hamburg
Victor Chepoi
LIS, Aix-Marseille Université
Tilen Marc
FMF, Univerza v Ljubljani



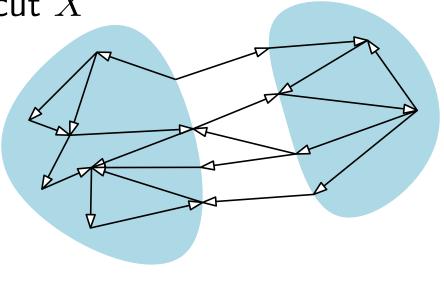
 $\mathsf{digraph}\ D = (V, E)$



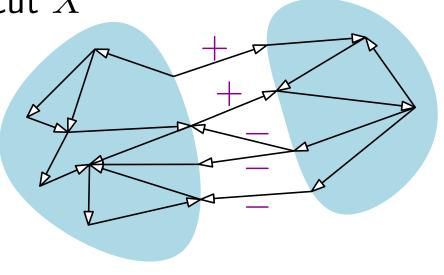
digraph D = (V, E)



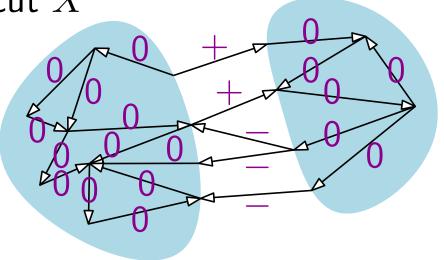
digraph D = (V, E)



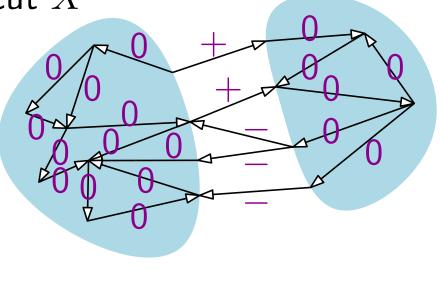
 $\mathsf{digraph}\ D = (V, E)$

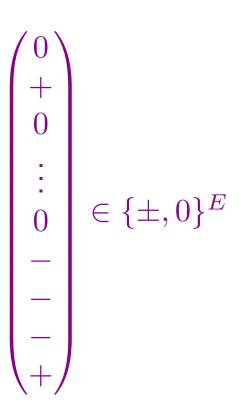


digraph D = (V, E)



digraph D = (V, E)

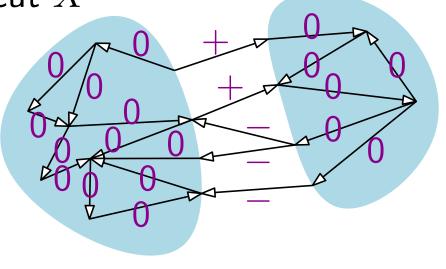




Graphic oriented matroids = (V F)cocircuit $X \in \mathcal{C}^*$

digraph D = (V, E)

minimal edge cut X

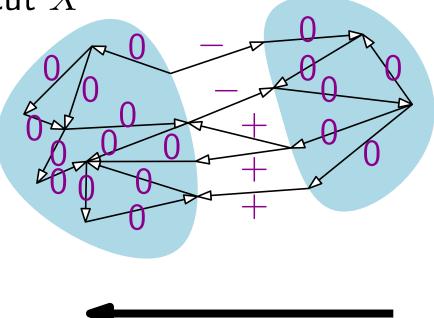


$$\begin{pmatrix} 0 \\ + \\ 0 \\ \vdots \\ 0 \\ - \\ - \\ - \\ + \end{pmatrix}$$

Graphic oriented matroids = (V F)cocircuit $X \in \mathcal{C}^*$

digraph D = (V, E)

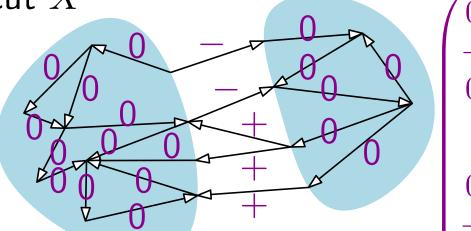
minimal edge cut X



$$\begin{pmatrix} 0 \\ + \\ 0 \\ \vdots \\ 0 \\ - \\ - \\ - \\ - \\ + \end{pmatrix}$$

digraph D = (V, E)

minimal edge cut X



cocircuit $X \in \mathcal{C}^*$ cocircuit $-X \in \mathcal{C}^*$

$$\begin{pmatrix}
0 \\
- \\
0 \\
0
\end{pmatrix}$$

$$\vdots \\
0 \\
+ \\
+ \\
- \\
+ \\
- \\
- \\
+ \end{pmatrix}$$

$$\in \{\pm, 0\}^{E}$$

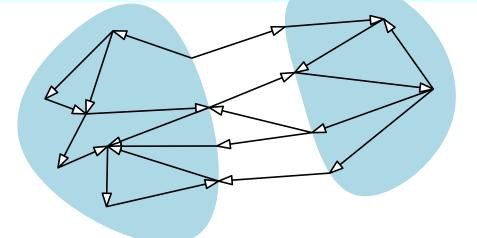
digraph D = (V, E)

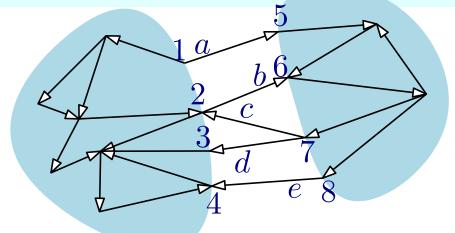
 $\ \, {\rm minimal\ edge\ cut}\ X$

cocircuit $X \in \mathcal{C}^*$ cocircuit $-X \in \mathcal{C}^*$

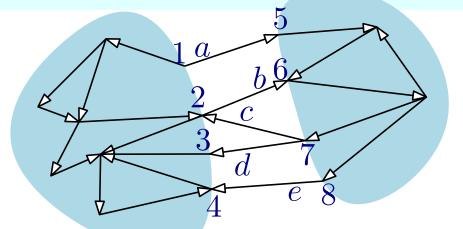
 \leadsto graphic oriented matroid of $D\colon \mathcal{M}=(E,\mathcal{C}^*)$ ground set \frown cocircuits

 $\begin{array}{l} \text{digraph } D = (V,E) \\ \text{minimal edge cut } X \end{array}$



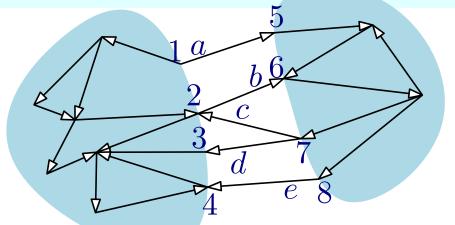


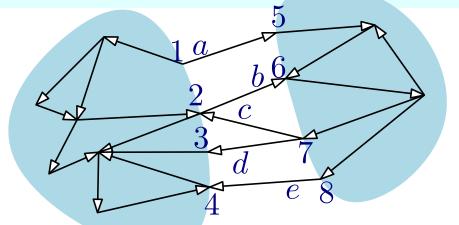
	a	b	\boldsymbol{c}	d	e^{-}	
1	/-	0	0	0	0	
2 3	0	_	+	0	0	
3	0	0	0	+	0	
4	0	0	0	0	+	
5	+	0	0	0	0	
6	0	+	0	0	0	
7	0	0			0	
8	0	0	0	0	_	
:	$\left\langle \cdot \right\rangle$:	:	:	:	٠.,

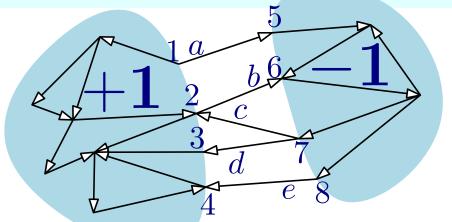


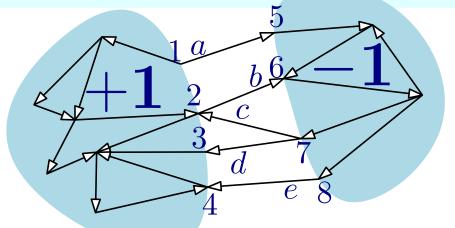
 $\begin{array}{c} \operatorname{digraph} \ D = (V, E) \\ \operatorname{minimal \ edge \ cut} \ X \\ \operatorname{incidence \ matrix} \ I \in \{\pm 1, 0\}^{V \times E} \end{array}$

					, J	
	a	b	\boldsymbol{c}	d	e	• • •
+1.1	/-	0	0	0	0	
$+1\cdot 2$	0	_	+	0	0	
$+1\cdot3$	0	0	0	+	0	
$+1\cdot 4$	0	0	0	0	+	
$-1 \cdot 5$	+	0	0	0	0	
$-1 \cdot 6$	0	+	0	0	0	
$-1 \cdot 7$	0	0			0	
$-1 \cdot 8$	0	0	0	0		
:	(:	:	:	:	:	٠.)
•	/ .	•	•	•	•	• /

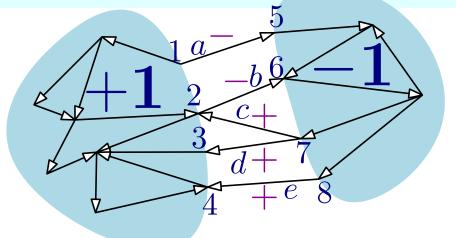






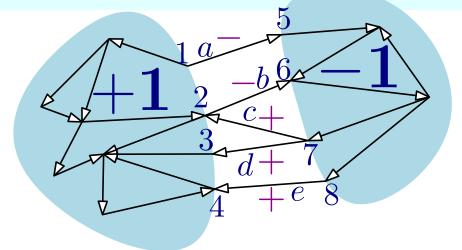


 $\label{eq:digraph} \begin{array}{c} \operatorname{digraph}\ D = (V,E)\\ \operatorname{minimal\ edge\ cut}\ X\\ \operatorname{incidence\ matrix}\ I \in \{\pm 1,0\}^{V\times E} \end{array}$



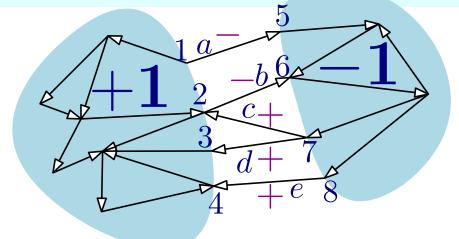
$$- + + + 0...0$$
 $= X \in \mathcal{C}^*$

 $\label{eq:digraph} \begin{array}{c} \operatorname{digraph}\ D = (V,E)\\ \operatorname{minimal}\ \operatorname{edge}\ \operatorname{cut}\ X\\ \operatorname{incidence}\ \operatorname{matrix}\ I \in \{\pm 1,0\}^{V\times E} \end{array}$

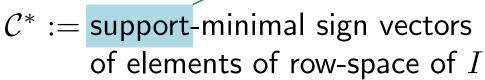


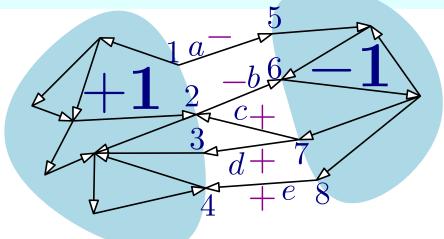
 $\mathcal{C}^* := \text{support-minimal sign vectors}$ of elements of row-space of I

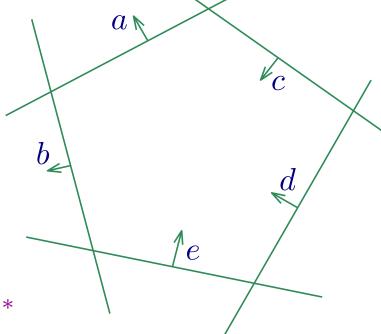
 $\label{eq:digraph} \begin{array}{c} \operatorname{digraph}\ D = (V,E)\\ \operatorname{minimal}\ \operatorname{edge}\ \operatorname{cut}\ X\\ \operatorname{incidence}\ \operatorname{matrix}\ I \in \{\pm 1,0\}^{V\times E} \end{array}$



 $\operatorname{sgn}(\Sigma) = \underbrace{(- \ \ \, - \ \ \, + \ \ \, + \ \ \, + \ \ \, + \ \ \,)}_{} = X \in \mathcal{C}^*$





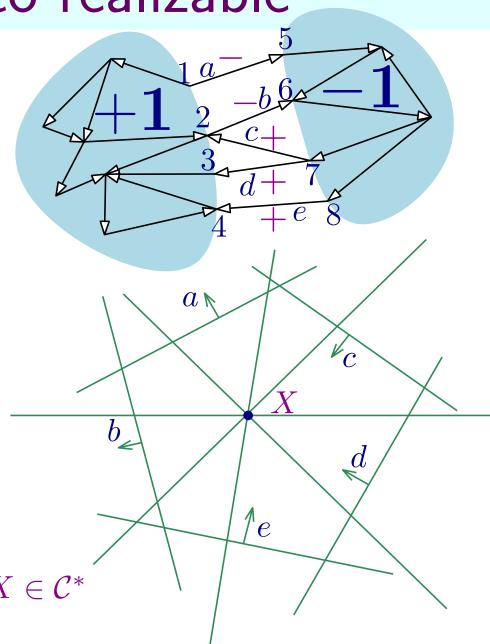


digraph D = (V, E)minimal edge $\check{\operatorname{cut}}\ \check{X}$ incidence matrix $I \in \{\pm 1, 0\}^{V \times E}$

$$\Sigma = (-2 -2 +2 +2 +2 0...0)$$

$$\operatorname{sgn}(\Sigma) = (- \quad - \quad + \quad + \quad + \quad 0 \dots 0) = X \in \mathcal{C}^*$$

 $\mathcal{C}^* :=$ support-minimal sign vectors of elements of row-space of ${\it I}$



minimal edge $\check{\operatorname{cut}}\ \check{X}$ incidence matrix $I \in \{\pm 1, 0\}^{V \times E}$ $+1\cdot 1$ +1.2+1.3 $-1\cdot5$ $-1 \cdot 6$ -1.7-1.8 $\Sigma = (-2 \ -2 \ +2 \ +2 \ +2 \ 0 \dots 0)$ $+ + + 0 \dots 0) = X \in \mathcal{C}^*$ $\mathsf{sgn}(\Sigma) =$

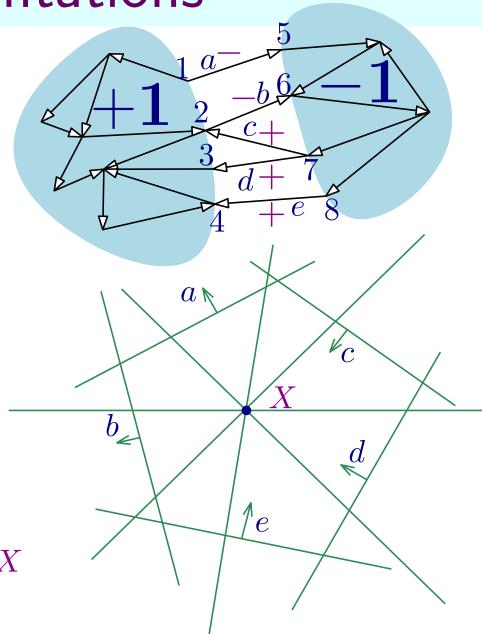
digraph D = (V, E)

a1e

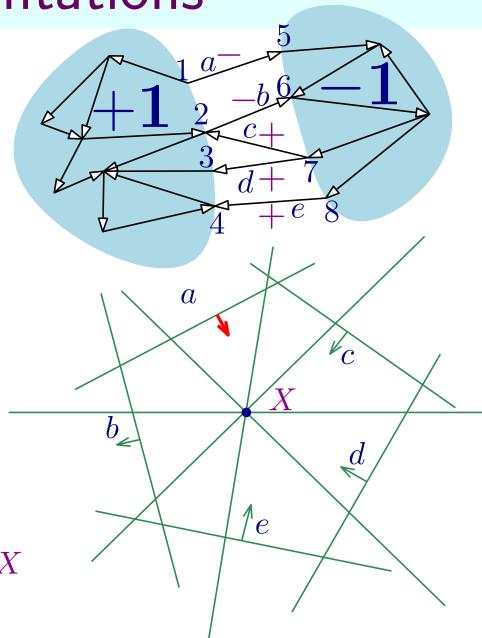
 $\mathcal{C}^* := \frac{\text{support}}{\text{of elements of row-space of } I}$

sign vectors of min-dimensional cells of hyperplane arrangement

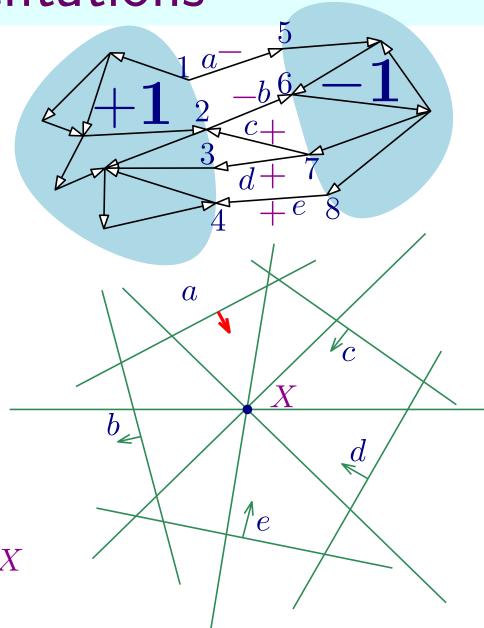
$$\operatorname{sgn}(\Sigma) = \begin{pmatrix} - & - & + & + & 0 \dots 0 \end{pmatrix} = X$$



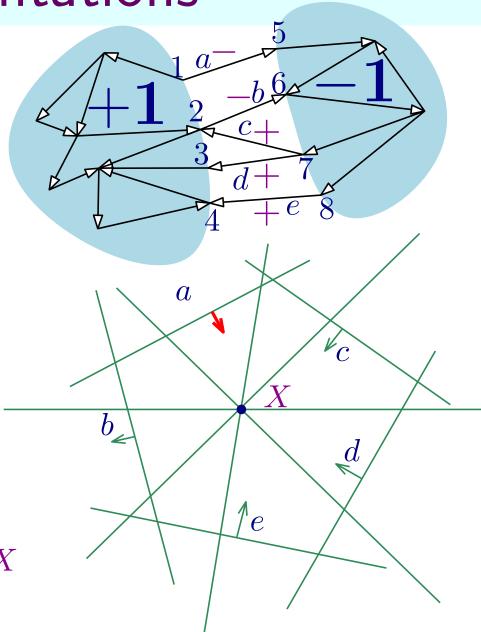
$$\operatorname{sgn}(\Sigma) = \begin{pmatrix} - & - & + & + & 0 \dots 0 \end{pmatrix} = X$$



