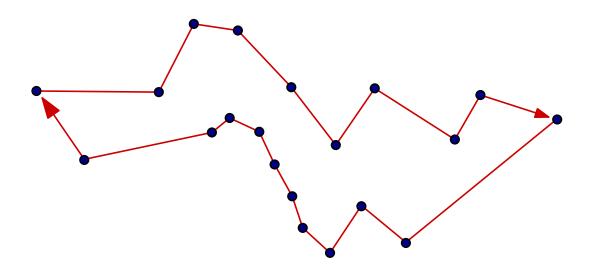
Fine-Grained Complexity Analysis of Two Classic TSP Variants



Mark de Berg Kevin Buchin Bart Jansen Gerhard Woeginger

TU Eindhoven

Traveling Salesman Problem (TSP)

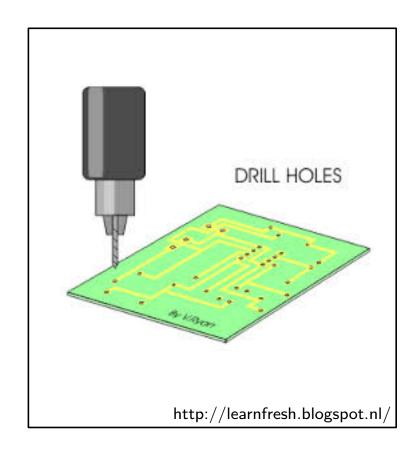
Compute min-length tour visiting all cities

Traveling Salesman Problem (TSP)

Compute min-length tour visiting all cities

Traveling Salesman Problem (TSP)

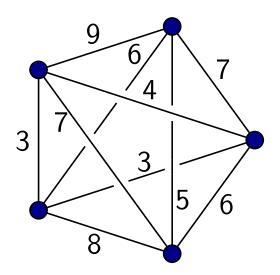
Compute min-length tour visiting all cities



Compute min-length tour visiting all holes to be drilled

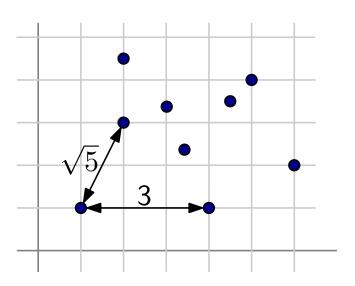
TSP: general setting vs Euclidean setting

General setting



- cities = nodes in a graph
- arbitrary edge lengths
 (satisfying triangle inequality)

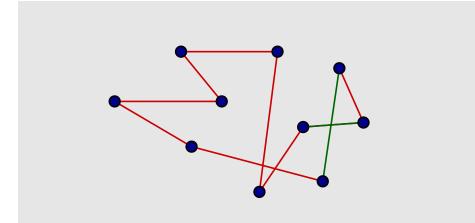
Euclidean setting

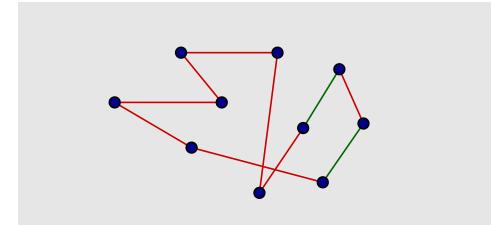


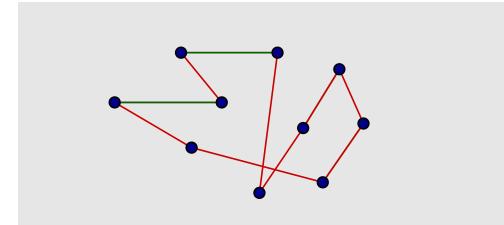
- cities = points in the plane
- edge length = Euclidean distance

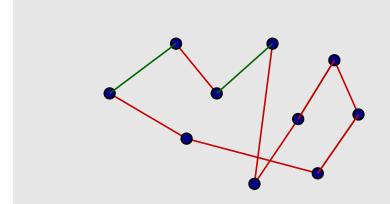
TSP is NP-hard, even in Euclidean setting

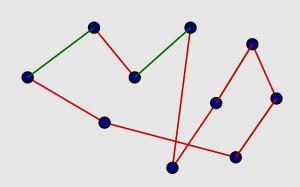
fast algorithm impossible (unless P = NP)











2-OPT: apply 2-swaps as long as they reduce tour length

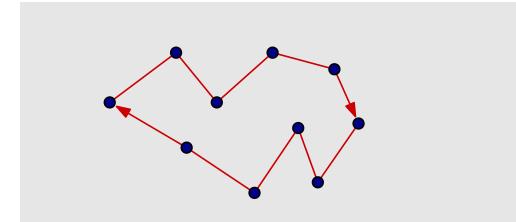
Quality of k-OPT solution

- k = 2: within few percent of optimum
- k > 2: even slightly better

How fast can we find k-swaps?

