The Power of Local Search for Clustering in "Separable Instances"

Vincent Cohen-Addad

Joint work with:

Philip N. Klein

Claire Mathieu

Sorbonne Université & CNRS

Brown University Ecole normale supérieure & CNRS

Vincent Cohen-Addad 1 / 29

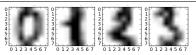
What is Clustering?

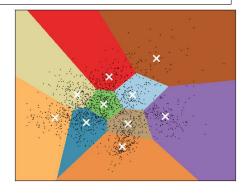
Partition data points according to distances.

Group buildings to locate firestations **Underlying data:** Road networks.

Vincent Cohen-Addad 2 / 2!

Partition data according to similarity.





Underlying data: Points in \mathbb{R}^2 .

Vincent Cohen-Addad 3 / 2

How to model clustering?

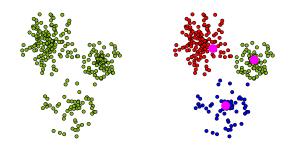
k-Clustering

Input: data points A in a metric space

Output: set *C* of *k centers* that minimizes

$$\sum_{a\in A} \min_{c\in C} d(a,c)^p.$$

k-median is when p = 1, k-means is when p = 2.



Vincent Cohen-Addad 4 / 2!

The 1-median problem dates back to Fermat (1636).

Given three points $a,b,c\in\mathbb{R}^2$, find a point d that minimizes d(a,d)+d(b,d)+d(c,d).

If more than 3 points, it is hard to compute exactly!

Vincent Cohen-Addad 5 / 29

Algorithms for Clustering: History

• *k*-median:

1964	Introduction of the Problem	[Hakimi]
1979	NP-Hardness	[Kariv and Hakimi]
2002	623-approx	[Charikar et al.]
2004	3+arepsilon-approx	[Arya et al.]
2013	$1+\sqrt{3}pprox 2.732+arepsilon$ -approx	[Li and Svensson]
2015	(current best) $2.675 + \varepsilon$	[Byrka et al.]

• k-means:

1967	Introduction of the Problem	[MacQueen]
2004	(current best) $16+arepsilon$	[Kanungo et al.]

NP-Hard

To obtain better than $1+2/e\approx 1.735$ approx for k-median in polynomial time.

Vincent Cohen-Addad 6 / 29

Focus on real-world:

- Road Networks planar graphs
- Machine learning and image compression low-dimensional Euclidean space

Previous Work on Restricted Metrics

Planar graphs

Nothing Better than General Case

$\mathbb{R}^{O(1)}$

```
k-median (1+\varepsilon) [Arora et al. '98] k-means 9 [Kanungo et al. '04]
```

Vincent Cohen-Addad 8 / 29

Recent Results for $\mathbb{R}^{O(1)}$

[C.-A. and Mathieu, SoCG '15]

Local search achieves a $(1 + \varepsilon)$ -approximation using $(1 + \varepsilon)k$ centers for k-median.

[Bandyapadhyay and Varadarajan, SoCG '16]

Local search achieves a $(1 + \varepsilon)$ -approximation using $(1 + \varepsilon)k$ centers for k-means.

Main open problems:

- Obtain better than general case in planar graphs
- Obtain $(1 + \varepsilon)$ for $\mathbb{R}^{O(1)}$ for k-means using k centers
- Design a unified approach for well-clusterable instances

Vincent Cohen-Addad 9 / 29

Our Results

Local search is a PTAS for uniform facility location in edge-weighted planar graphs.

Local search is a PTAS for k-median in edge-weighted planar graphs.

Local search is a PTAS for k-means in \mathbb{R}^d .

Vincent Cohen-Addad 10 / 29

Techniques: **Separators**

Planar graphs

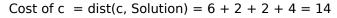
Planar separator [Lipton and Tarjan, SIAM J. App. Math. '79]:

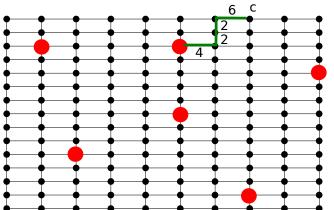
$\mathbb{R}^{O(1)}$

Isoperimetric inequality through [Bhattiprolu and Har-Peled, SoCG '16].

Vincent Cohen-Addad 11 / 29

Local search is a PTAS for uniform facility location in edge-weighted planar graphs.