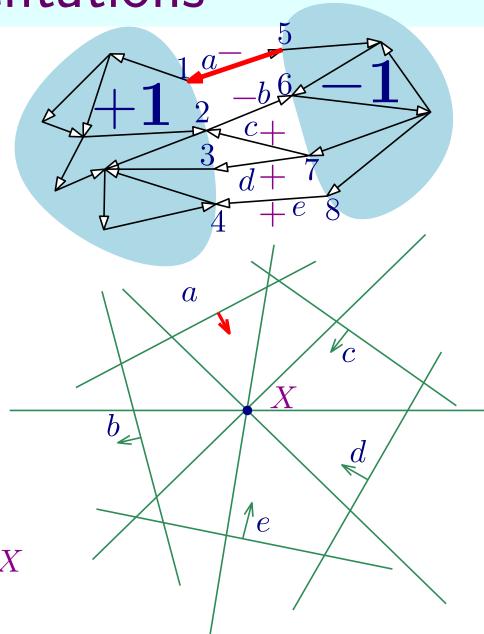
$$\operatorname{sgn}(\Sigma) = \begin{pmatrix} - & - & + & + & 0 \dots 0 \end{pmatrix} = X$$



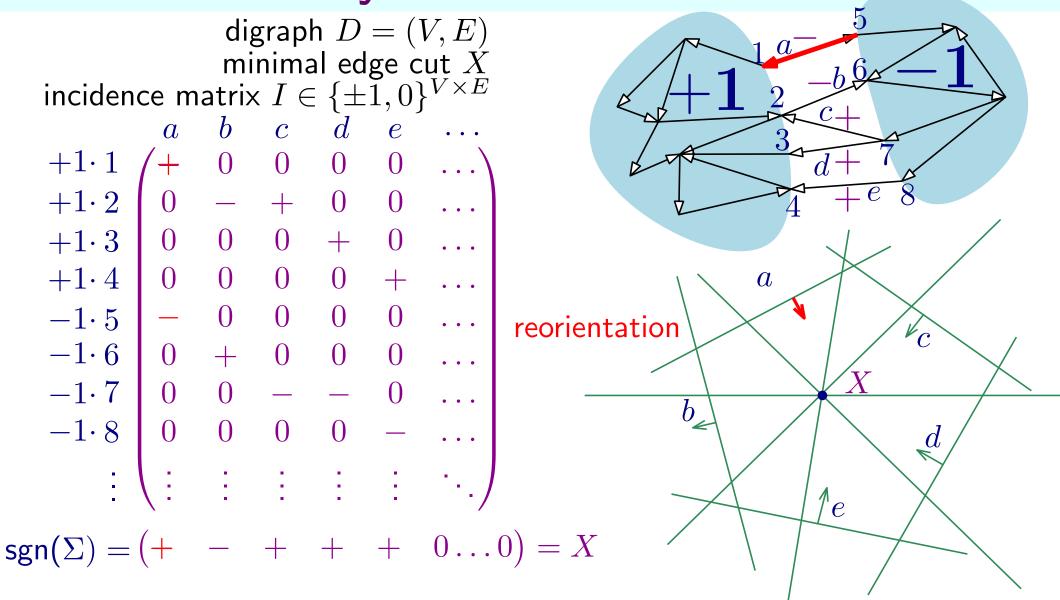
$$\operatorname{sgn}(\Sigma) = \begin{pmatrix} + & - & + & + & 0 \dots 0 \end{pmatrix} = X$$

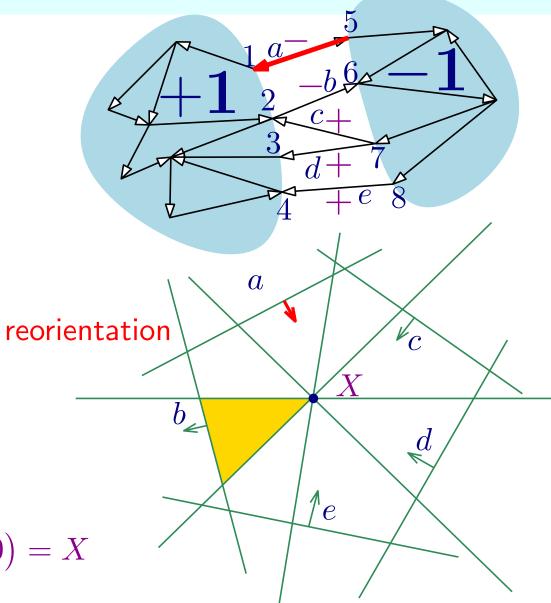


$$\operatorname{sgn}(\Sigma) = \begin{pmatrix} + & - & + & + & 0 \dots 0 \end{pmatrix} = X$$



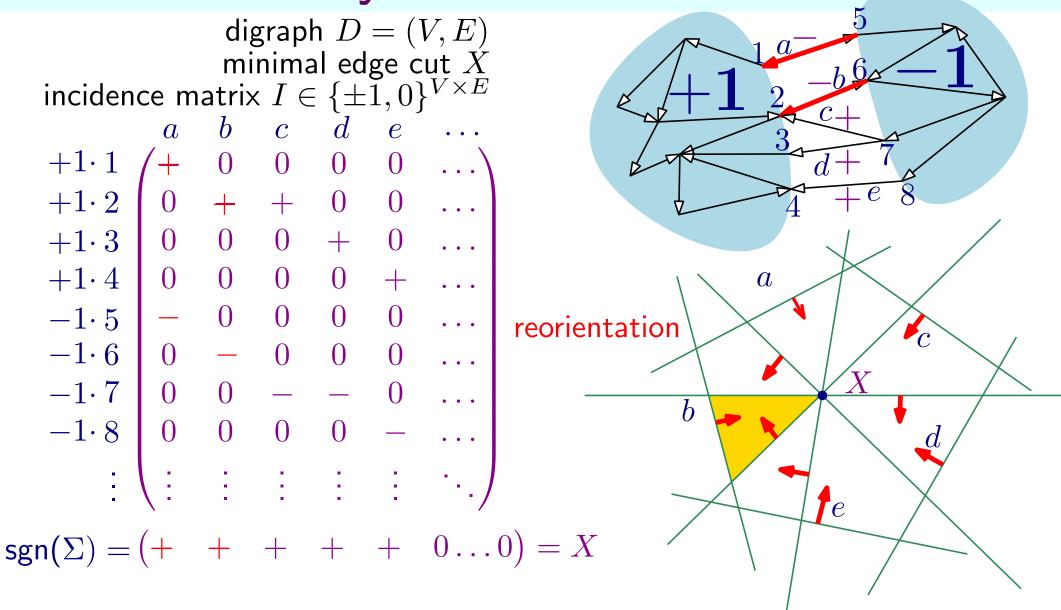
digraph D = (V, E)



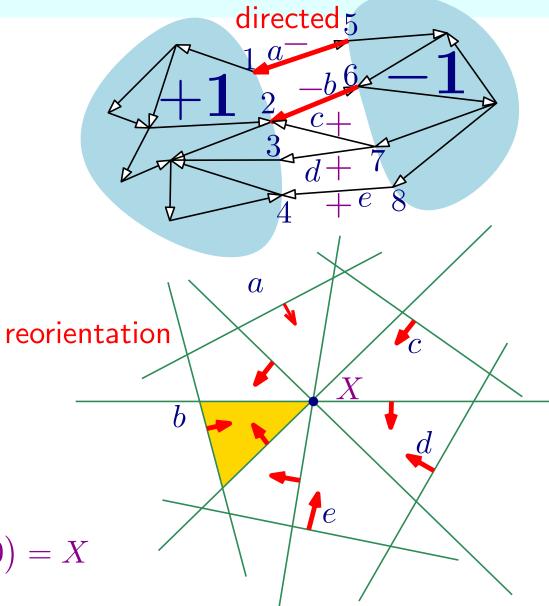


$$\operatorname{sgn}(\Sigma) = \begin{pmatrix} + & - & + & + & 0 \dots 0 \end{pmatrix} = X$$

digraph D = (V, E)minimal edge cut \hat{X} incidence matrix $I \in \{\pm 1, 0\}^{V \times E}$



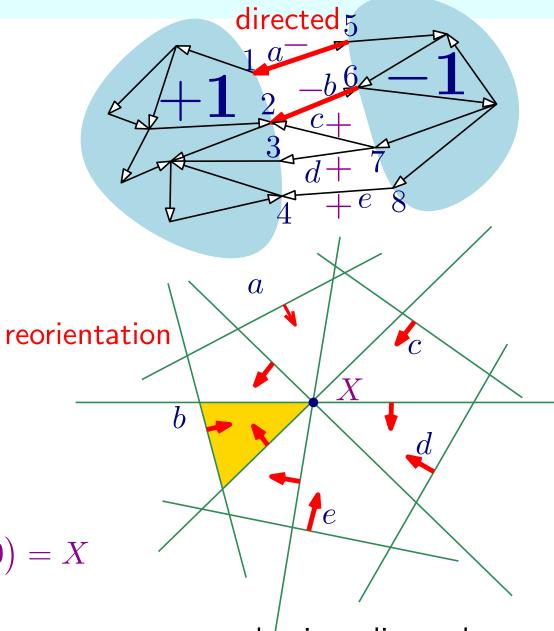
 $\label{eq:digraph} \begin{array}{c} \operatorname{digraph}\ D = (V,E)\\ \operatorname{minimal\ edge\ cut}\ X\\ \operatorname{incidence\ matrix}\ I \in \{\pm 1,0\}^{V\times E} \end{array}$



$$\operatorname{sgn}(\Sigma) = \begin{pmatrix} + & + & + & + & 0 \dots 0 \end{pmatrix} = X$$

digraph D = (V, E) $+1\cdot 1$ $+1\cdot 2$ +1.3 $+1\cdot4$ $-1 \cdot 5$ $-1 \cdot 6$ $-1 \cdot 7$ -1.8

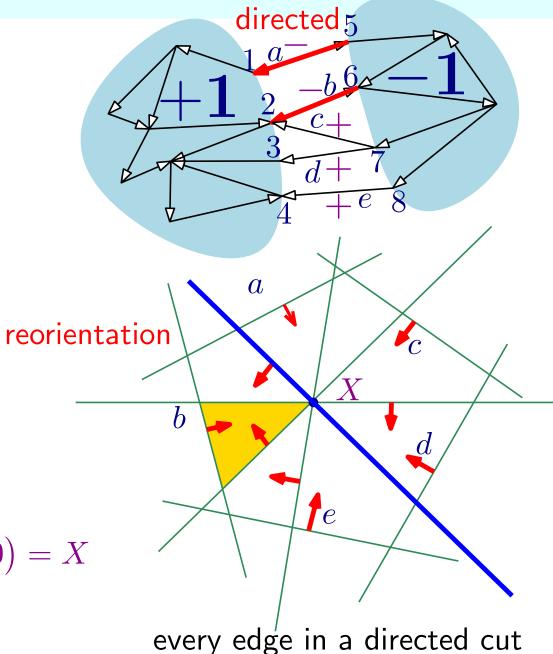
$$\mathrm{sgn}(\Sigma) = \begin{pmatrix} + & + & + & + & 0 \dots 0 \end{pmatrix} = X$$



every edge in a directed cut

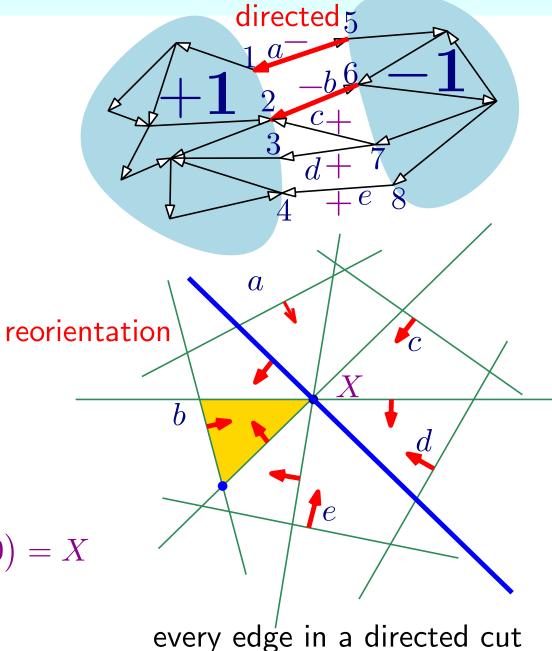
digraph D = (V, E) $+1\cdot 1$ $+1\cdot 2$ +1.3 $+1\cdot4$ $-1 \cdot 5$ $-1 \cdot 6$ $-1 \cdot 7$ -1.8

$$\mathrm{sgn}(\Sigma) = \begin{pmatrix} + & + & + & + & 0 \dots 0 \end{pmatrix} = X$$



digraph D = (V, E) $+1\cdot 1$ $+1\cdot 2$ +1.3 $+1\cdot4$ $-1 \cdot 5$ $-1 \cdot 6$ $-1 \cdot 7$ -1.8

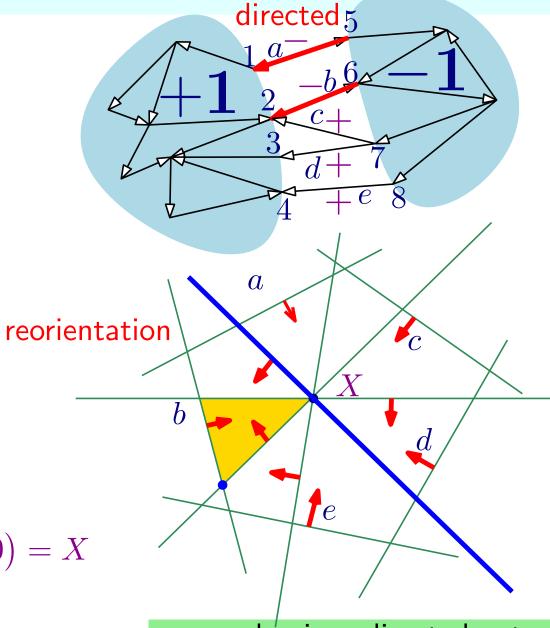
$$\mathrm{sgn}(\Sigma) = \begin{pmatrix} + & + & + & + & 0 \dots 0 \end{pmatrix} = X$$



Acyclic orientations

digraph D=(V,E) minimal edge cut X incidence matrix $I\in\{\pm 1,0\}^{V\times E}$ a b c d e \cdots $+1\cdot 1$ /+ 0 0 0

$$\operatorname{sgn}(\Sigma) = \begin{pmatrix} + & + & + & + & 0 \dots 0 \end{pmatrix} = X$$



every edge in a directed cut

acyclic orientation

Acyclic orientations

directed 5

$$\label{eq:digraph} \begin{array}{c} \operatorname{digraph}\ D = (V,E)\\ \operatorname{minimal}\ \operatorname{edge}\ \operatorname{cut}\ X\\ \operatorname{incidence}\ \operatorname{matrix}\ I \in \{\pm 1,0\}^{V\times E} \end{array}$$

reorientation
$$b$$

a

$$\mathrm{sgn}(\Sigma) = \begin{pmatrix} + & + & + & + & 0 \dots 0 \end{pmatrix} = X$$

 \max -dimensional cells \cong acyclic orientations

every edge in a directed cut

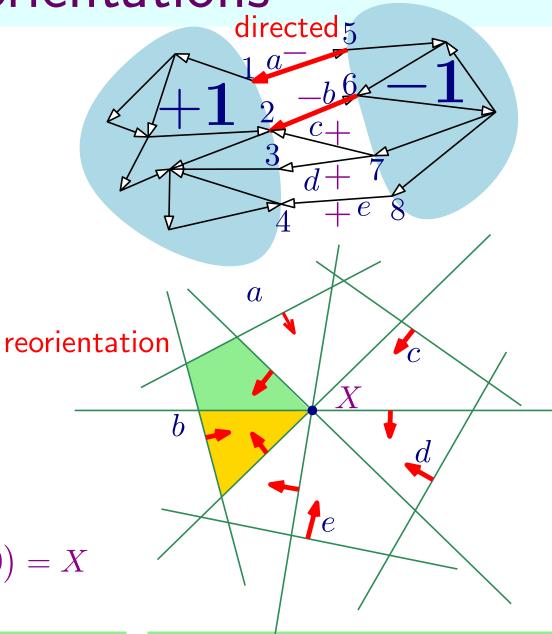
acyclic orientation

Acyclic orientations

$$\begin{array}{c} \text{digraph } D = (V,E) \\ \text{minimal edge cut } X \\ \text{incidence matrix } I \in \{\pm 1,0\}^{V \times E} \\ a b c d e \cdots \end{array}$$

$$\operatorname{sgn}(\Sigma) = \begin{pmatrix} + & + & + & + & 0 \dots 0 \end{pmatrix} = X$$

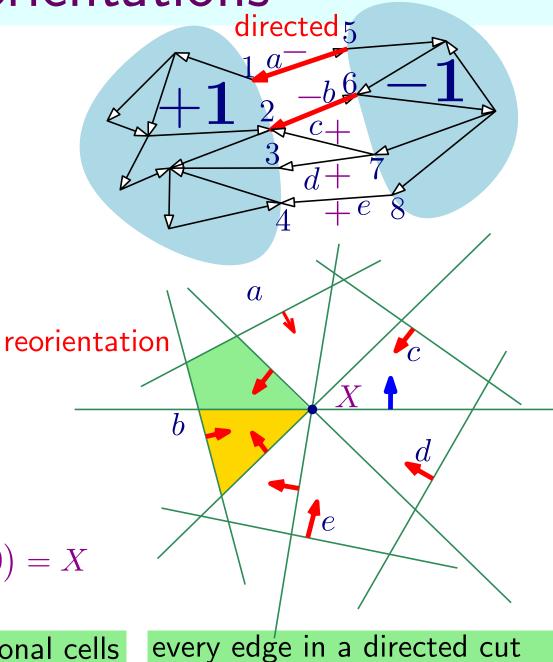
 \max -dimensional cells \cong acyclic orientations



every edge in a directed cut acyclic orientation Acyclic orientations

$$\operatorname{sgn}(\Sigma) = \begin{pmatrix} + & + & + & + & 0 \dots 0 \end{pmatrix} = X$$