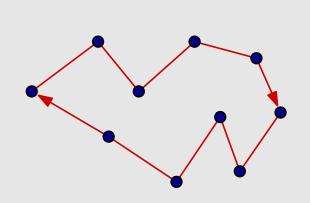
- $O(n^k)$ is trivial
- for k=2 this is optimal
- what about $k \geqslant 3$?

Bitonic TSP: a classic geometric variant



bitonic TSP (Euclidean variant): only allow tours that go left-to-right and then right-to-left

Bitonic TSP: a classic geometric variant



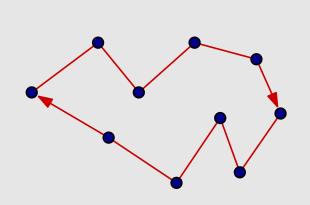
bitonic TSP (Euclidean variant): only allow tours that go left-to-right and then right-to-left

Classic exercise:

 $O(n^2)$ algorithm using dynamic programming

no faster algorithms known

Bitonic TSP: a classic geometric variant



bitonic TSP (Euclidean variant): only allow tours that go left-to-right and then right-to-left

Classic exercise:

 ${\cal O}(n^2)$ algorithm using dynamic programming

no faster algorithms known

pyramidal TSP:

- cities are numbered $1, \ldots, n$
- only allow unimodal permutations:

1, 3, 6, 9, 10, 8, 7, 5, 4, 2, 1

FINE-GRAINED COMPLEXITY ANALYSIS

Fine-grained complexity

Traditional complexity analysis: Distinguish tractable (polynomial-time solvable) problems from intractable problems.

- Problem X can be solved in polynomial time
- Problem Y cannot be solved in polynomial time, unless P=NP (in other words: under $P\neq NP$ Hypothesis)

Fine-grained complexity

Traditional complexity analysis: Distinguish tractable (polynomial-time solvable) problems from intractable problems.

- Problem X can be solved in polynomial time
- Problem Y cannot be solved in polynomial time, unless P=NP (in other words: under $P\neq NP$ Hypothesis)

Fine-grained analysis: prove more precise bounds

- Problem X can be solved in $O(n^3)$ time
- Problem X cannot be solved in $O(n^{3-\varepsilon})$, unless . . .
- ullet Problem Y can be solved in $2^{O(n)}$ time
- Problem Y cannot be solved in $2^{O(n/\log n)}$ time, unless . . .

Problem X cannot be solved in $O(\cdots)$ time, under ...

Problem X cannot be solved in $O(\cdots)$ time, under ...

Strong Exponential-Time Hypothesis (SETH)

CNF-SAT: $(x_1 \vee \overline{x}_2) \wedge (x_1 \vee x_3 \vee x_4 \vee \overline{x}_5) \wedge (\overline{x}_1 \vee \overline{x}_3 \vee x_5)$ satisfiable?

SETH: CNF-SAT cannot be solved in $O(2^{(1-\varepsilon)n})$ time

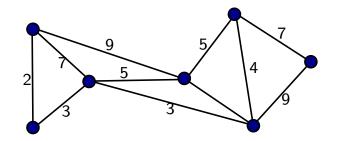
Problem X cannot be solved in $O(\cdots)$ time, under ...

Strong Exponential-Time Hypothesis (SETH)

CNF-SAT:
$$(x_1 \vee \overline{x}_2) \wedge (x_1 \vee x_3 \vee x_4 \vee \overline{x}_5) \wedge (\overline{x}_1 \vee \overline{x}_3 \vee x_5)$$
 satisfiable?

SETH: CNF-SAT cannot be solved in $O(2^{(1-\varepsilon)n})$ time

- or Exponential-Time Hypothesis (ETH), or 3-SUM Conjecture
- All-Pairs Shortest Paths (APSP) Conjecture



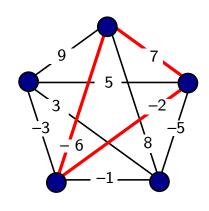
APSP Conjecture: Computing all pairwise distances in weighted graph cannot be done in $O(n^{3-\varepsilon})$ time.