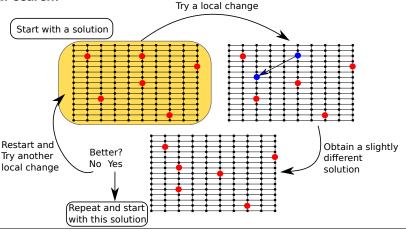




Cost of the solution: 6 (opening cost) + \sum_{c} (cost of c)

Vincent Cohen-Addad 12 / 29

Local search:



Repeat

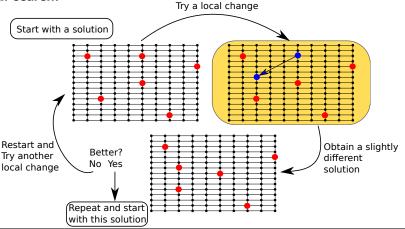
Find better solution S among sets that differ from S in at most $1/\varepsilon^2$ centers

Replace S by S

Until: local optimum

Vincent Cohen-Addad 13 / 29

Local search:



Repeat

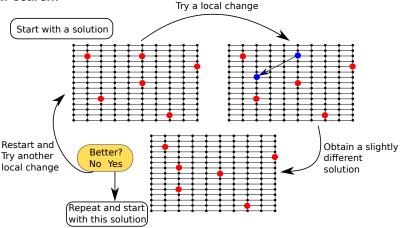
Find better solution S among sets that differ from S in at most $1/\varepsilon^2$ centers

Replace S by S

Until: local optimum

Vincent Cohen-Addad 13 / 29

Local search:



Repeat

Find better solution S among sets that differ from S in at most $1/\varepsilon^2$ centers

Replace S by S

Until: local optimum

Vincent Cohen-Addad 13 / 29

Why does any $1/\varepsilon^2$ -locally-optimal solution have value $(1+\varepsilon)$ OPT?

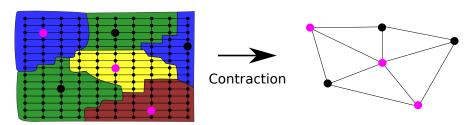
Proof structure:

- Define a structured near-optimal solution OPT'
- Compare the local solution \mathcal{L} to OPT'

Vincent Cohen-Addad 14 / 29

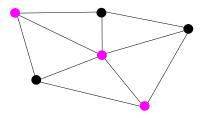
- Local optimum
- Global optimum

Contract the clusters of the clustering $\mathcal{L} \cup \mathsf{OPT}$.



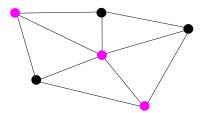
Obtain a planar graph \tilde{G}

Vincent Cohen-Addad 15 / 29



What do we know about planar graphs?

Vincent Cohen-Addad 16 / 29



What do we know about planar graphs?

Planar separator [Lipton and Tarjan, SIAM J. App. Math. '79]

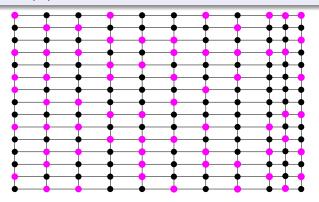
For any planar graph with n vertices, there exists a balanced separator with $O(\sqrt{n})$ vertices.

Vincent Cohen-Addad 16 / 29

$1/\varepsilon^2$ -division – Corollary of Lipton and Tarjan

If \tilde{G} planar then \exists a partition into **regions** such that:

- at most $1/\varepsilon^2$ vertices in each
- at most $\varepsilon V(\tilde{G})$ boundary vertices

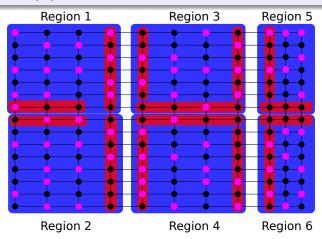


Vincent Cohen-Addad 17 / 29

$1/\varepsilon^2$ -division – Corollary of Lipton and Tarjan

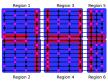
If \tilde{G} planar then \exists a partition into **regions** such that:

- at most $1/\varepsilon^2$ vertices in each
- at most $\varepsilon V(\tilde{G})$ boundary vertices



Vincent Cohen-Addad 17 / 29

Consider the boundary vertices of a $1/arepsilon^2$ -division of $ilde{G}$



New solution $\mathsf{OPT}' \leftarrow \mathsf{OPT} \cup \mathsf{boundary}$ vertices