 \max -dimensional cells \cong acyclic orientations

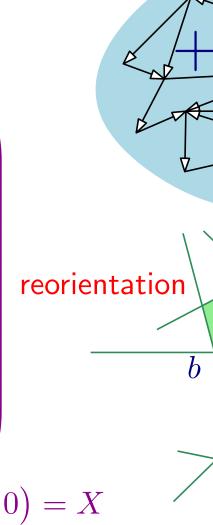


 \Rightarrow acyclic orientation

Acyclic orientations

directed 5

 $\begin{array}{c} \text{digraph } D = (V,E) \\ \text{minimal edge cut } X \\ \text{incidence matrix } I \in \{\pm 1,0\}^{V \times E} \\ \end{array}$



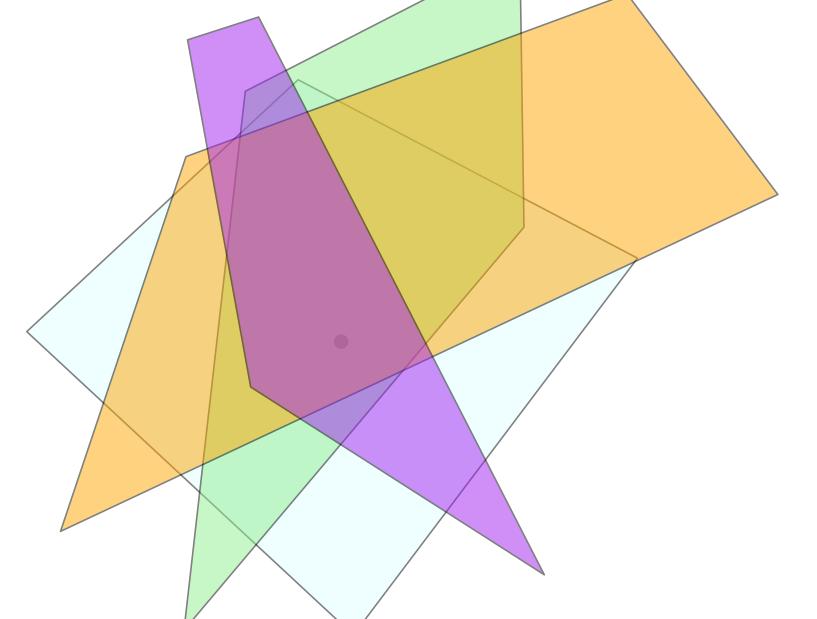
 $\mathrm{sgn}(\Sigma) = \begin{pmatrix} + & + & + & + & 0 \dots 0 \end{pmatrix} = X$

flip-graph on acyclic orientations \cong region graph of arrangement

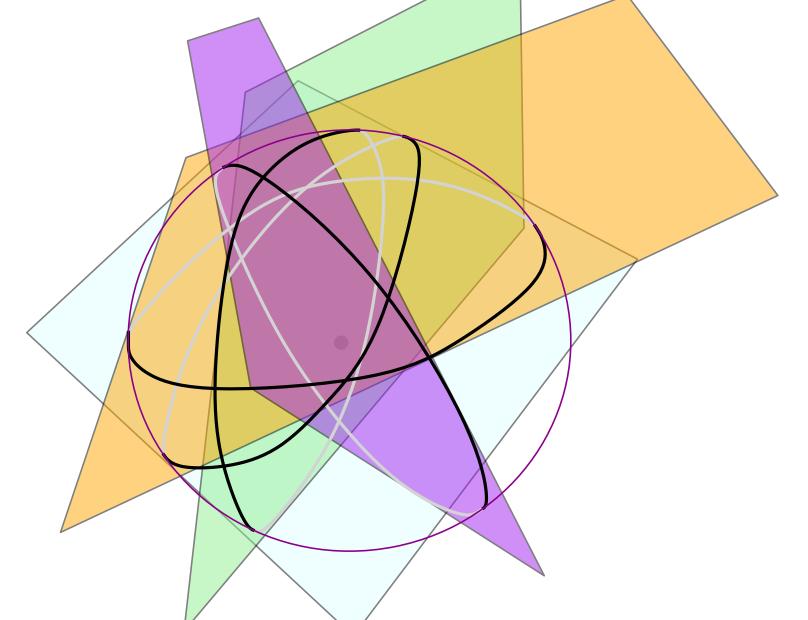
 \max -dimensional cells \cong acyclic orientations

 $\mathcal{C}^* := \underset{\text{of elements of } \mathbb{R}\text{-vector space}}{\text{sign vectors of min-dimensional cells}} = \underset{\text{of (central) hyperplane arrangement}}{\text{sign vectors of min-dimensional cells}}$

 $\mathcal{C}^* := \frac{\text{support-minimal sign vectors}}{\text{of elements of } \mathbb{R}\text{-vector space}} = \frac{\text{sign vectors of min-dimensional cells}}{\text{of (central) hyperplane arrangement}}$

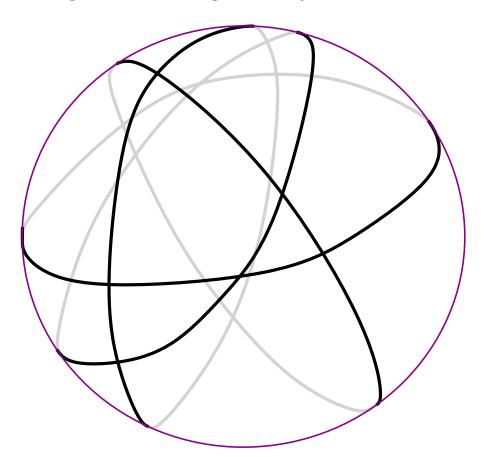


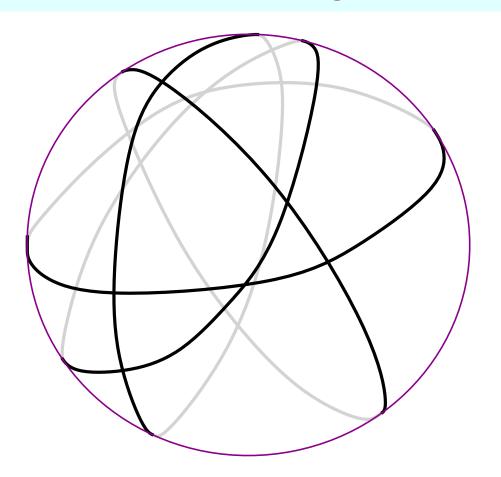
 $\mathcal{C}^* := \frac{ \text{support-minimal sign vectors} }{ \text{of elements of } \mathbb{R}\text{-vector space} } = \frac{ \text{sign vectors of min-dimensional cells} }{ \text{of (central) hyperplane arrangement} }$

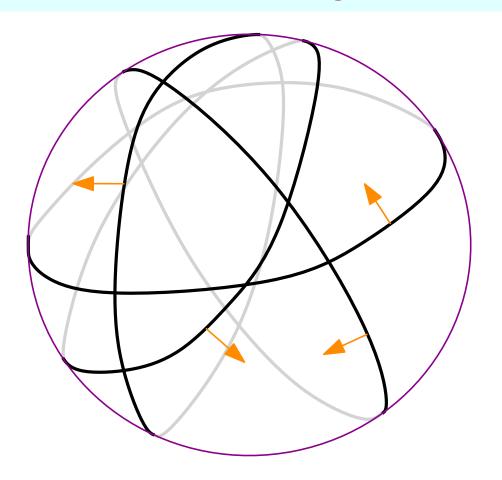


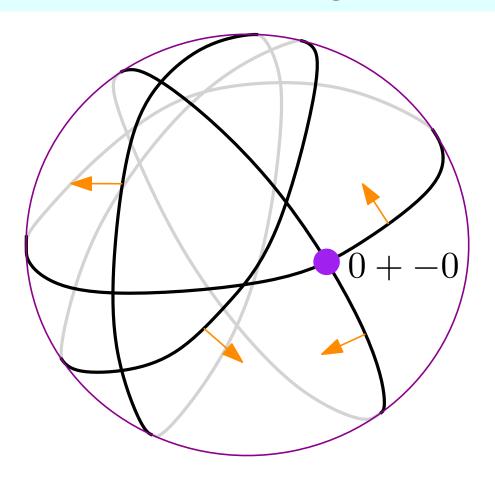
 $\mathcal{C}^* := \frac{\text{support-minimal sign vectors}}{\text{of elements of } \mathbb{R}\text{-vector space}} = \frac{\text{sign vectors of min-dimensional cells}}{\text{of (central) hyperplane arrangement}}$

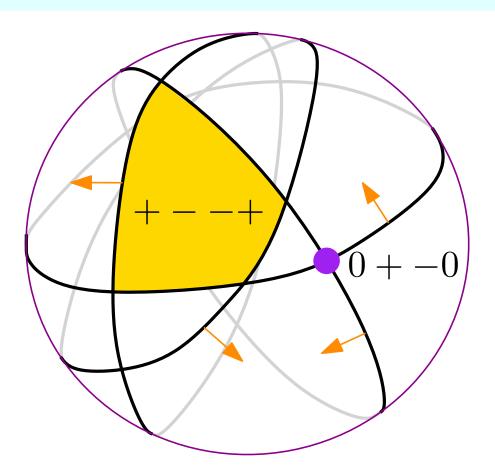
= sign vectors of 0-dimensional cells of arrangement of great cycles on sphere

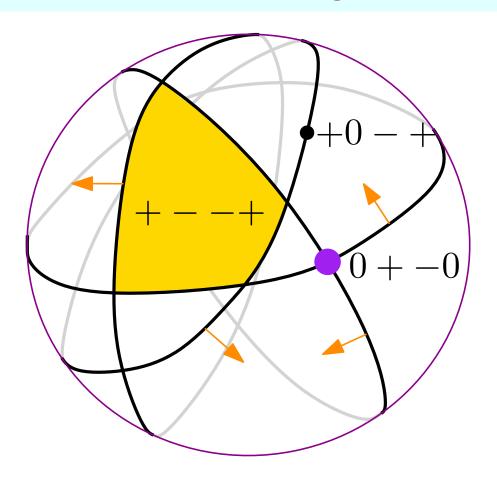


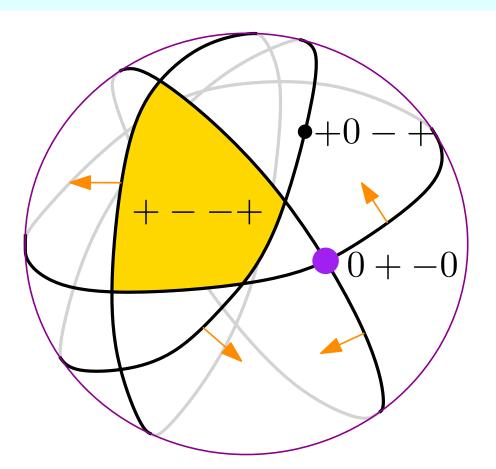










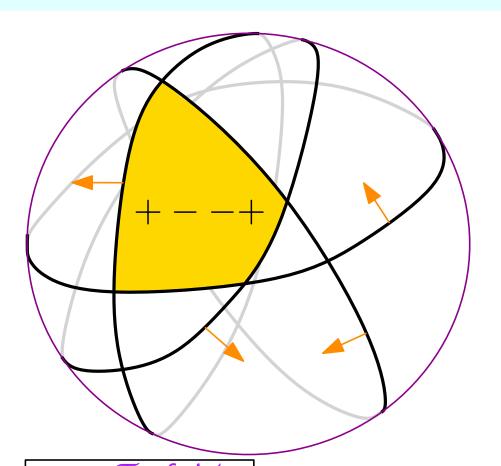


Thm[Folkman, Lawrence '78] correspondence of **pseudo-sphere** arrangements and oriented matroids.

$$(\mathsf{Z}) \ \mathbf{0} \in \mathcal{L}$$

(FS)
$$\mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L}$$

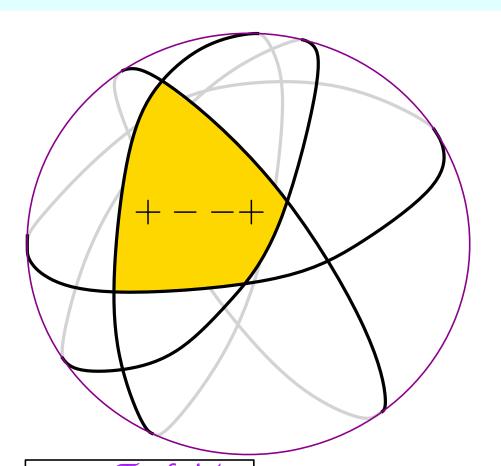
(SE)
$$\forall X, Y \in \mathcal{L}$$
 and $e \in S(X, Y) \exists Z \in \mathcal{L}$: $Z_e = 0$ and $Z_f = X_f \circ Y_f$ for $f \notin S(X, Y)$.



Thm[Folkman, Lawrence '78] correspondence of **pseudo-sphere** arrangements and oriented matroids.

topes \mathcal{T} of $\overline{\mathcal{M}}=$ maximal cells= max. covectors

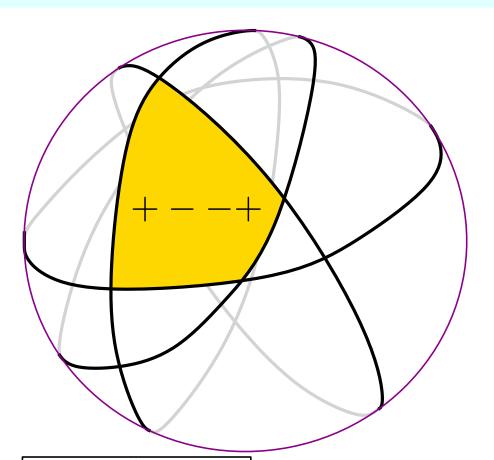
- \circ Covector axioms: (E,\mathcal{L}) OM iff
- $(\mathsf{Z}) \ \mathbf{0} \in \mathcal{L}$
- (FS) $\mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L}$
- (SE) $\forall X, Y \in \mathcal{L} \text{ and } e \in S(X, Y) \exists Z \in \mathcal{L} :$ $Z_e = 0 \text{ and } Z_f = X_f \circ Y_f \text{ for } f \notin S(X, Y).$



Thm[Folkman, Lawrence '78] correspondence of **pseudo-sphere** arrangements and oriented matroids.

topes \mathcal{T} of $\overline{\mathcal{M}}=$ maximal cells= max. covectors

- \circ Covector axioms: (E,\mathcal{L}) OM iff
- $(\mathsf{Z}) \ \mathbf{0} \in \mathcal{L}$
- (FS) $\mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L}$
- (SE) $\forall X, Y \in \mathcal{L}$ and $e \in S(X, Y) \exists Z \in \mathcal{L}$: $Z_e = 0$ and $Z_f = X_f \circ Y_f$ for $f \notin S(X, Y)$.



Thm[Folkman, Lawrence '78] correspondence of **pseudo-sphere** arrangements and oriented matroids.

topes \mathcal{T} of $\overline{\mathcal{M}}=$ maximal cells= max. covectors

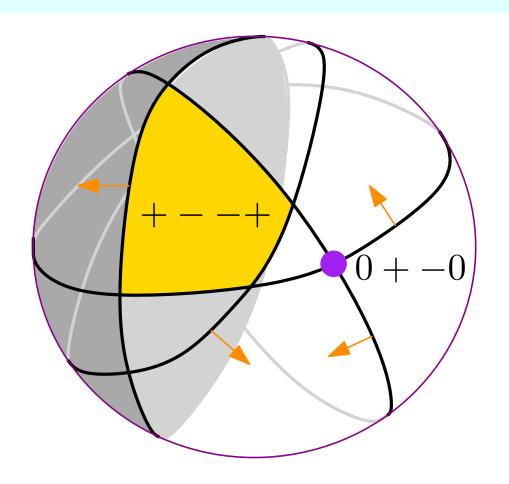
tope graph $G_{\mathcal{L}}$ =incidence graph= induced graph in Q_E

 \circ Covector axioms: (E,\mathcal{L}) OM iff

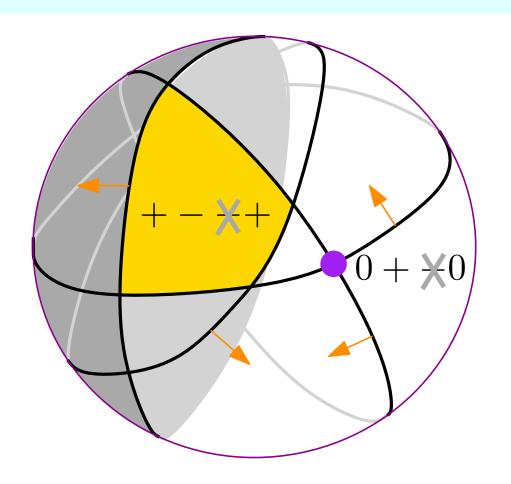
 $(\mathsf{Z}) \ \mathbf{0} \in \mathcal{L}$

(FS) $\mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L}$

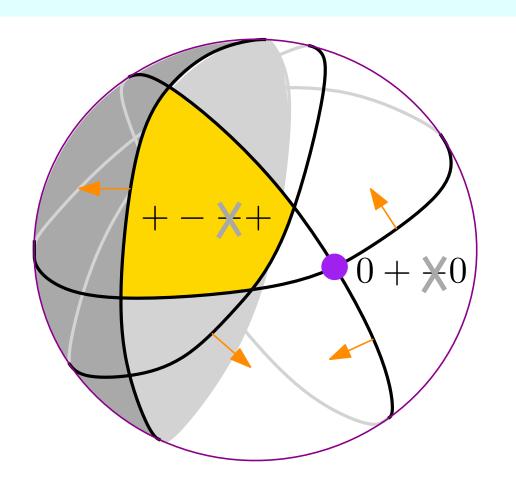
(SE) $\forall X, Y \in \mathcal{L}$ and $e \in S(X, Y) \exists Z \in \mathcal{L}$: $Z_e = 0$ and $Z_f = X_f \circ Y_f$ for $f \notin S(X, Y)$.



Thm[Karlander '92]
correspondence between **affine**arrangements of pseudospheres and **affine oriented matroids**.



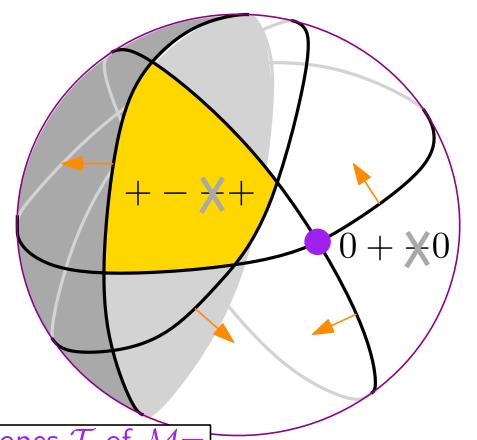
Thm[Karlander '92]
correspondence between **affine**arrangements of pseudospheres and **affine oriented matroids**.