Examples:

• Longest Common Subsequence (LCS) cannot be solved in $O(n^{2-\varepsilon})$ time, under SETH [Bringmann, Künnemann 2015]

- Fréchet Distance cannot be solved in $O(n^{2-\varepsilon})$ time, under SETH [Bringmann 2014]
- Negative-Weight Triangle cannot be solved in $O(n^{3-\varepsilon})$ time, under APSP Conjecture [Vassilevska-Williams, Williams 2010]

(in fact, Negative-Weight Triangle and APSP are "equivalent")



Our Results

k-OPT in general setting

- k=3: lower bound of $\Omega(n^{3-\varepsilon})$ under APSP Conjecture
- k > 3: algorithm with $O(n^{\lfloor 2k/3 \rfloor + 1})$ running time
- iterated k-OPT: $O(n^2)$ preprocessing, $O(n \log n)$ per iteration (k=2) [$O(n^3)$ preprocessing, $O(n^2 \log n)$ per iteration (k=3)]
- Euclidean setting: algorithm with $O(n^{8/5+\varepsilon})$ running time (k=2) algorithm with $O(n^{80/31+\varepsilon})$ running time (k=3)

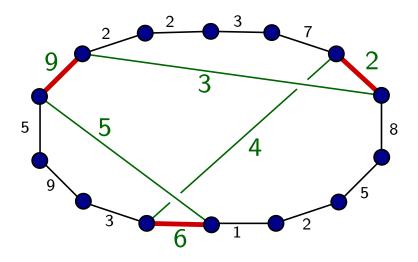
Bitonic (more generally: pyramidal) Euclidean TSP in the plane

- algorithm with $O(n \log^2 n)$ running time
- bottleneck variant: $O(n \log^3 n)$

RESULTS ON k**-OPT**

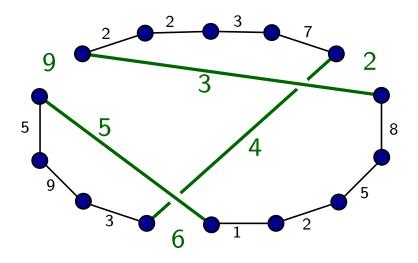
3-Opt Detection

Given: Tour T in undirected complete graph G on n vertices with positive edge weights satisfying triangle inequality Question: Is there a 3-swap that reduces tour length?



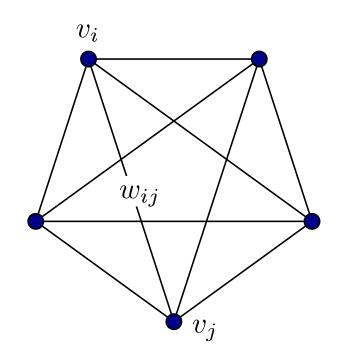
3-Opt Detection

Given: Tour T in undirected complete graph G on n vertices with positive edge weights satisfying triangle inequality Question: Is there a 3-swap that reduces tour length?



Theorem. 3-OPT DETECTION cannot be solved in $O(n^{3-\varepsilon})$ time under the APSP Conjecture.

Proof. Reduction from NEGATIVE-WEIGHT TRIANGE



transform input graph G into graph G' with O(n) vertices and tour T in G' such that

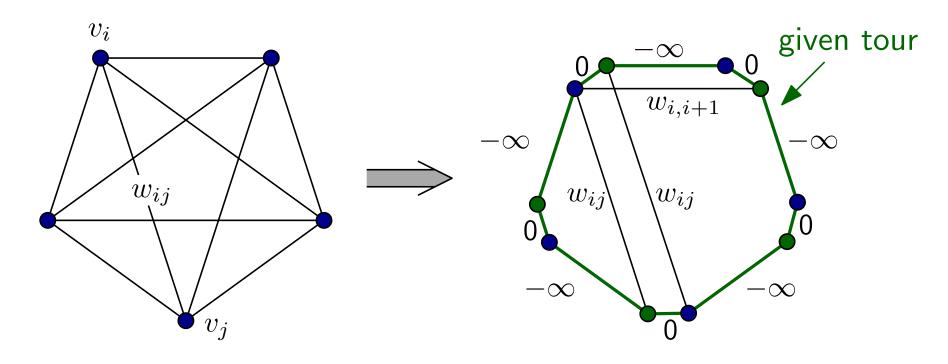
negative weight triangle in G

 \equiv

improving 3-swap in T

Theorem. 3-OPT DETECTION cannot be solved in $O(n^{3-\varepsilon})$ time under the APSP Conjecture.