Facility opening cost is ok: $f(|OPT| + \varepsilon(|OPT| + |\mathcal{L}|))$

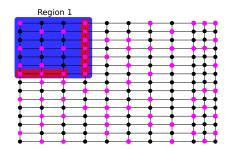
Client cost is optimal: $\mathsf{OPT} \subseteq \mathsf{OPT}' \implies \mathsf{d}(c,\mathsf{closest\ facility})$ can only decrease

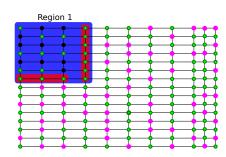
Vincent Cohen-Addad 18 / 29

Comparing \mathcal{L} to OPT'

For each region, define a mixed solution M:

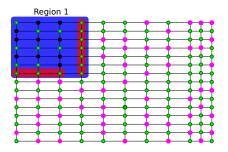
 $\{ \text{ Facilities of OPT}' \in \mathsf{Region} \} \cup \{ \text{ Facilities of } \mathcal{L} \notin \mathsf{Region} \}$





Compare \mathcal{L} to M.

Vincent Cohen-Addad 19 / 29



M and \mathcal{L} differ by at most $1/\varepsilon^2$ facilities.

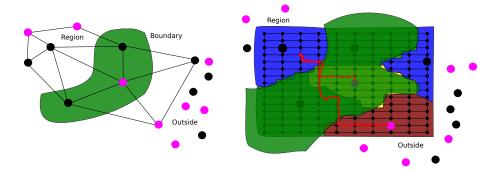
Local optimality implies that $cost(M) \ge cost(\mathcal{L})$.

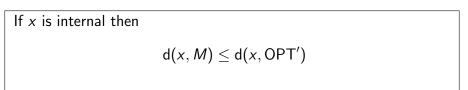
What is the cost of M w.r.t to OPT and \mathcal{L} ?

Vincent Cohen-Addad 20 / 29

Connection cost in *M*:

Claim: $\forall x \in \text{cluster of the region: its closest facility in OPT' is in <math>M$

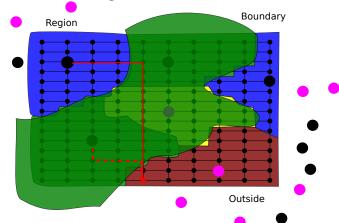




Vincent Cohen-Addad 21 / 29

Claim: $\forall y \notin \text{region: } d(x, M) \leq d(x, \mathcal{L})$

Exact same reasoning w.r.t to \mathcal{L} :



Vincent Cohen-Addad 22 / 29

Cost of *M*:

Facility opening cost:

$$f \cdot (|\{\mathsf{OPT}' \in \mathsf{region}\}| + |\{\mathcal{L} \notin \mathsf{region}\}|)$$

Client service cost: at most

$$\sum_{x \text{ internal}} \mathsf{d}(x, \mathsf{OPT}') + \sum_{y \text{ external}} \mathsf{d}(y, \mathcal{L})$$

Vincent Cohen-Addad 23 / 29

Local optimality: $cost(M) \ge cost(\mathcal{L})$

$$\begin{aligned} \cosh(M) &\leq \sum_{x \text{ internal}} \mathsf{d}(x, \mathsf{OPT}') + \sum_{y \text{ external}} \mathsf{d}(y, \mathcal{L}) + \\ f \cdot |\{\mathsf{OPT}' \in \mathsf{Region}\}| + f \cdot |\{\mathcal{L} \notin \mathsf{Region}\}| \\ \cos(\mathcal{L}) &= \sum_{x \text{ internal}} \mathsf{d}(x, \mathcal{L}) + \sum_{y \text{ external}} \mathsf{d}(y, \mathcal{L}) + \\ f \cdot |\{\mathcal{L} \in \mathsf{Region}\}| + f \cdot |\{\mathcal{L} \notin \mathsf{Region}\}| \end{aligned}$$

$$\sum_{x \text{ internal}} \mathsf{d}(x,\mathcal{L}) + f|\{\mathcal{L} \in \mathsf{Reg.}\}| \leq \sum_{x \text{ internal}} \mathsf{d}(x,\mathsf{OPT'}) + f|\{\mathsf{OPT'} \in \mathsf{Reg.}\}|$$