Thm[Karlander '92]

correspondence between **affine** arrangements of pseudospheres and **affine oriented matroids**.

- \circ Covector axioms: (E,\mathcal{L}) affine oriented matroid:
- (A) something lengthy
- (FS) $\mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L}$
- (SE) $\forall X, Y \in \mathcal{L}$ and $e \in S(X, Y) \exists Z \in \mathcal{L}$: $Z_e = 0$ and $Z_f = X_f \circ Y_f$ for $f \notin S(X, Y)$.



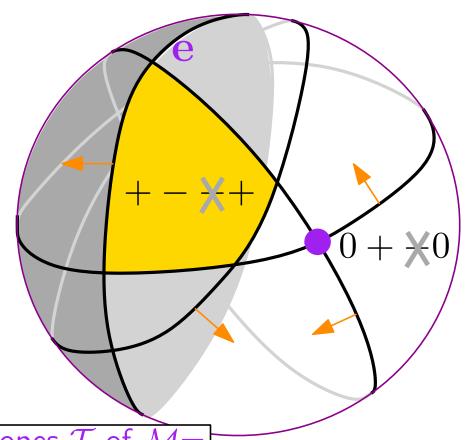
Thm[Karlander '92]

correspondence between **affine** arrangements of pseudospheres and **affine oriented matroids**.

topes \mathcal{T} of $\mathcal{M}=$ maximal cells= max. covectors

tope graph $G_{\mathcal{L}}$ =incidence graph= induced graph in Q_E

- \circ Covector axioms: (E,\mathcal{L}) affine oriented matroid:
- (A) something lengthy
- $(\mathsf{FS}) \ \mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L}$
- (SE) $\forall X, Y \in \mathcal{L} \text{ and } e \in S(X, Y) \exists Z \in \mathcal{L} :$ $Z_e = 0 \text{ and } Z_f = X_f \circ Y_f \text{ for } f \notin S(X, Y).$



Thm[Karlander '92]

correspondence between **affine** arrangements of pseudospheres and **affine oriented matroids**.

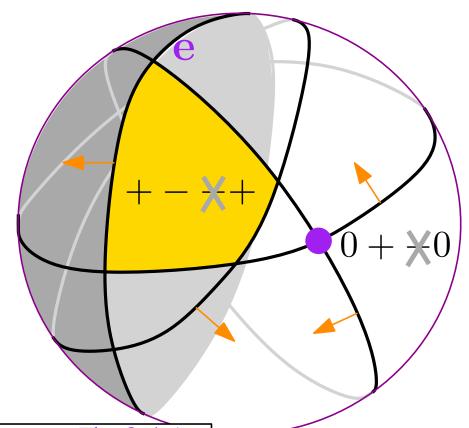
digraph example:

topes $\mathcal{T}\cong$ acyclic orientations with edge \mathbf{e} 's orientation fixed

topes \mathcal{T} of $\mathcal{M}=$ maximal cells= max. covectors

tope graph $G_{\mathcal{L}}$ =incidence graph= induced graph in Q_E

- \circ Covector axioms: (E,\mathcal{L}) affine oriented matroid:
 - (A) something lengthy
- (FS) $\mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L}$
- (SE) $\forall X, Y \in \mathcal{L} \text{ and } e \in S(X, Y) \exists Z \in \mathcal{L} :$ $Z_e = 0 \text{ and } Z_f = X_f \circ Y_f \text{ for } f \notin S(X, Y).$



Thm[Karlander '92]

correspondence between **affine** arrangements of pseudospheres and **affine oriented matroids**.

digraph example:

topes $\mathcal{T}\cong$ acyclic orientations with edge \mathbf{e} 's orientation fixed

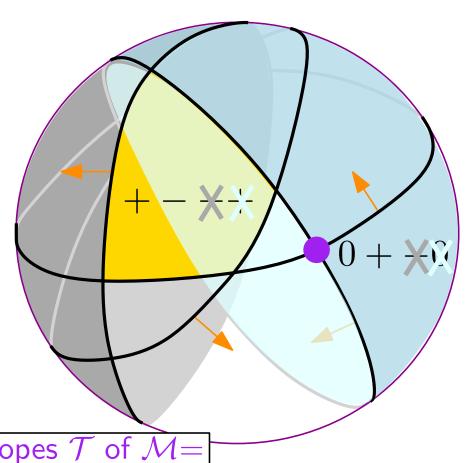
Bandelt, Chepoi, K '15:

why not fix more?

topes \mathcal{T} of $\mathcal{M}=$ maximal cells= max. covectors

tope graph $G_{\mathcal{L}}$ =incidence graph= induced graph in Q_E

- \circ Covector axioms: (E,\mathcal{L}) affine oriented matroid:
 - (A) something lengthy
- (FS) $\mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L}$
- (SE) $\forall X, Y \in \mathcal{L} \text{ and } e \in S(X, Y) \exists Z \in \mathcal{L} :$ $Z_e = 0 \text{ and } Z_f = X_f \circ Y_f \text{ for } f \notin S(X, Y).$



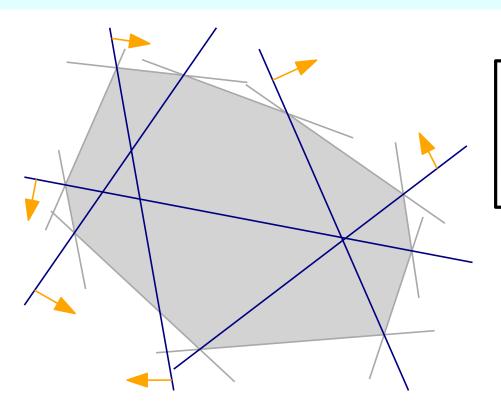
Bandelt, Chepoi, K '15: why not fix more?

topes \mathcal{T} of $\mathcal{M}=$ maximal cells= max. covectors

tope graph $G_{\mathcal{L}}$ =incidence graph= induced graph in Q_E

$$\overline{(\mathsf{FS})} \ \ \mathcal{L} \circ - \mathcal{L} \subseteq \mathcal{L}$$

(SE)
$$\forall X, Y \in \mathcal{L}$$
 and $e \in S(X, Y) \exists Z \in \mathcal{L}$: $Z_e = 0$ and $Z_f = X_f \circ Y_f$ for $f \notin S(X, Y)$.



Def[Bandelt, Chepoi, K '15]

realizable COM = sign systems
from arrangement of open
halfspaces and hyperplanes.

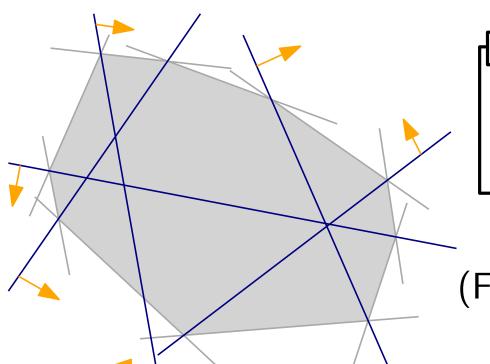
topes \mathcal{T} of $\mathcal{M}=$ maximal cells= max. covectors

tope graph $G_{\mathcal{L}}$ =incidence graph= induced graph in Q_E

 \circ Covector axioms: (E,\mathcal{L}) COM iff

$$\overline{(\mathsf{FS}) \ \mathcal{L} \circ - \mathcal{L} \subseteq \mathcal{L}}$$

(SE) $\forall X, Y \in \mathcal{L} \text{ and } e \in S(X, Y) \exists Z \in \mathcal{L} :$ $Z_e = 0 \text{ and } Z_f = X_f \circ Y_f \text{ for } f \notin S(X, Y).$



Def[Bandelt, Chepoi, K '15]

realizable COM = sign systems from arrangement of open halfspaces and hyperplanes.

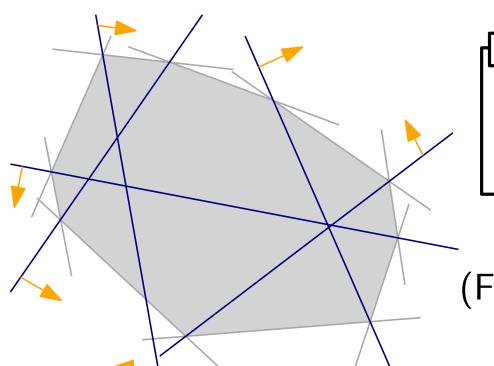
(FS)
$$\begin{pmatrix} 0 \\ + \\ - \\ + \end{pmatrix} \circ (- \begin{pmatrix} + \\ + \\ + \\ + \end{pmatrix}) = \begin{pmatrix} - \\ + \\ - \\ + \end{pmatrix}$$

topes \mathcal{T} of $\mathcal{M}=$ maximal cells= max. covectors

tope graph $G_{\mathcal{L}}$ =incidence graph= induced graph in Q_E

$$\mathsf{(FS)} \ \ \mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L} >$$

(SE)
$$\forall X, Y \in \mathcal{L}$$
 and $e \in S(X, Y) \exists Z \in \mathcal{L}$: $Z_e = 0$ and $Z_f = X_f \circ Y_f$ for $f \notin S(X, Y)$.



Def[Bandelt, Chepoi, K '15]

realizable COM = sign systems from arrangement of open halfspaces and hyperplanes.

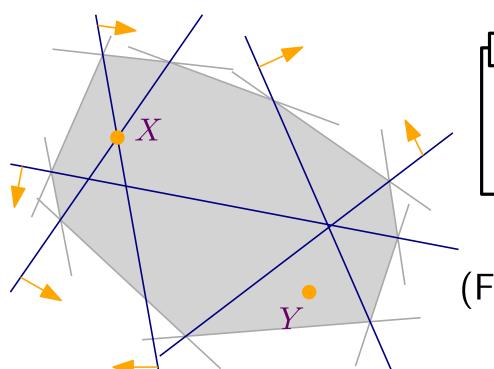
$$(\mathsf{FS}) \qquad \begin{pmatrix} 0 \\ + \\ - \\ + \end{pmatrix} \circ \begin{pmatrix} - \\ - \\ - \\ - \end{pmatrix} = \begin{pmatrix} - \\ + \\ - \\ + \end{pmatrix}$$

topes \mathcal{T} of $\mathcal{M}=$ maximal cells= max. covectors

tope graph $G_{\mathcal{L}}^-$ =incidence graph= induced graph in Q_E

$$\mathsf{(FS)} \ \ \mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L} >$$

(SE)
$$\forall X, Y \in \mathcal{L}$$
 and $e \in S(X, Y) \exists Z \in \mathcal{L}$:
 $Z_e = 0$ and $Z_f = X_f \circ Y_f$ for $f \notin S(X, Y)$.



Def[Bandelt, Chepoi, K '15]

realizable COM = sign systems from arrangement of open halfspaces and hyperplanes.

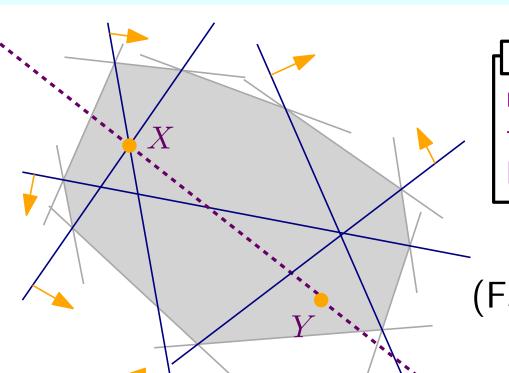
$$\begin{pmatrix} 0 \\ + \\ - \\ + \end{pmatrix} \circ \begin{pmatrix} - \\ - \\ - \\ - \end{pmatrix} = \begin{pmatrix} - \\ + \\ - \\ + \end{pmatrix}$$

topes \mathcal{T} of $\mathcal{M}=$ maximal cells= max. covectors

tope graph $G_{\mathcal{L}}^-$ =incidence graph= induced graph in Q_E

$$\mathsf{(FS)} \ \ \mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L} >$$

(SE)
$$\forall X, Y \in \mathcal{L}$$
 and $e \in S(X, Y) \exists Z \in \mathcal{L}$: $Z_e = 0$ and $Z_f = X_f \circ Y_f$ for $f \notin S(X, Y)$.



Def[Bandelt, Chepoi, K '15]

realizable COM = sign systems from arrangement of open halfspaces and hyperplanes.

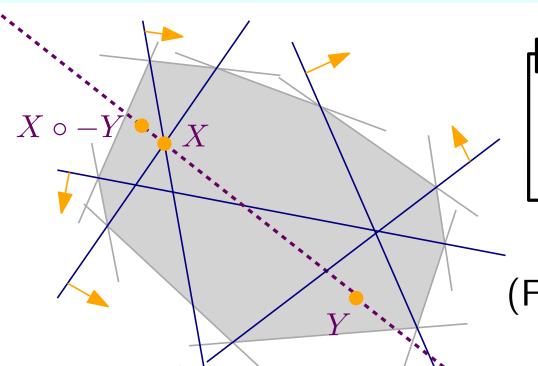
$$\begin{pmatrix} 0 \\ + \\ - \\ + \end{pmatrix} \circ \begin{pmatrix} - \\ - \\ - \\ - \end{pmatrix} = \begin{pmatrix} - \\ + \\ - \\ + \end{pmatrix}$$

topes \mathcal{T} of $\mathcal{M}=$ maximal cells= max. covectors

tope graph $G_{\mathcal{L}}$ =incidence graph= induced graph in Q_E

$$\mathsf{(FS)} \ \ \mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L} >$$

(SE)
$$\forall X, Y \in \mathcal{L}$$
 and $e \in S(X, Y) \exists Z \in \mathcal{L}$: $Z_e = 0$ and $Z_f = X_f \circ Y_f$ for $f \notin S(X, Y)$.



Def[Bandelt, Chepoi, K '15]

realizable COM = sign systems from arrangement of open halfspaces and hyperplanes.

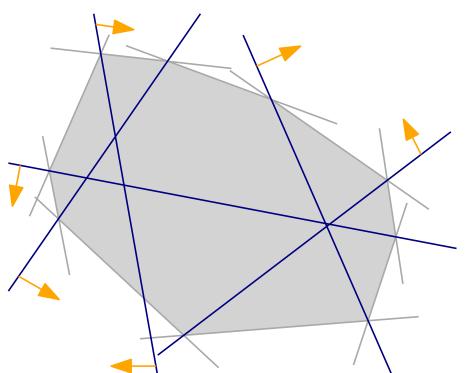
$$\begin{pmatrix} 0 \\ + \\ - \\ + \end{pmatrix} \circ \begin{pmatrix} - \\ - \\ - \\ - \end{pmatrix} = \begin{pmatrix} - \\ + \\ - \\ + \end{pmatrix}$$

topes \mathcal{T} of $\mathcal{M}=$ maximal cells= max. covectors

tope graph $G_{\mathcal{L}}$ =incidence graph= induced graph in Q_E

$$\mathsf{(FS)} \ \ \mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L} >$$

(SE)
$$\forall X, Y \in \mathcal{L}$$
 and $e \in S(X, Y) \exists Z \in \mathcal{L}$: $Z_e = 0$ and $Z_f = X_f \circ Y_f$ for $f \notin S(X, Y)$.



Def[Bandelt, Chepoi, K '15]
realizable COM = sign systems
from arrangement of open
halfspaces and hyperplanes.

topes \mathcal{T} of $\mathcal{M}=$ maximal cells= max. covectors

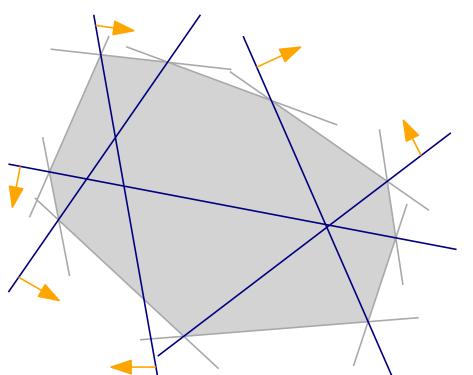
tope graph $G_{\mathcal{L}}$ =incidence graph= induced graph in Q_E

(SE) $\begin{pmatrix} 0 \\ + \\ - \\ + \end{pmatrix}, \begin{pmatrix} - \\ - \\ - \\ - \end{pmatrix}$

 \circ Covector axioms: (E,\mathcal{L}) COM iff

$$(\mathsf{FS}) \ \ \mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L}$$

(SE) $orall X,Y\in \mathcal{L}$ and $e\in S(X,Y)\exists Z\in \mathcal{L}:$ $Z_e=0$ and $Z_f=X_f\circ Y_f$ for $f\notin S(X,Y).$



Def[Bandelt, Chepoi, K '15]
realizable COM = sign systems
from arrangement of open
halfspaces and hyperplanes.

topes \mathcal{T} of $\mathcal{M}=$ maximal cells= max. covectors

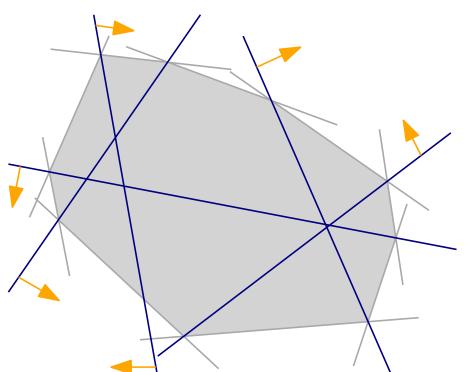
tope graph $G_{\mathcal{L}}$ =incidence graph= induced graph in Q_E

(SE) $e \begin{pmatrix} 0 & - \\ + & - \\ - & + \end{pmatrix}$

 \circ Covector axioms: (E,\mathcal{L}) COM iff

$$\overline{(\mathsf{FS}) \ \mathcal{L} \circ - \mathcal{L} \subset \mathcal{L}}$$

(SE) $\forall X, Y \in \mathcal{L}$ and $e \in S(X, Y) \exists Z \in \mathcal{L}$: $Z_e = 0$ and $Z_f = X_f \circ Y_f$ for $f \notin S(X, Y)$.