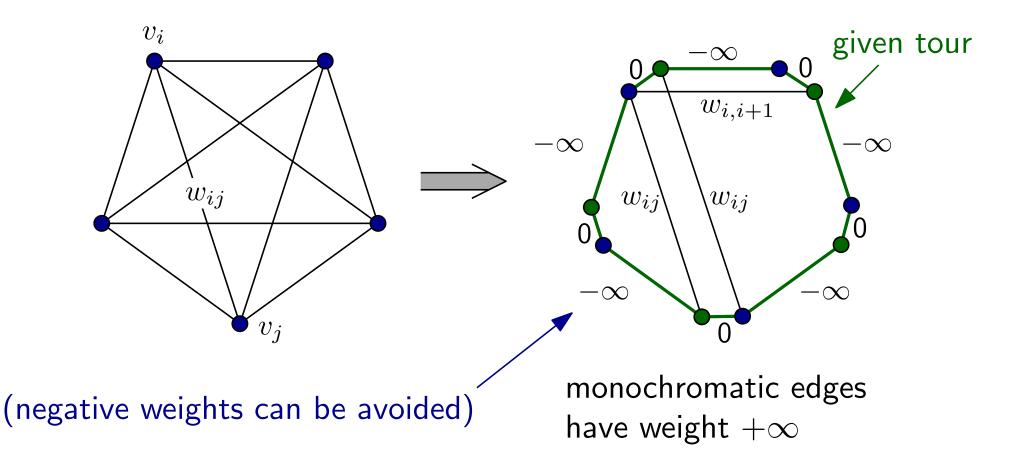
Proof. Reduction from NEGATIVE-WEIGHT TRIANGE



monochromatic edges have weight $+\infty$

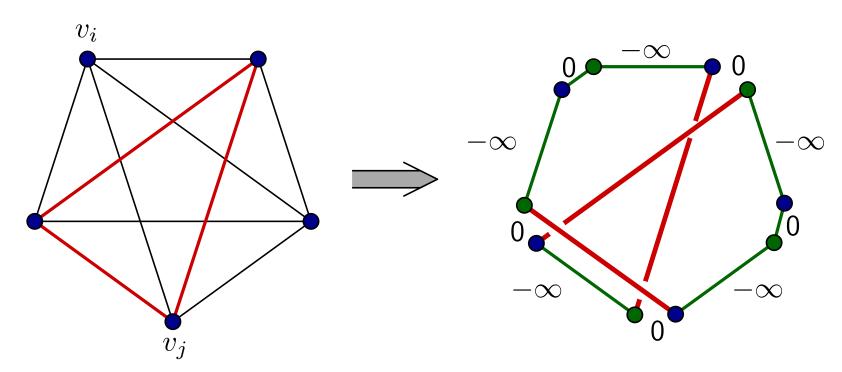
Theorem. 3-OPT DETECTION cannot be solved in $O(n^{3-\varepsilon})$ time under the APSP Conjecture.

Proof. Reduction from NEGATIVE-WEIGHT TRIANGE



Theorem. 3-OPT DETECTION cannot be solved in $O(n^{3-\varepsilon})$ time under the APSP Conjecture.

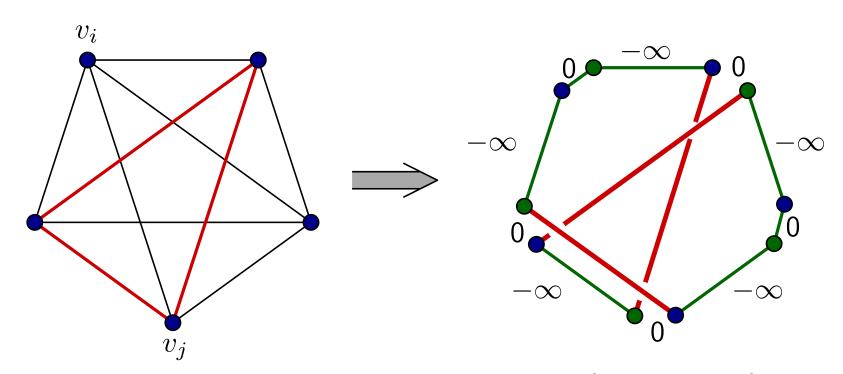
Proof. negative-weight triangles \equiv improving 3-swaps



monochromatic edges have weight $+\infty$

Theorem. 3-OPT DETECTION cannot be solved in $O(n^{3-\varepsilon})$ time under the APSP Conjecture.