Vincent Cohen-Addad 24 / 29

Local optimality: $cost(M) \ge cost(\mathcal{L})$

$$\begin{aligned} \cosh(M) &\leq \sum_{x \text{ internal}} \mathsf{d}(x, \mathsf{OPT}') + \sum_{y \text{ external}} \mathsf{d}(y, \mathcal{L}) + \\ f \cdot |\{\mathsf{OPT}' \in \mathsf{Region}\}| + f \cdot |\{\mathcal{L} \notin \mathsf{Region}\}| \\ \cos(\mathcal{L}) &= \sum_{x \text{ internal}} \mathsf{d}(x, \mathcal{L}) + \sum_{y \text{ external}} \mathsf{d}(y, \mathcal{L}) + \\ f \cdot |\{\mathcal{L} \in \mathsf{Region}\}| + f \cdot |\{\mathcal{L} \notin \mathsf{Region}\}| \end{aligned}$$

$$\sum_{x \text{ internal}} \mathsf{d}(x,\mathcal{L}) + f|\{\mathcal{L} \in \mathsf{Reg.}\}| \leq \sum_{x \text{ internal}} \mathsf{d}(x,\mathsf{OPT'}) + f|\{\mathsf{OPT'} \in \mathsf{Reg.}\}|$$

Vincent Cohen-Addad 25 / 29

$$\sum_{x \text{ internal}} \mathsf{d}(x,\mathcal{L}) + f|\{\mathcal{L} \in \mathsf{Reg.}\}| \leq \sum_{x \text{ internal}} \mathsf{d}(x,\mathsf{OPT'}) + f|\{\mathsf{OPT'} \in \mathsf{Reg.}\}|$$

Sum over all regions

$$cost(L) \le cost(\mathsf{OPT}) + f|\mathsf{boundary \ vertices}|$$

$$cost(L) \le cost(\mathsf{OPT}) + \varepsilon \cdot f \cdot |\mathcal{L} \cup \mathsf{OPT}|$$

$$(1 - \varepsilon)cost(L) \le (1 + \varepsilon)cost(\mathsf{OPT})$$

Vincent Cohen-Addad 26 / 29

Polynomial-time:

Ensure that enough progress is made at each step \implies lose additional $\varepsilon \mathsf{OPT}.$

Repeat

Find a solution S that improves the cost by a factor $(1+\varepsilon/k)$ among sets that differ from S in at most $1/\varepsilon^2$ centers

Replace S by S

Until: local optimum

Vincent Cohen-Addad 27 / 29

Proof for $\mathbb{R}^{O(1)}$

Building upon [Bhattiprolu and Har-Peled SoCG '16]

There exists $1/\varepsilon^{O(d)}$ -division of the Voronoi partition of a set of points in \mathbb{R}^d .

Proof works directly.

Vincent Cohen-Addad 28 / 29

Our Results

	Best known approx.	
	Previous	New
$\mathbb{R}^{O(1)}$	$1+\varepsilon$ (k-median)	
	$9+\varepsilon$ (<i>k</i> -means)	1+arepsilon by Local Search
H-minor free graphs		$+$ 1 $+$ ε by Local Search
	$25 + \varepsilon$ (<i>k</i> -means)	

New result: Perform "local search" in time $n \cdot k \cdot (\log n)^{O(1/\varepsilon^d)}$ in d-dimensional Euclidean spaces.

Open: Perform "local search" in $f(\varepsilon)$ poly(n) in H-minor-free graphs? PTAS for non-uniform facility location in H-minor-free graphs?

Vincent Cohen-Addad 29 / 29

Our Results

	Best known approx.	
	Previous	New
$\mathbb{R}^{O(1)}$	$1+\varepsilon$ (k-median)	
	$9+\varepsilon$ (k-means)	1 La by Local Coarch
H-minor free graphs	2.675 (k-median, UFL)	1+arepsilon by Local Search
	$25 + \varepsilon$ (<i>k</i> -means)	

New result: Perform "local search" in time $n \cdot k \cdot (\log n)^{O(1/\varepsilon^d)}$ in d-dimensional Euclidean spaces.

Open: Perform "local search" in $f(\varepsilon)$ poly(n) in H-minor-free graphs? PTAS for non-uniform facility location in H-minor-free graphs? Thanks for your attention!

Vincent Cohen-Addad 29 / 29