Def[Bandelt, Chepoi, K '15]
realizable COM = sign systems
from arrangement of open
halfspaces and hyperplanes.

topes \mathcal{T} of $\mathcal{M}=$ maximal cells= max. covectors

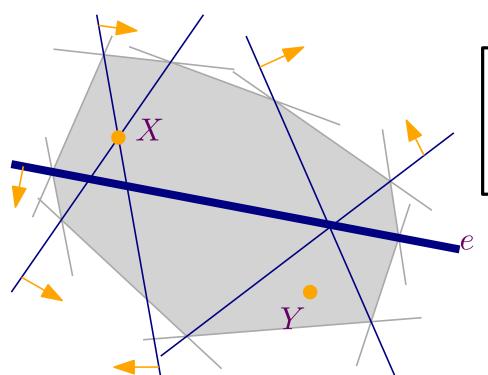
tope graph $G_{\mathcal{L}}$ =incidence graph= induced graph in Q_E

(SE) $\begin{pmatrix} 0 \\ + \\ - \\ + \end{pmatrix}$ $\begin{pmatrix} - \\ - \\ - \\ - \end{pmatrix}$ \rightsquigarrow $\begin{pmatrix} - \\ 0 \\ - \\ ? \end{pmatrix}$

 \circ Covector axioms: (E,\mathcal{L}) COM iff

(FS)
$$\mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L}$$

(SE) $\forall X,Y\in\mathcal{L}$ and $e\in S(X,Y)\exists Z\in\mathcal{L}:$ $Z_e=0$ and $Z_f=X_f\circ Y_f$ for $f\notin S(X,Y).$



Def[Bandelt, Chepoi, K '15]
realizable COM = sign systems
from arrangement of open
halfspaces and hyperplanes.

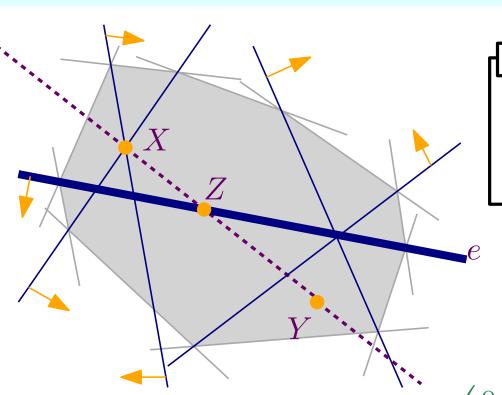
topes \mathcal{T} of $\mathcal{M}=$ maximal cells= max. covectors

tope graph $G_{\mathcal{L}}$ =incidence graph= induced graph in Q_E

(SE)
$$e$$
 $\begin{pmatrix} 0 \\ + \\ - \\ + \end{pmatrix}$ $\begin{pmatrix} - \\ 0 \\ - \\ ? \end{pmatrix}$

(FS)
$$\mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L}$$

(SE)
$$\forall X,Y\in\mathcal{L}$$
 and $e\in S(X,Y)\exists Z\in\mathcal{L}:$ $Z_e=0$ and $Z_f=X_f\circ Y_f$ for $f\notin S(X,Y).$



Def[Bandelt, Chepoi, K '15]

realizable COM = sign systems
from arrangement of open
halfspaces and hyperplanes.

topes \mathcal{T} of $\mathcal{M}=$ maximal cells= max. covectors

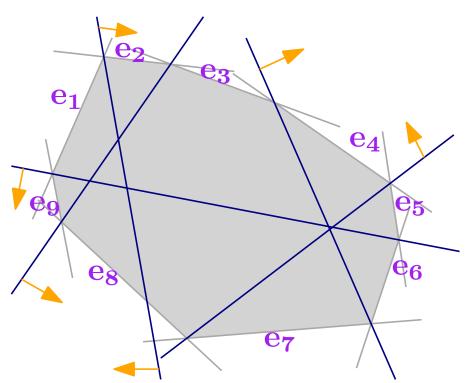
tope graph $G_{\mathcal{L}}$ =incidence graph= induced graph in Q_E

 \circ Covector axioms: (E,\mathcal{L}) COM iff

(FS)
$$\mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L}$$

(SE) $\forall X, Y \in \mathcal{L}$ and $e \in S(X,Y) \exists Z \in \mathcal{L}$: $Z_e = 0$ and $Z_f = X_f \circ Y_f$ for $f \notin S(X,Y)$.

Complexes of oriented matroids



Def[Bandelt, Chepoi, K '15]

realizable COM = sign systems
from arrangement of open
halfspaces and hyperplanes.

digraph example: topes $\mathcal{T}\cong$ acyclic orientations with edges \mathbf{E} 's orientation fixed

topes \mathcal{T} of $\mathcal{M}=$ maximal cells= max. covectors

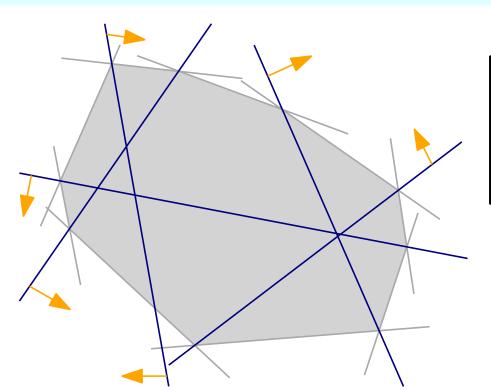
tope graph $G_{\mathcal{L}}$ =incidence graph= induced graph in Q_E

 \circ Covector axioms: (E,\mathcal{L}) COM iff

 (FS) $\mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L}$

(SE) $\forall X, Y \in \mathcal{L}$ and $e \in S(X, Y) \exists Z \in \mathcal{L}$: $Z_e = 0$ and $Z_f = X_f \circ Y_f$ for $f \notin S(X, Y)$.

Complexes of oriented matroids



Def[Bandelt, Chepoi, K '15]

realizable COM = sign systems
from arrangement of open
halfspaces and hyperplanes.

topes $\mathcal{T} \cong$ acyclic orientations of a **mixed graph**

topes \mathcal{T} of $\mathcal{M}=$ maximal cells= max. covectors

tope graph $G_{\mathcal{L}}$ =incidence graph= induced graph in Q_E

 \circ Covector axioms: (E,\mathcal{L}) COM iff

 (FS) $\mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L}$

(SE) $\forall X, Y \in \mathcal{L}$ and $e \in S(X, Y) \exists Z \in \mathcal{L}$: $Z_e = 0$ and $Z_f = X_f \circ Y_f$ for $f \notin S(X, Y)$.

A common generalization

```
\circ Covector axioms: (E,\mathcal{L}) COM iff
```

$$(\mathsf{FS}) \ \mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L}$$

(SE)
$$\forall X, Y \in \mathcal{L} \text{ and } e \in S(X, Y) \exists Z \in \mathcal{L} :$$

 $Z_e = 0 \text{ and } Z_f = X_f \circ Y_f \text{ for } f \notin S(X, Y).$

- \circ Covector axioms: (E, \mathcal{L}) oriented matroid:
- $(\mathsf{Z})\ \emptyset\in\mathcal{L}$
- (FS) $\mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L}$
- (SE) $\forall X, Y \in \mathcal{L}$ and $e \in S(X, Y) \exists Z \in \mathcal{L}$: $Z_e = 0$ and $Z_f = X_f \circ Y_f$ for $f \notin S(X, Y)$.
- \circ Covector axioms: (E, \mathcal{L}) affine oriented matroid:
- (A) something lengthy
- $(\mathsf{FS}) \ \mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L}$
- (SE) $\forall X, Y \in \mathcal{L}$ and $e \in S(X, Y) \exists Z \in \mathcal{L}$: $Z_e = 0$ and $Z_f = X_f \circ Y_f$ for $f \notin S(X, Y)$.

A common generalization

```
\circ Covector axioms: (E,\mathcal{L}) COM iff
(\mathsf{FS}) \ \ \mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L}
(SE) \forall X, Y \in \mathcal{L} and e \in S(X, Y) \exists Z \in \mathcal{L}:
         Z_e = 0 and Z_f = X_f \circ Y_f for f \notin S(X, Y).
```

- (FS) $\mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L}$
- tope graphs partial cubes and determine C (SE) $\forall X, Y \in \mathcal{L}$ and $e \in S(X, Y)$

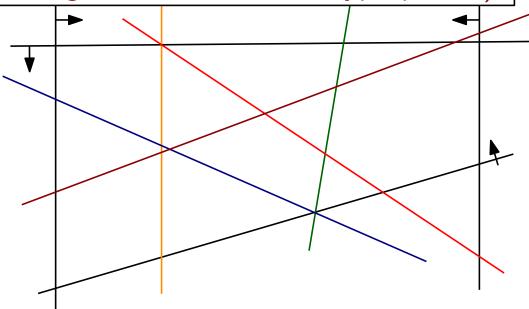
G partial cube $:\Leftrightarrow G$ isometric subgraph of hypercube

$$G\subseteq Q^n$$
 such that $d_G(v,w)=d_{Q^n}(v,w) \forall v,w\in G$

G partial cube $:\Leftrightarrow G$ isometric subgraph of hypercube

$$G\subseteq Q^n$$
 such that $d_G(v,w)=d_{Q^n}(v,w)\forall v,w\in G$

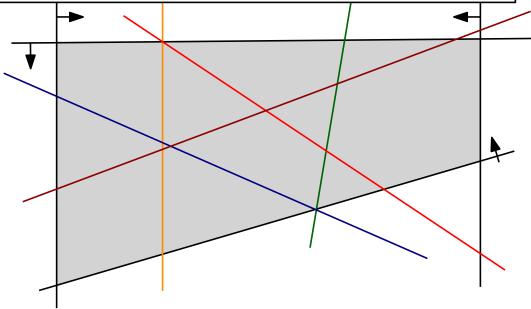
tope graph of realizable COM (arrangement of half and hyperplanes)



G partial cube $:\Leftrightarrow G$ isometric subgraph of hypercube

$$G\subseteq Q^n$$
 such that $d_G(v,w)=d_{Q^n}(v,w)\forall v,w\in G$

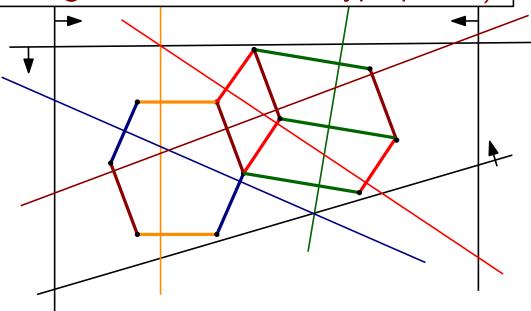
tope graph of realizable COM (arrangement of half and hyperplanes)



G partial cube $:\Leftrightarrow G$ isometric subgraph of hypercube

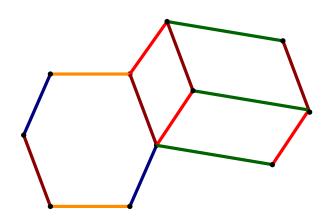
$$G\subseteq Q^n$$
 such that $d_G(v,w)=d_{Q^n}(v,w)\forall v,w\in G$

tope graph of realizable COM (arrangement of half and hyperplanes)



G partial cube $:\Leftrightarrow G$ isometric subgraph of hypercube

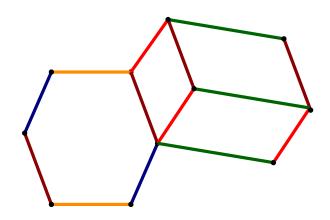
$$G\subseteq Q^n$$
 such that $d_G(v,w)=d_{Q^n}(v,w) \forall v,w\in G$



edges of partial cube naturally partitioned into minimal cuts \mathcal{C}

G partial cube $:\Leftrightarrow G$ isometric subgraph of hypercube

$$G\subseteq Q^n$$
 such that $d_G(v,w)=d_{Q^n}(v,w) \forall v,w\in G$

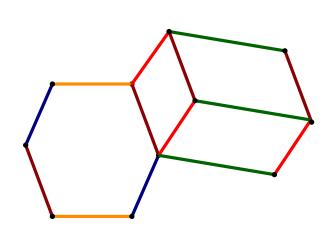


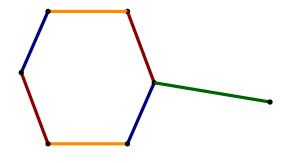
edges of partial cube naturally partitioned into minimal cuts C \rightsquigarrow minor-relation

G partial cube $:\Leftrightarrow G$ isometric subgraph of hypercube

$$G\subseteq Q^n$$
 such that $d_G(v,w)=d_{Q^n}(v,w) \forall v,w\in G$

restriction to a side of a cut



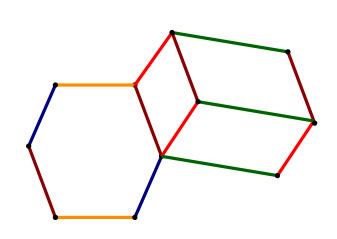


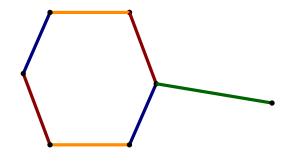
edges of partial cube naturally partitioned into minimal cuts C \rightsquigarrow minor-relation

G partial cube $:\Leftrightarrow G$ isometric subgraph of hypercube

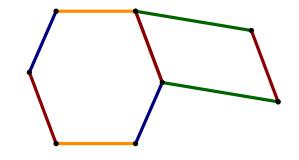
$$G\subseteq Q^n$$
 such that $d_G(v,w)=d_{Q^n}(v,w) \forall v,w\in G$

restriction to a side of a cut





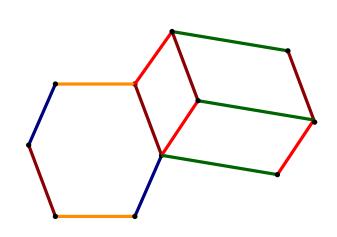
edges of partial cube naturally partitioned into minimal cuts C \rightsquigarrow minor-relation

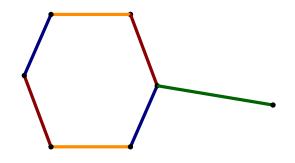


G partial cube $:\Leftrightarrow G$ isometric subgraph of hypercube

$$G\subseteq Q^n$$
 such that $d_G(v,w)=d_{Q^n}(v,w) \forall v,w\in G$

restriction to a side of a cut

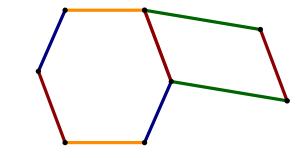


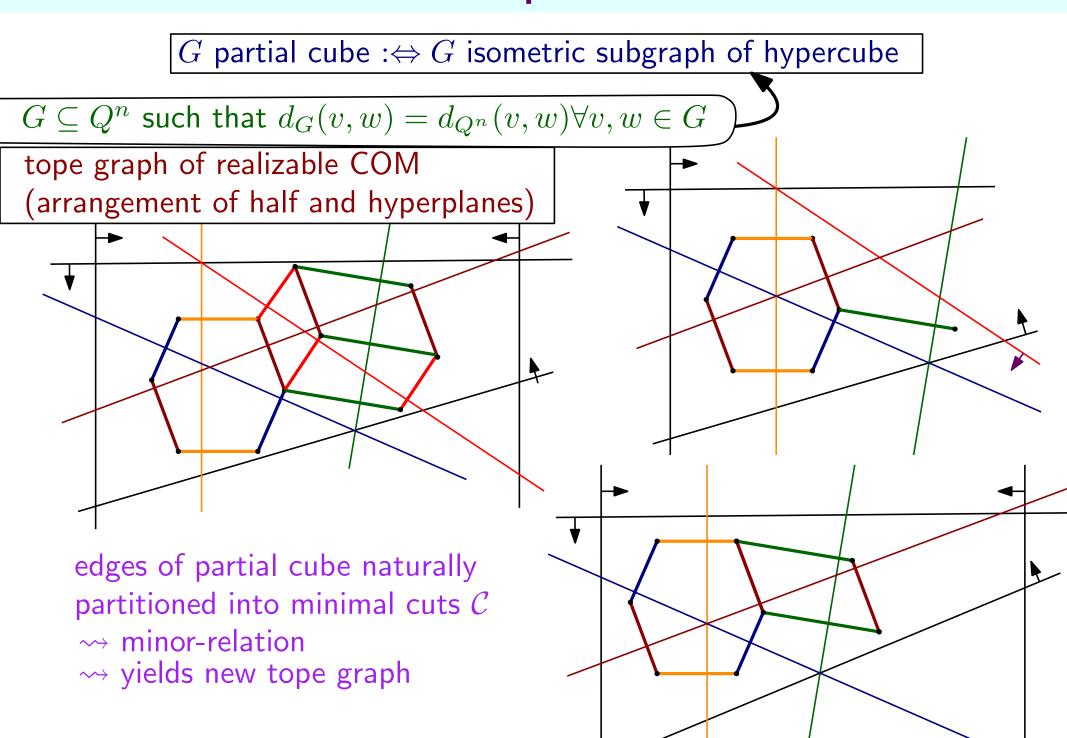


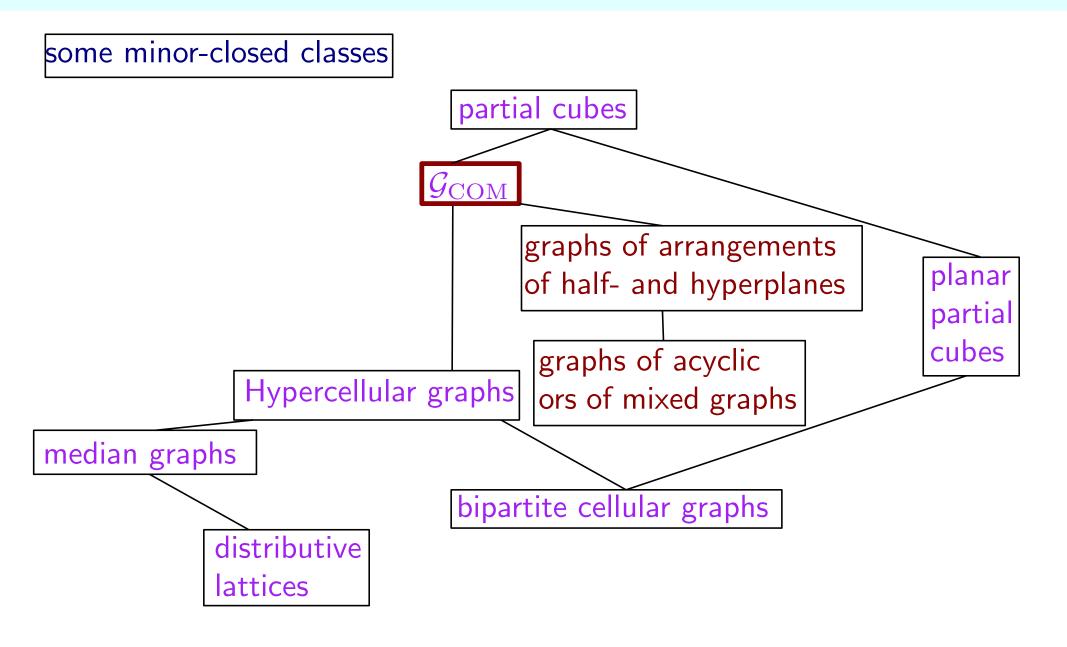
edges of partial cube naturally partitioned into minimal cuts $\mathcal C$