Proof. negative-weight triangles \equiv improving 3-swaps



monochromatic edges have weight $+\infty$

Complexity of *k*-OPT

complexity bounds for k-OPT

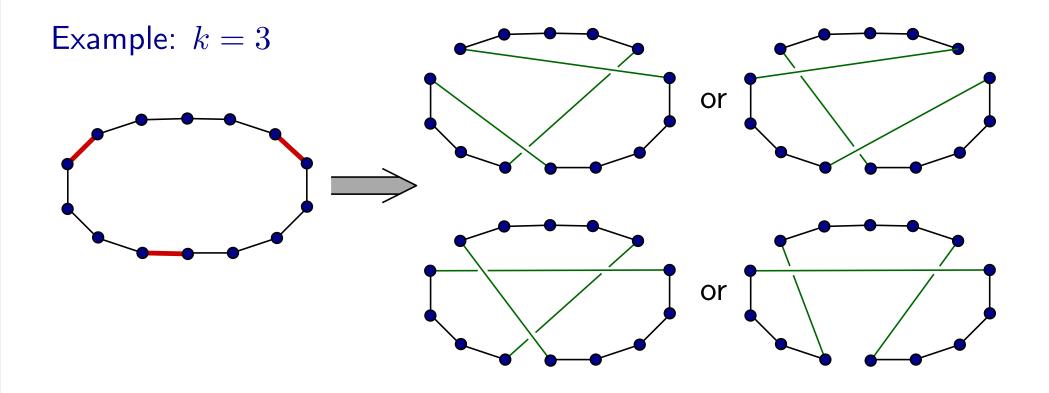
- trivial upper bound: $O(n^k)$
- lower bounds
 - -k=2: $\Omega(n^2)$ (must look at every edge)
 - -k=3: $O(n^{3-\varepsilon})$ time impossible under the APSP Conjecture

What about k > 3? Do we basically need $\Omega(n^k)$ time?

Theorem. For any fixed $k \geqslant 4$ we can find the best k-swap in $O(n^{\lfloor 2k/3 \rfloor + 1})$ time.

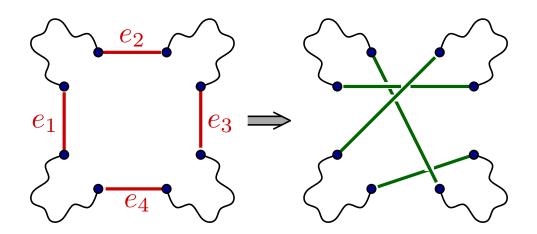
Proof. ...

For k>2 there are several combinations of edges that can replace k given edges.



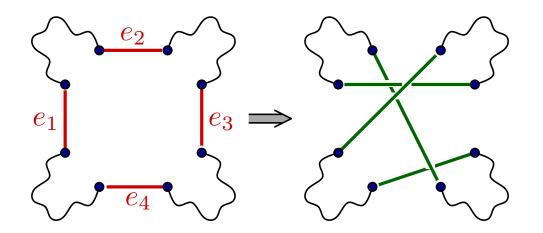
Let's handle them separately

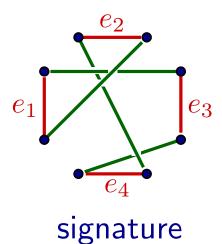
signature of a k-swap $E = \{e_1, e_2, \dots, e_k\} \rightarrow F = \{f_1, f_2, \dots, f_k\}$



signature

signature of a k-swap $E = \{e_1, e_2, \dots, e_k\} \rightarrow F = \{f_1, f_2, \dots, f_k\}$





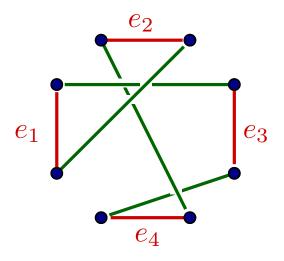
find best k-swap for each signature separately

finding best k-swap $E = \{e_1, \dots, e_k\} \to F$ for given signature \equiv finding best locations for edges in E

How to do this without checking all $O(n^k)$ possibilities for E?

finding best k-swap $E = \{e_1, \dots, e_k\} \to F$ for given signature \equiv finding best locations for edges in E

How to do this without checking all $O(n^k)$ possibilities for E?

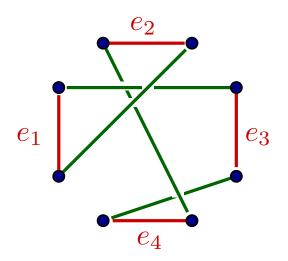


 e_i and e_j interfere for given signature:

there is an edge in F connecting e_i to e_j

finding best k-swap $E = \{e_1, \dots, e_k\} \to F$ for given signature \equiv finding best locations for edges in E

How to do this without checking all $O(n^k)$ possibilities for E?



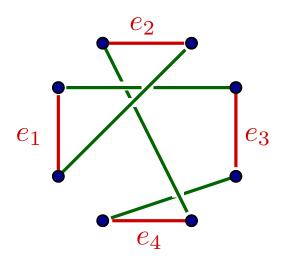
 e_i and e_j interfere for given signature:

there is an edge in F connecting e_i to e_j

 e_2 interferes with e_1 and e_4 , but not with e_3

Lemma. For any signature, there is a subset of at least $\lceil k/3 \rceil$ pairwise non-interfering edges.