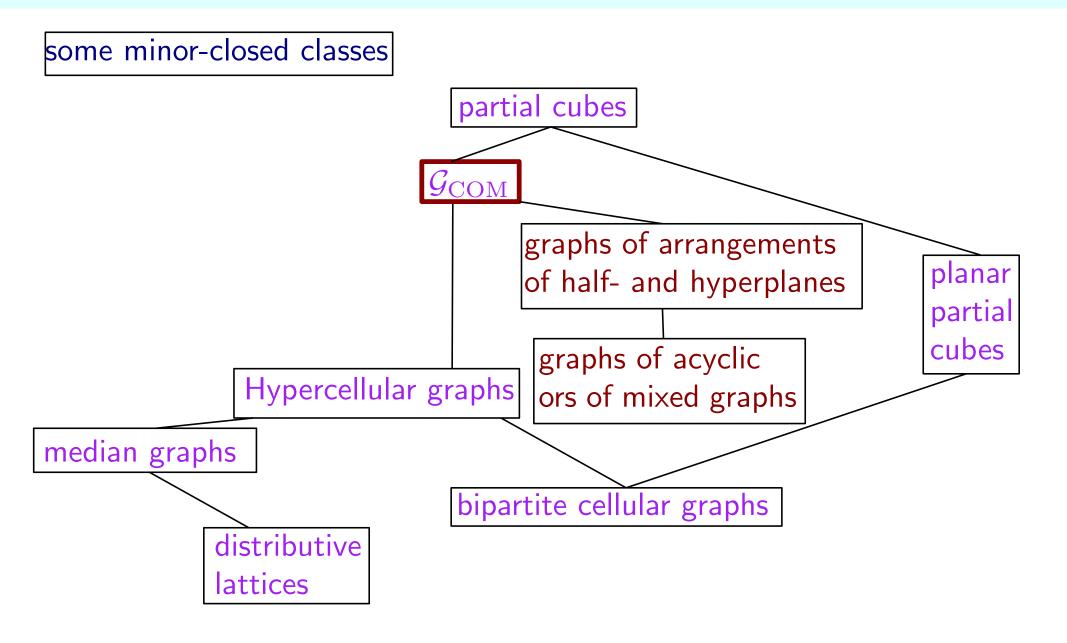
- → minor-relation

contraction of a cut

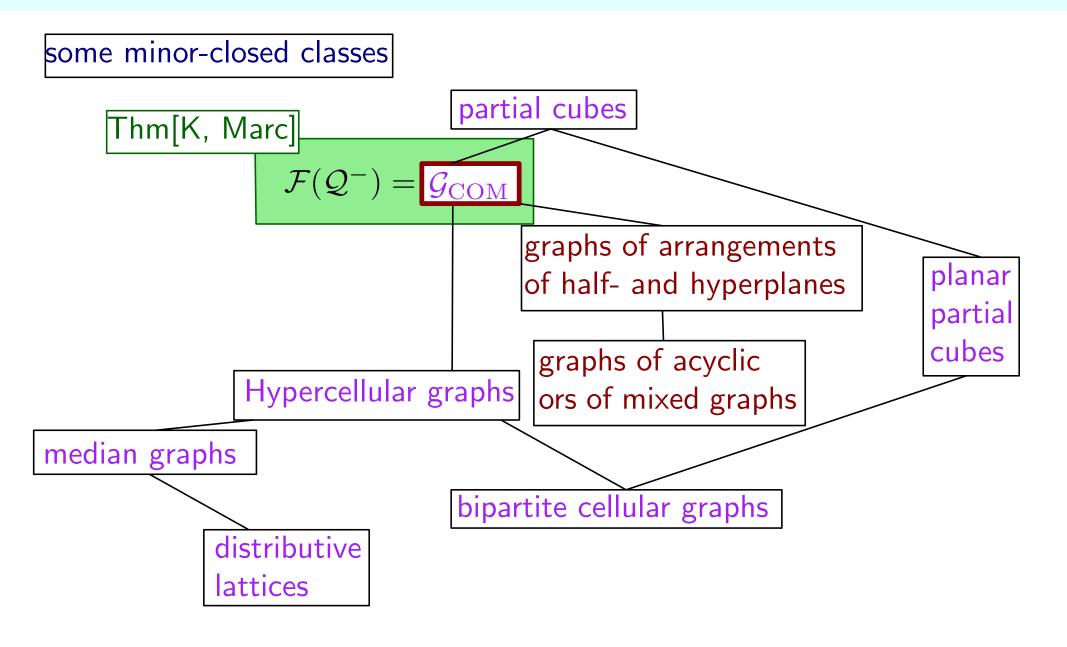




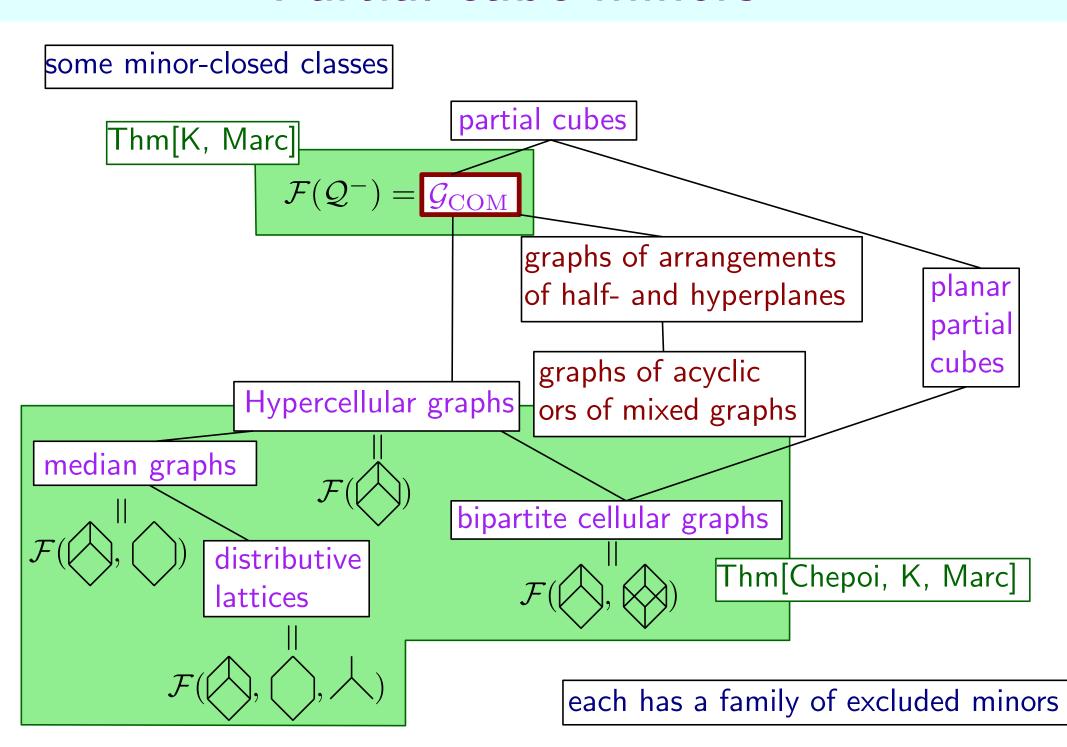


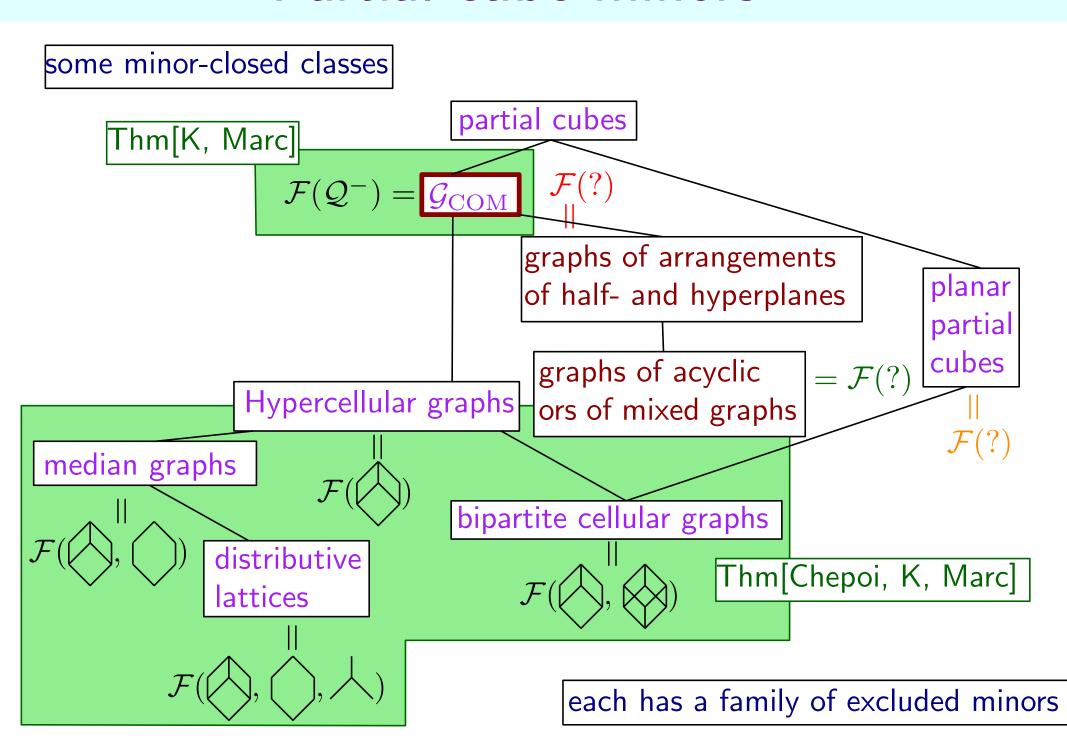


each has a family of excluded minors



each has a family of excluded minors





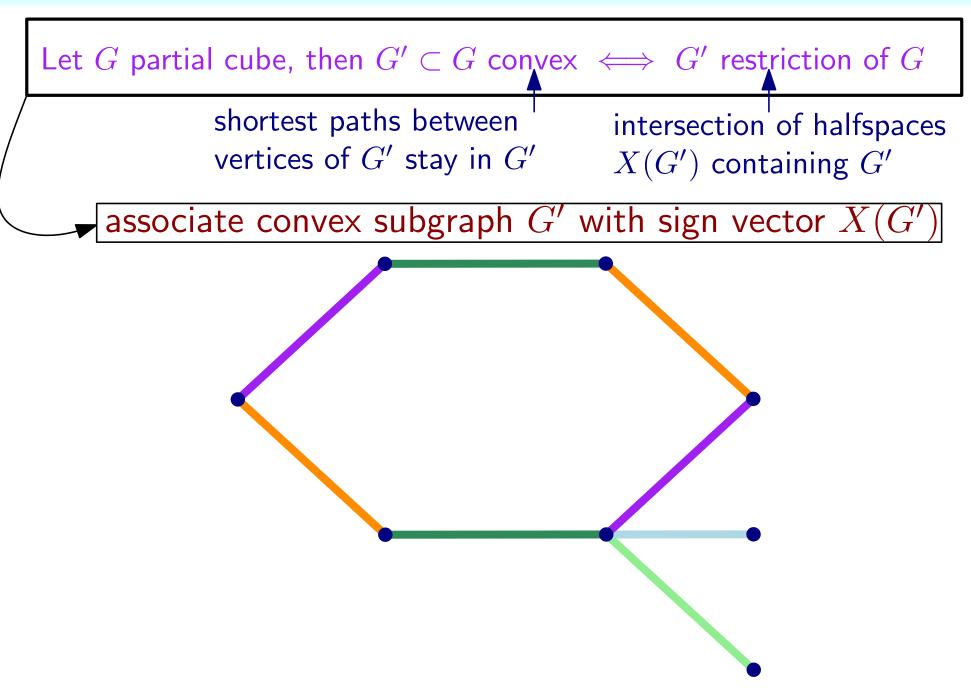
Let G partial cube, then $G' \subset G$ convex $\iff G'$ restriction of G

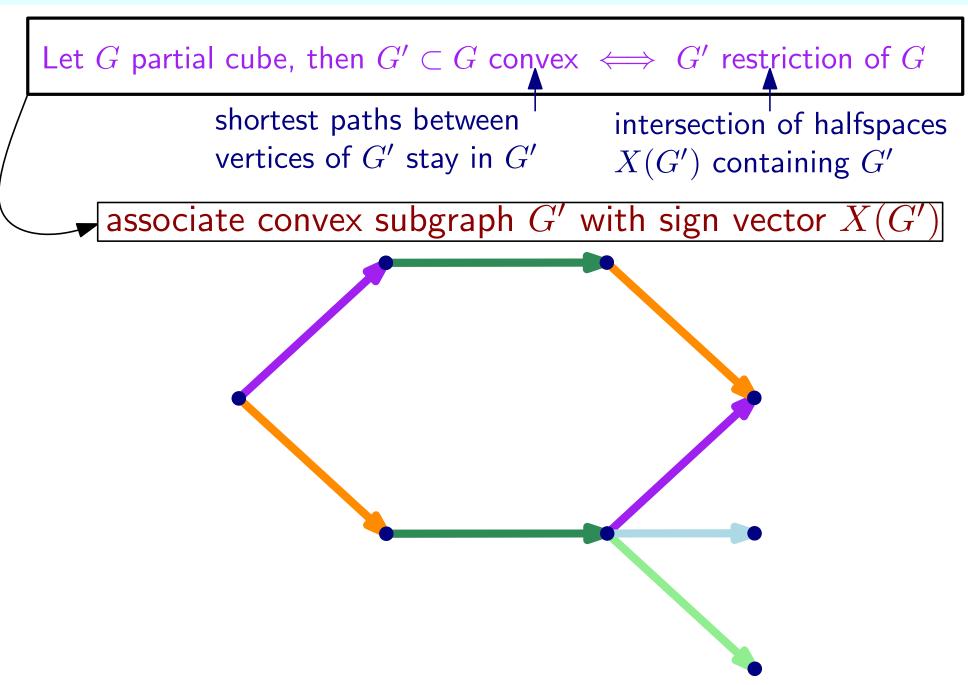
shortest paths between 'vertices of G' stay in G'

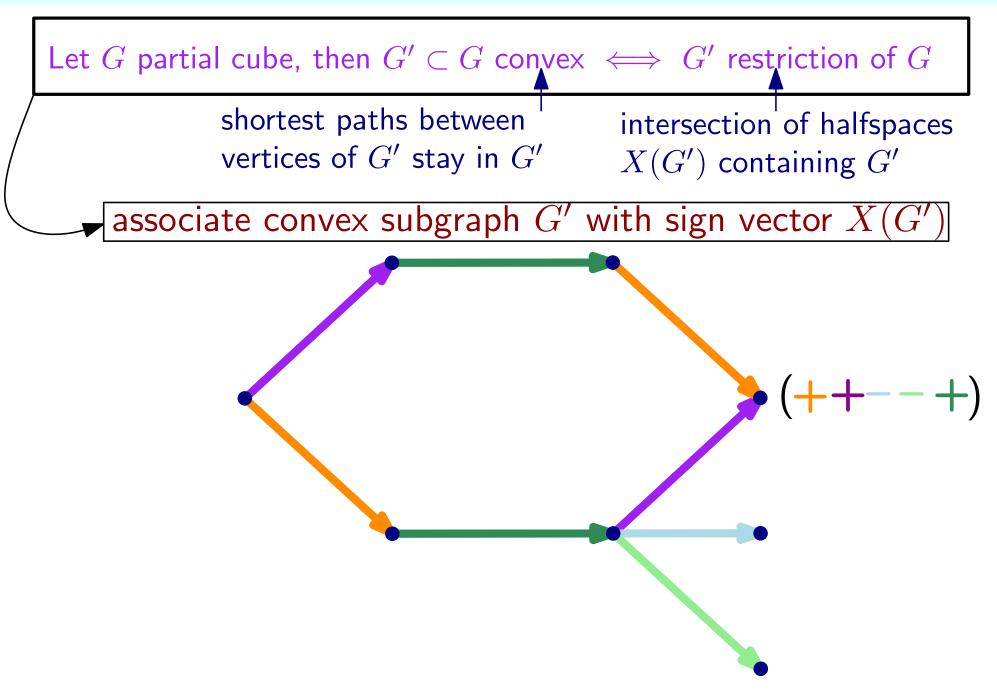
Let G partial cube, then $G' \subset G$ convex $\iff G'$ restriction of G

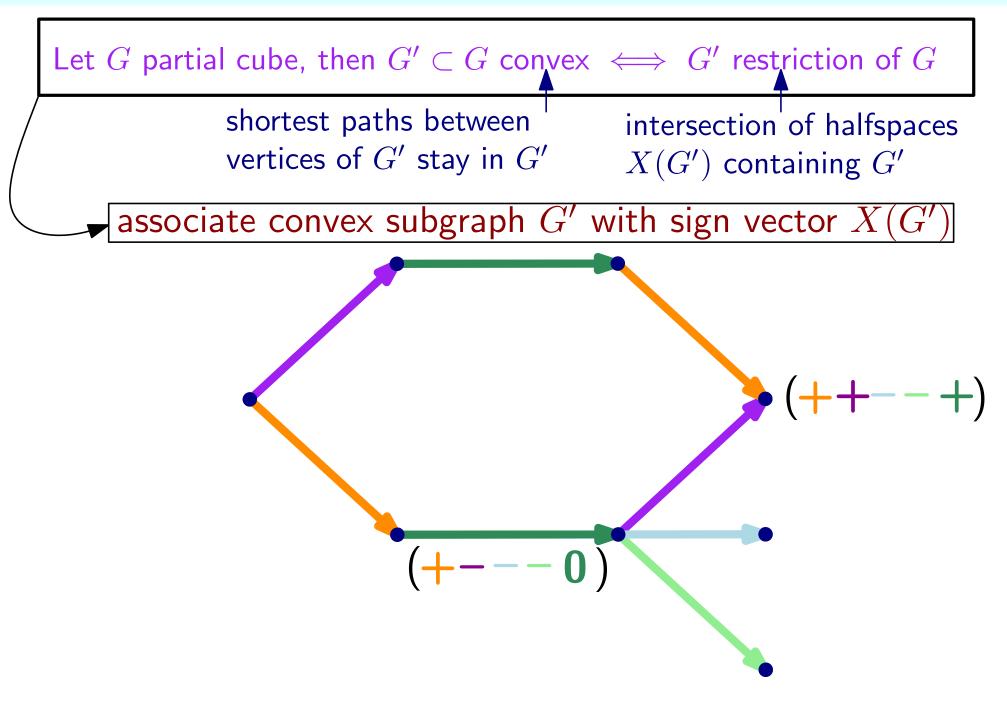
shortest paths between 'vertices of G' stay in G'