Lemma. For any signature, there is a subset of at least $\lceil k/3 \rceil$ pairwise non-interfering edges.



- ullet $E \cup F$ consists of one or more cyles
- ullet along each cycle the edges from E and F alternate

per cycle at least 1/3 of edges from E are pairwise non-interfering

finding best k-swap $E=\{e_1,\ldots,e_k\}\to F$ for given signature \equiv finding best locations to "embed" edges in E into tour

How to do this without checking all $O(n^k)$ possibilities for E?

finding best k-swap $E=\{e_1,\ldots,e_k\}\to F$ for given signature \equiv finding best locations to "embed" edges in E into tour

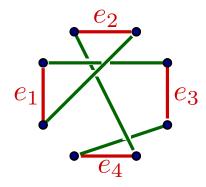
How to do this without checking all $O(n^k)$ possibilities for E?

- 1. determine set $E^* \subset E$ of $\lceil k/3 \rceil$ pairwise non-interfering edges for given signature
- 2. try all possible choices for the $\lfloor 2k/3 \rfloor$ edges in $E \setminus E^*$ for each of these $O(n^{\lfloor 2k/3 \rfloor})$ choices, compute the best way to embed remaining $\lfloor k/3 \rfloor$ edges —

lacktriangle can be done in O(n) time

How to add pairwise non-interfering edges in O(n) time

Example: k=4 and signature



 e_1 and e_2, e_3 non-interfering

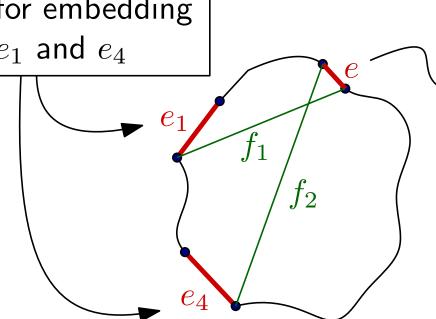
How to add pairwise non-interfering edges in O(n) time

Example: k=4 and signature



and e_2, e_3 non-interfering

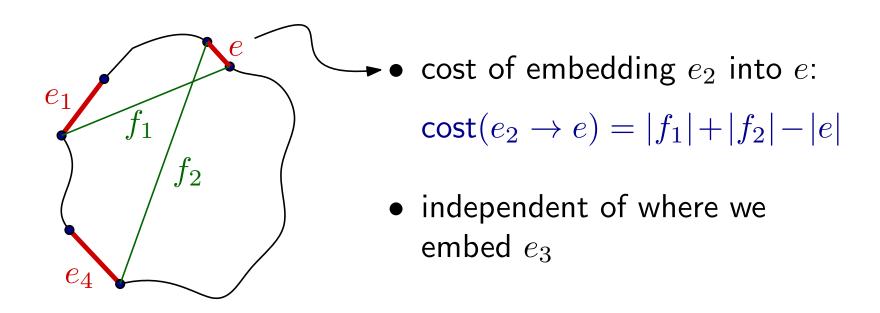
fixed choice for embedding e_1 and e_4

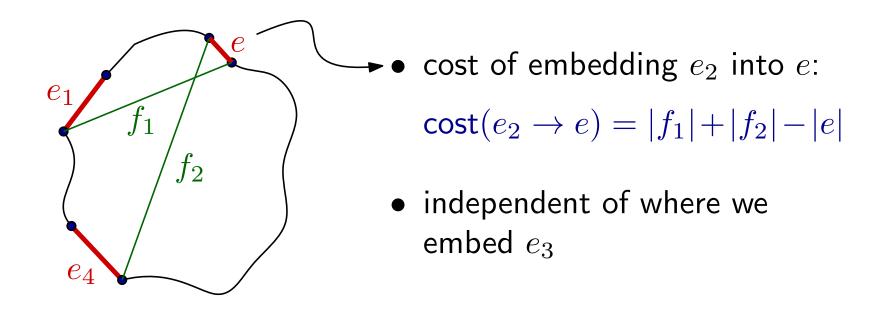


▶ • cost of embedding e_2 into e:

$$cost(e_2 \to e) = |f_1| + |f_2| - |e|$$

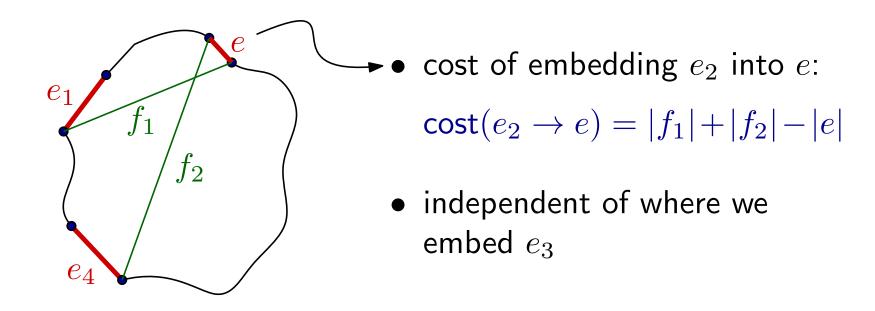
 independent of where we embed e_3





- $e_1^*, \ldots, e_{k/3}^* = \text{edges we still need to embed}$
- $e'_1, \ldots, e'_n = \text{tour edges}$
- ullet $\operatorname{Cost}[\ell,r] := \min \operatorname{cost} \operatorname{of} \operatorname{embedding} e_1^*, \dots, e_\ell^* \operatorname{into} e_1', \dots, e_r'$

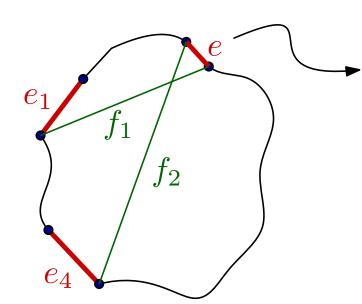
$$\mathsf{Cost}[\ell,r] = \min\left(\mathsf{Cost}[\ell,r-1],\mathsf{Cost}[\ell-1,r-1] + \mathsf{cost}(e_\ell^* \to e_r')\right)$$



- $e_1^*, \ldots, e_{k/3}^* = \text{edges we still need to embed}$
- $e'_1, \ldots, e'_n = \text{tour edges}$
- ullet $\operatorname{Cost}[\ell,r] := \min \operatorname{cost} \operatorname{of} \operatorname{embedding} e_1^*, \dots, e_\ell^* \operatorname{into} e_1', \dots, e_r'$

$$\operatorname{Cost}[\ell,r] = \min\left(\operatorname{Cost}[\ell,r-1], \operatorname{Cost}[\ell-1,r-1] + \operatorname{cost}(e_{\ell}^* \to e_r')\right)$$

if we are allowed to embed e_ℓ^* into e_r'



• cost of embedding e_2 into e:

$$cost(e_2 \to e) = |f_1| + |f_2| - |e|$$

ullet independent of where we embed e_3

- $e_1^*, \ldots, e_{k/3}^* = \text{edges we still need to embed}$
- $e'_1, \ldots, e'_n = \text{tour edges}$
- ullet Cost $[\ell,r]:=$ min cost of embedding e_1^*,\ldots,e_ℓ^* into e_1',\ldots,e_r'

$$\mathsf{Cost}[\ell,r] = \min \left(\mathsf{Cost}[\ell,r-1], \underbrace{\mathsf{Cost}[\ell-1,r-1] + \mathsf{cost}(e_\ell^* \to e_r')} \right)$$

- final answer: Cost[k/3, n]
- time: O(nk) = O(n)

if we are allowed to embed e_ℓ^* into e_r'

Complexity of *k***-OPT**

Theorem. For any fixed $k \geqslant 4$ we can find the best k-swap in $O(n^{\lfloor 2k/3 \rfloor + 1})$ time.

Complexity of *k***-OPT**

Theorem. For any fixed $k \geqslant 4$ we can find the best k-swap in $O(n^{\lfloor 2k/3 \rfloor + 1})$ time.

complexity bounds for k-OPT

- k=2: $\Theta(n^2)$
- k=3: $O(n^3)$, $O(n^{3-\varepsilon})$ impossible under the APSP Conjecture
- $k \geqslant 4$: $O(n^{\lfloor 2k/3 \rfloor + 1})$

 $n^{o(k/\log k)}$ impossible under ETH [Guo et al.]

Complexity of *k*-OPT

Theorem. For any fixed $k \geqslant 4$ we can find the best k-swap in $O(n^{\lfloor 2k/3 \rfloor + 1})$ time.