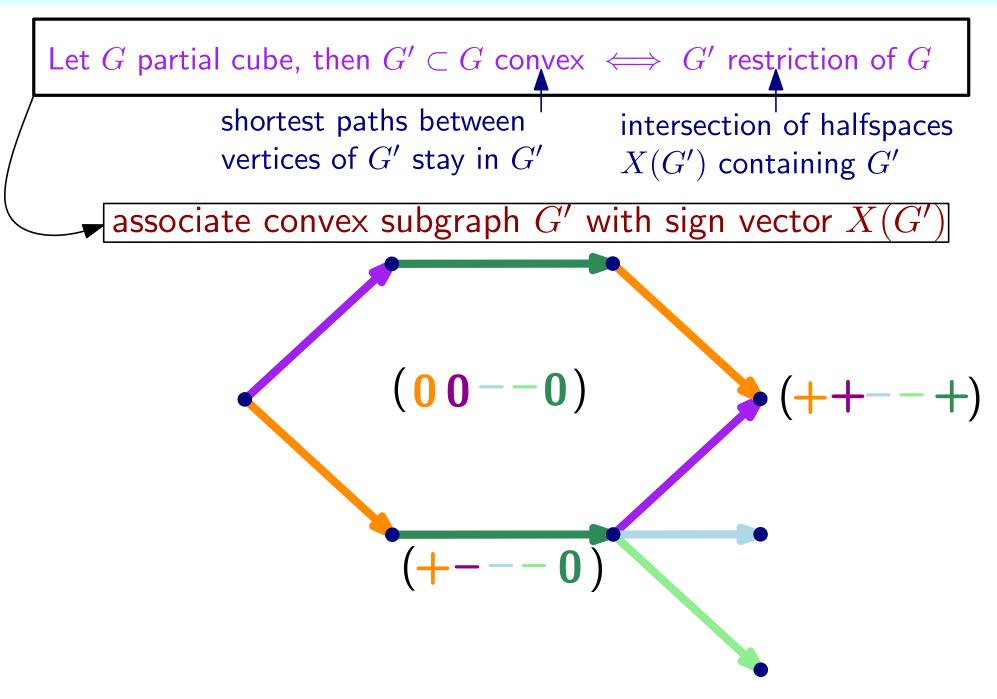
intersection of halfspaces X(G') containing G'

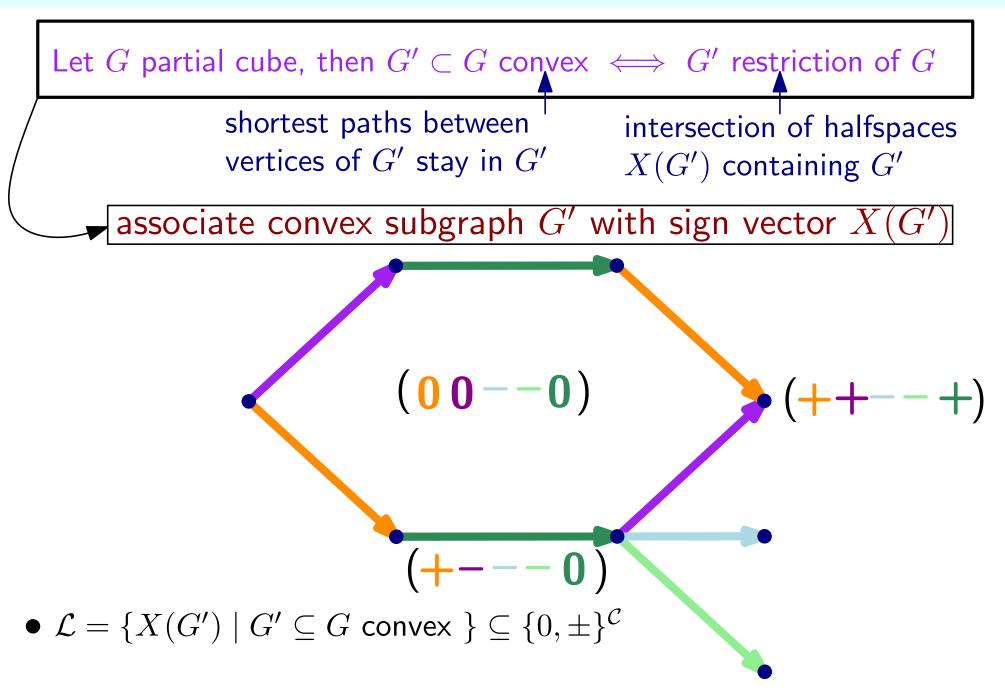




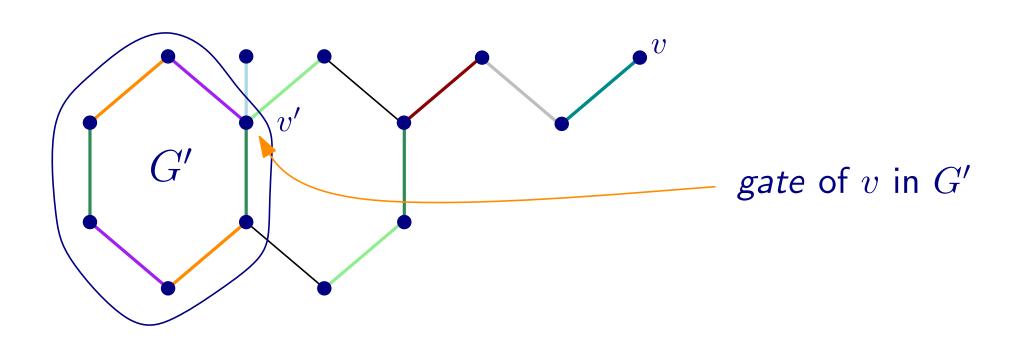


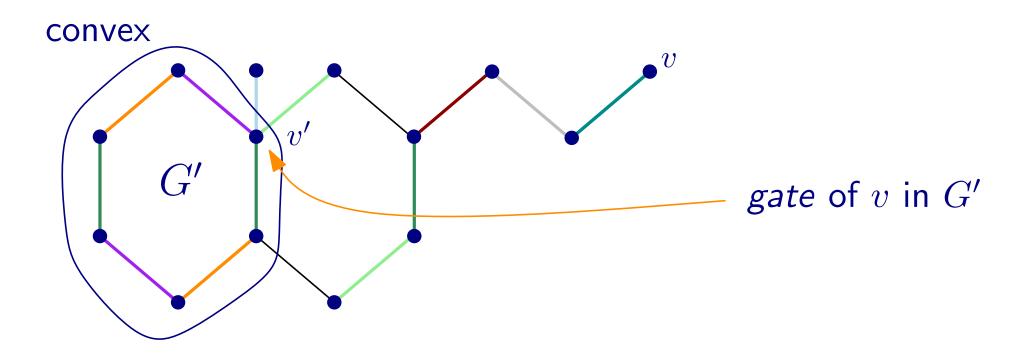


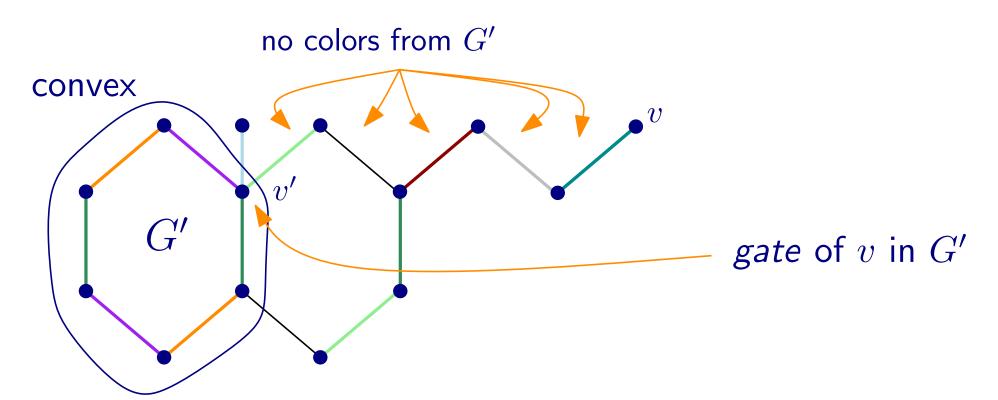


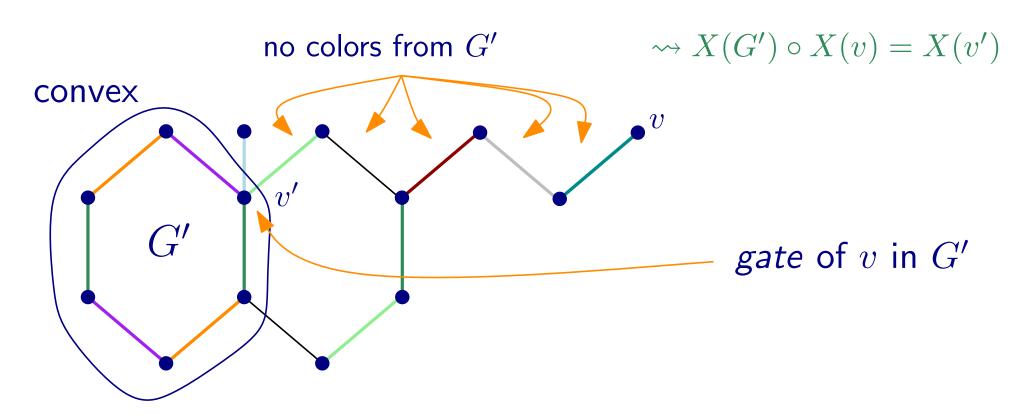


Let G partial cube, then $G' \subset G$ convex $\iff G'$ restriction of G shortest paths between intersection of halfspaces vertices of G' stay in G'X(G') containing G'associate convex subgraph G' with sign vector X(G')• $\mathcal{L} = \{X(G') \mid G' \subseteq G \text{ convex }\} \subseteq \{0, \pm\}^{\mathcal{C}}$ • tope graph $G_{\mathcal{L}} = \mathcal{L} \cap \{\pm 1\}^{\mathcal{C}} \subseteq Q_{\mathcal{C}}$ of \mathcal{L} is G

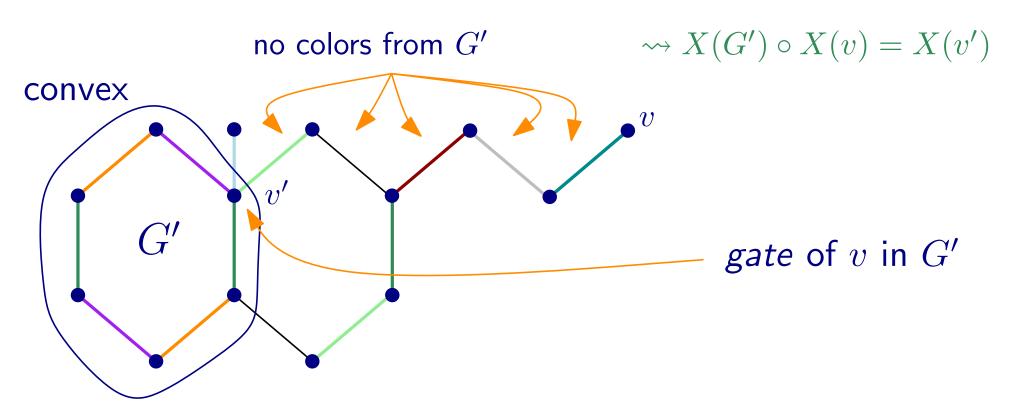




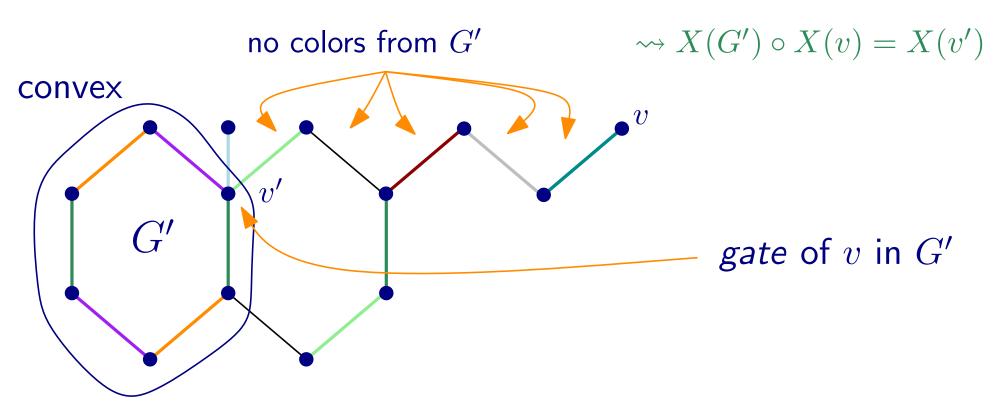




 $G'\subseteq G$ gated if $\forall v\in G\ \exists v'\in G'$ s.th $\forall w\in G'$ there is a shortest (v,w)-path through v'



• $\mathcal{L} = \{X(G') \mid G' \subseteq G \text{ gated } \} \subseteq \{0, \pm\}^{\mathcal{C}}$



- $\mathcal{L} = \{X(G') \mid G' \subseteq G \text{ gated } \} \subseteq \{0, \pm\}^{\mathcal{C}}$
- \mathcal{L} has $\mathcal{L} \circ \mathcal{L} \subseteq \mathcal{L}$ while $G_{\mathcal{L}} = G$

Antipodal gated subgraphs

Antipodal gated subgraphs

G' antipodal if $\forall v \in G' \ \exists v' \in G'$ s. th. $\forall w \in G'$ there is a shortest

(v, v')-path through w

 $((antipodal \Rightarrow convex)$

$$\Leftrightarrow X(v') = X(G') \circ -X(v)$$

G' antipodal if $\forall v \in G' \ \exists v' \in G'$ s. th. $\forall w \in G'$ there is a shortest

(v,v')-path through w

 $((antipodal \Rightarrow convex)$

$$\Leftrightarrow X(v') = X(G') \circ -X(v)$$

G' antipodal if $\forall v \in G' \ \exists v' \in G'$ s. th. $\forall w \in G'$ there is a shortest

(v,v')-path through w

antipodal and gated

 $((antipodal \Rightarrow convex)$

$$\Leftrightarrow X(v') = X(G') \circ -X(v)$$

G' antipodal if $\forall v \in G' \ \exists v' \in G'$ s. th. $\forall w \in G'$ there is a shortest

(v,v')-path through w

 $((antipodal \Rightarrow convex)$

$$\Leftrightarrow X(v') = X(G') \circ -X(v)$$

antipodal and gated

gated and not antipodal

G' antipodal if $\forall v \in G' \ \exists v' \in G'$ s. th. $\forall w \in G'$ there is a shortest

(v,v')-path through w

 $((antipodal \Rightarrow convex)$

$$\Leftrightarrow X(v') = X(G') \circ -X(v)$$

antipodal and gated

gated and not antipodal

convex, not gated nor antipodal

G' antipodal if $\forall v \in G' \ \exists v' \in G'$ s. th. $\forall w \in G'$ there is a shortest

(v,v')-path through w

 $((antipodal \Rightarrow convex)$

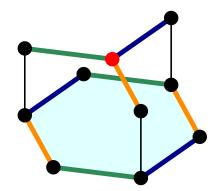
$$\Leftrightarrow X(v') = X(G') \circ -X(v)$$

antipodal and gated

gated and not antipodal

convex, not gated nor antipodal

antipodal and not gated



G' antipodal if $\forall v \in G'$ $\exists v' \in G'$ s. th. $\forall w \in G'$ there is a shortest

(v,v')-path through w

 $((antipodal \Rightarrow convex)$

$$\Leftrightarrow X(v') = X(G') \circ -X(v)$$

antipodal and gated

gated and not antipodal

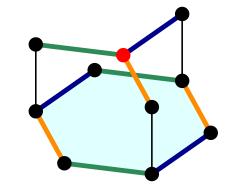
convex, not gated nor antipodal

antipodal and not gated

 G^\prime antipodal and gated

 \Leftrightarrow every v has gate with antipode in G'

$$\Leftrightarrow X(G') \circ -X(v) \in \{X(v') \mid v' \in V\}$$



G' antipodal if $\forall v \in G' \ \exists v' \in G'$ s. th. $\forall w \in G'$ there is a shortest

(v,v')-path through w

 $((antipodal \Rightarrow convex)$

$$\Leftrightarrow X(v') = X(G') \circ -X(v)$$

antipodal and gated

gated and not antipodal

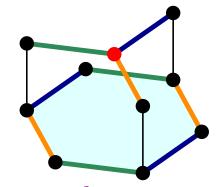
convex, not gated nor antipodal

antipodal and not gated

 G^\prime antipodal and gated

 \Leftrightarrow every v has gate with antipode in G'

$$\Leftrightarrow X(G') \circ -X(v) \in \{X(v') \mid v' \in V\}$$



• $\mathcal{L} = \{X(G') \mid G' \subseteq G \text{ antipodal and gated } \} \subseteq \{0, \pm\}^{\mathcal{C}}$ (FS) $\mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L}$

G' antipodal if $\forall v \in G' \ \exists v' \in G'$ s. th. $\forall w \in G'$ there is a shortest

(v,v')-path through w

 $((antipodal \Rightarrow convex)$

$$\Leftrightarrow X(v') = X(G') \circ -X(v)$$

antipodal and gated

gated and not antipodal

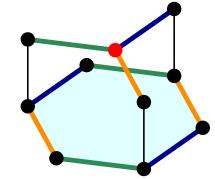
convex, not gated nor antipodal

antipodal and not gated

 G^\prime antipodal and gated

 \Leftrightarrow every v has gate with antipode in G'

$$\Leftrightarrow X(G') \circ -X(v) \in \{X(v') \mid v' \in V\}$$

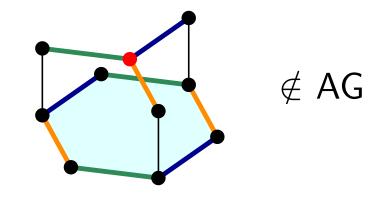


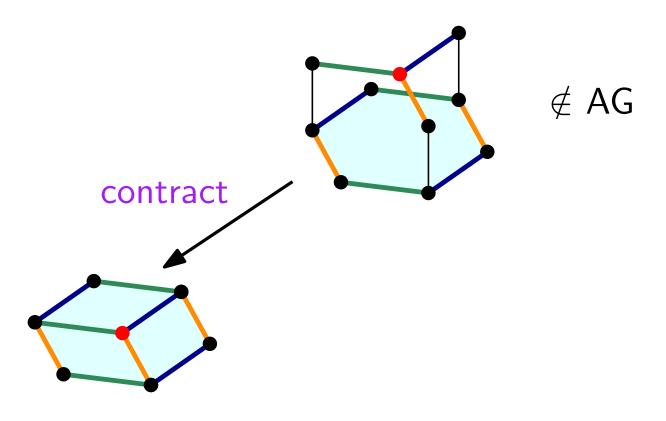
• $\mathcal{L} = \{X(G') \mid G' \subseteq G \text{ antipodal and gated } \} \subseteq \{0, \pm\}^{\mathcal{C}}$

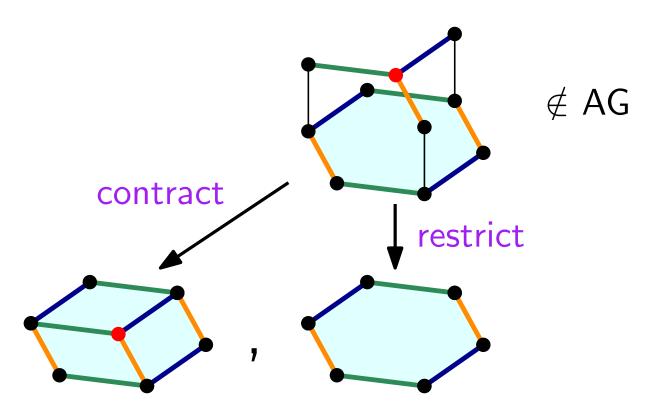
(FS)
$$\mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L}$$

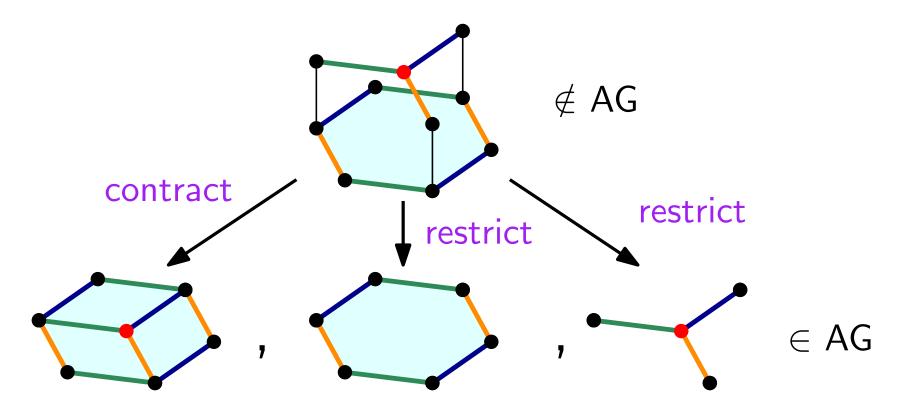
 $\leadsto G$ tope graph of COM

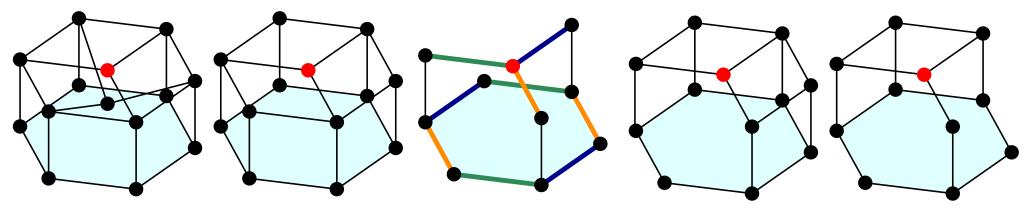
→ antipodal subgraphs gated





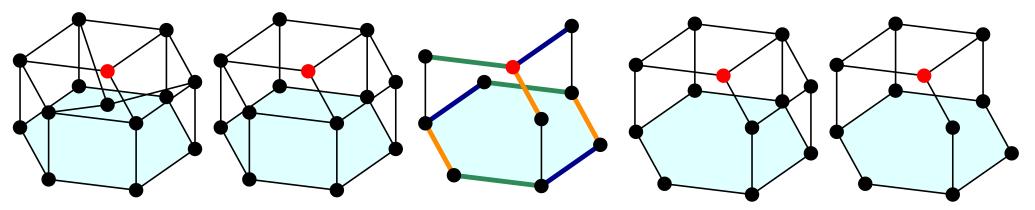






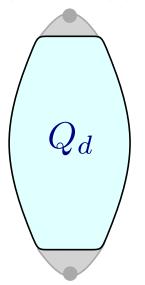
all these are minor-minimally non AG

 $AG = \{G \text{ partial cube} | \text{ all antipodal subgraphs gated} \}$

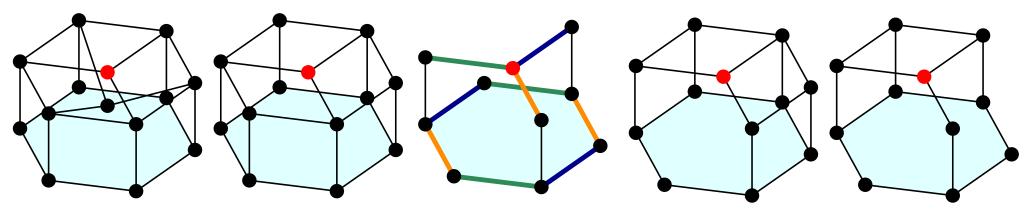


all these are minor-minimally non AG

but more generally:

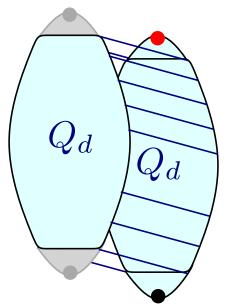


 $AG = \{G \text{ partial cube} | \text{ all antipodal subgraphs gated} \}$

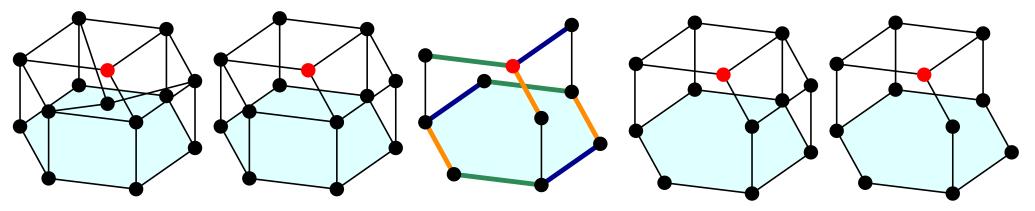


all these are minor-minimally non AG

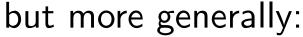
but more generally:

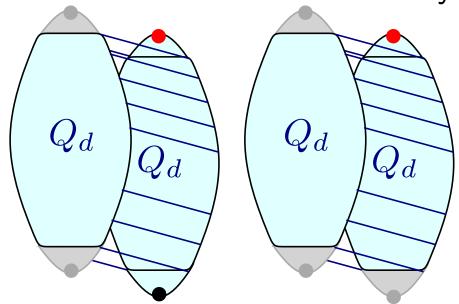


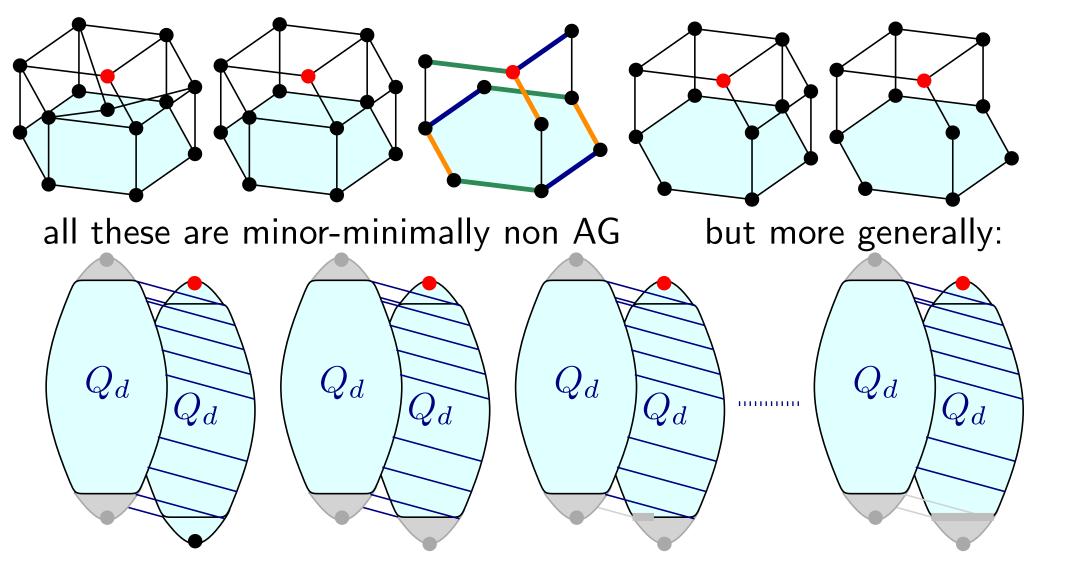
 $AG = \{G \text{ partial cube} | \text{ all antipodal subgraphs gated} \}$

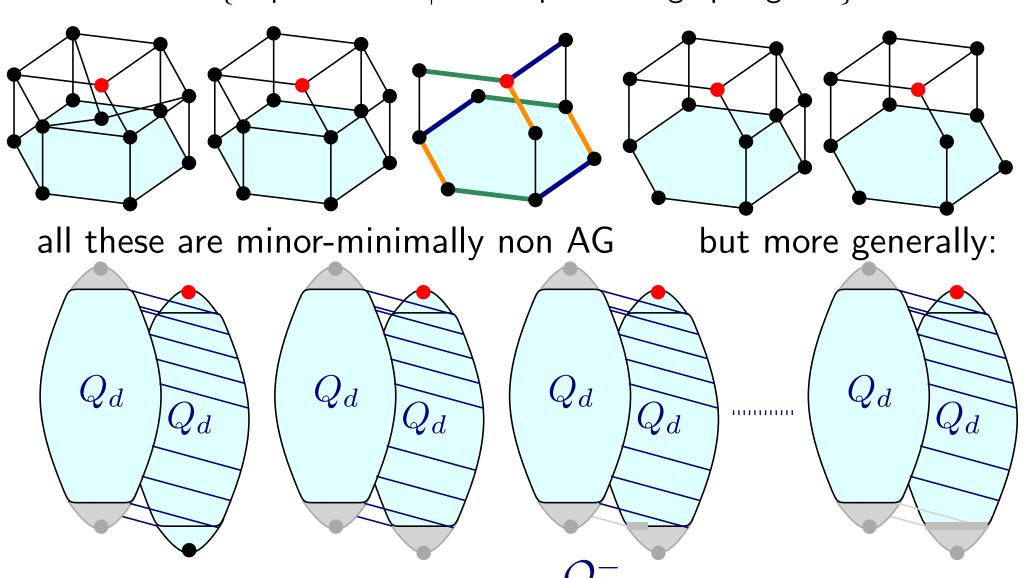


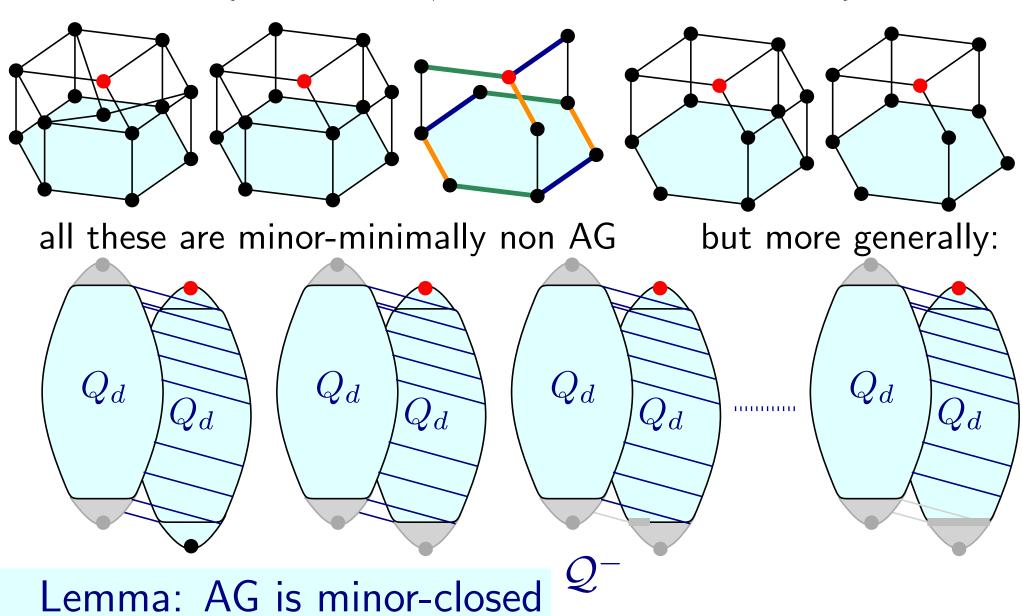
all these are minor-minimally non AG



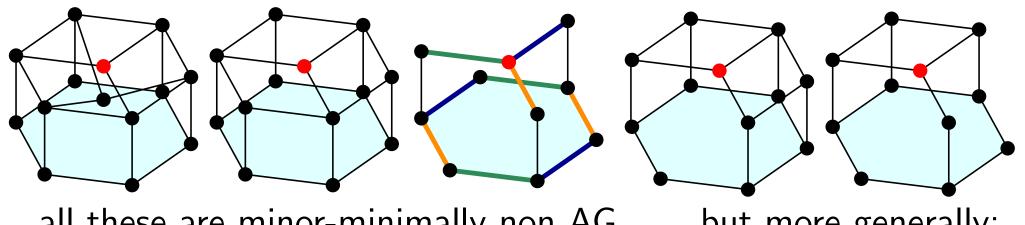






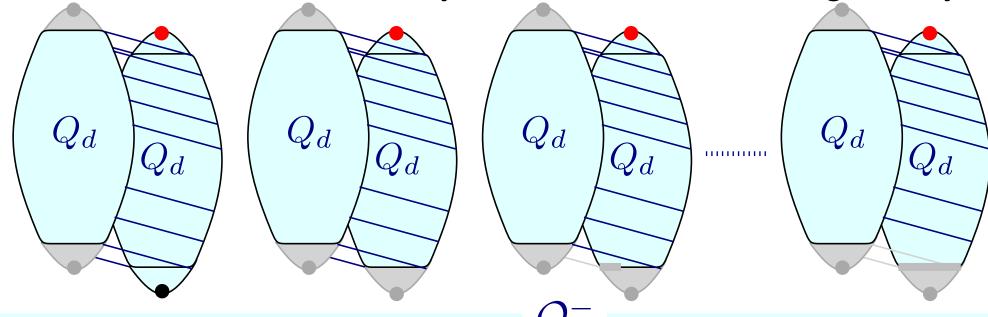


 $AG = \{G \text{ partial cube} | \text{ all antipodal subgraphs gated} \}$



all these are minor-minimally non AG

but more generally:



Lemma: AG is minor-closed

$$\implies \mathsf{AG} \subseteq \mathcal{F}(\mathcal{Q}^-)$$

Characterization

THM[K, Marc '17]:

for a partial cube G the following are equivalent:

- \circ G is tope graph of a COM
- \circ all antipodal subgraphs of G are gated
- \circ G has no partial cube minor from \mathcal{Q}^-

Corollaries:

- characterization, recognition for oriented matroids and affine oriented matroids
- polytime recognition

A common generalization

THM[K, Marc 17]:

G tope graph of COM iff G partial cube such that all antipodal subgraphs gated.

COR:

G tope graph of OM iff G antipodal partial cube such that all antipodal subgraphs gated.

COR:

G tope graph of AOM iff G affine partial cube such that all antipodal and conformal subgraphs gated.

Recognition

THM[K, Marc 17]:

G tope graph of COM iff G partial cube such that all antipodal subgraphs gated.

naive polytime alogrithm

- check if partial cube
- find antipodal subgraphs
 - check if antipodal
- for each check if gated

 $O(n^2)$

 $O(n^2)$ shortest path intervals

do some distances

Observation: tope graphs of *realizable* COMs are convex subgraphs of tope graphs of *realizable* OMs.

Observation: tope graphs of *realizable* COMs are convex subgraphs of tope graphs of realizable OMs.

Observation: tope graphs of realizable COMs are convex subgraphs of tope graphs of realizable OMs.

Observation: tope graphs of *realizable* COMs are convex subgraphs of tope graphs of *realizable* OMs.

Conjecture [Bandelt, Chepoi, K '15]: every $G_{\rm COM}$ is convex subgraph of $G_{\rm OM}$.

Observation: tope graphs of *realizable* COMs are convex subgraphs of tope graphs of *realizable* OMs.

Conjecture [Bandelt, Chepoi, K '15]: every $G_{\rm COM}$ is convex subgraph of $G_{\rm OM}$.

would yield a Topological Representation Theorem with pseudohyperplanes and pseudohalfspaces for COMs

Observation: tope graphs of *realizable* COMs are convex subgraphs of tope graphs of *realizable* OMs.

Conjecture [Bandelt, Chepoi, K '15]: every $G_{\rm COM}$ is convex subgraph of $G_{\rm OM}$.

would yield a Topological Representation Theorem with pseudohyperplanes and pseudohalfspaces for COMs

Find excluded minors for:

- planar partial cubes
- realizable COMs
- flip graphs of acyclic orientations of mixed graphs

Observation: tope graphs of *realizable* COMs are convex subgraphs of tope graphs of *realizable* OMs.

Conjecture [Bandelt, Chepoi, K '15]: every $G_{\rm COM}$ is convex subgraph of $G_{\rm OM}$.

would yield a Topological Representation Theorem with pseudohyperplanes and pseudohalfspaces for COMs

Find excluded minors for:

- planar partial cubes
- realizable COMs
- flip graphs of acyclic orientations of mixed graphs