complexity bounds for k-OPT

- k=2: $\Theta(n^2)$
- k=3: $O(n^3)$, $O(n^{3-\varepsilon})$ impossible under the APSP Conjecture
- $k \geqslant 4$: $O(n^{\lfloor 2k/3 \rfloor + 1})$ $n^{o(k/\log k)} \text{ impossible under ETH [Guo et al.]}$

other results: bounds for k = 2, 3 can be improved for

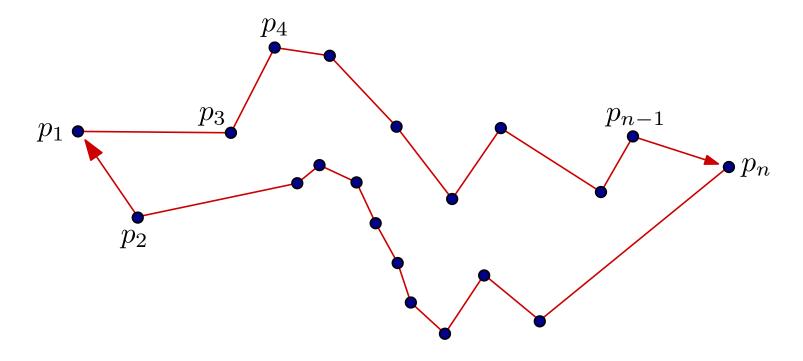
- iterated 2-OPT $O(n \log n)$ [iterated 3-OPT $O(n^2 \log n)$]
- Euclidean k-OPT: $O(n^{8/5+\varepsilon})$ resp. $O(n^{80/31+\varepsilon})$

RESULTS ON BITONIC TSP

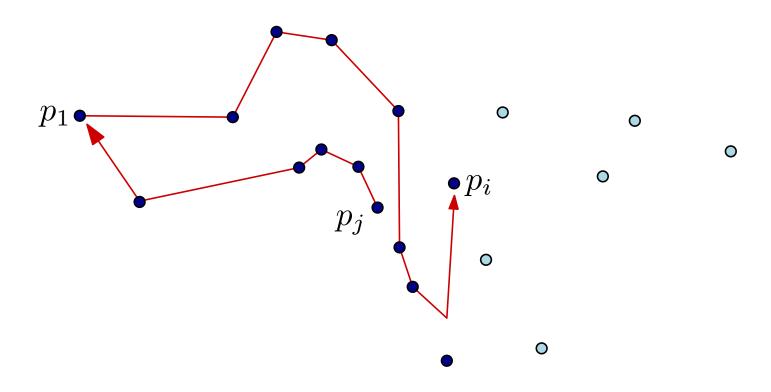
Bitonic TSP in the plane

Bitonic TSP

- find min-length tour on points in the plane, Euclidean distances
- only allow tours that go left-to-right and then right-to-left



 p_1, p_2, \ldots, p_n : points numbered from left to right

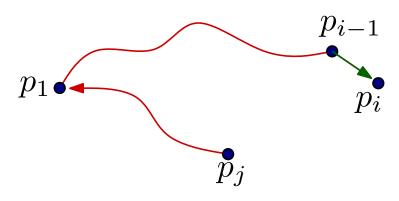


For each pair p_i, p_j with $1 \leqslant j < i \leqslant n$, compute

 $A[i,j] = \min$ length of left-to-right path from p_1 to p_i and right-to-left path from p_j back to p_1 that together visit all points $p_1, \ldots p_i$

Recursive formula for A[i, j]

case (i): j < i - 1



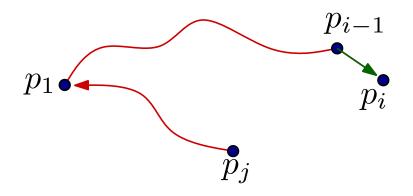
must connect p_i to p_i

$$A[i,j] = \begin{cases} A[i-1,j] + |p_{i-1}p_i| & \text{if } 1 \leq j < i-1 \\ \min_{1 \leq k < i-1} (A[i-1,k] + |p_k p_i|) & \text{if } j = i-1 \end{cases}$$

where $A[2,1] = |p_1p_2|$.

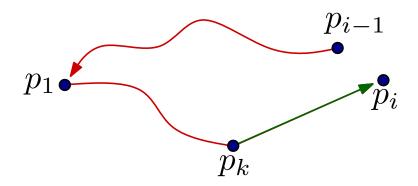
Recursive formula for A[i, j]

case (i): j < i - 1



must connect p_i to p_i

case (ii): j = i - 1



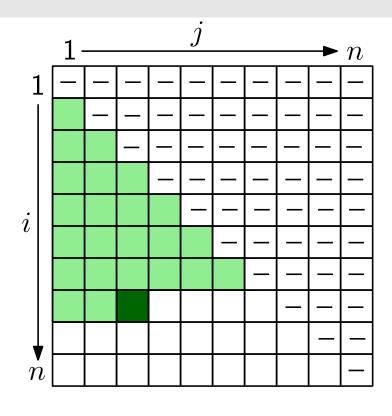
can connect to any p_k with k < i - 1

$$A[i,j] = \begin{cases} A[i-1,j] + |p_{i-1}p_i| & \text{if } 1 \leq j < i-1 \\ \min_{1 \leq k < i-1} (A[i-1,k] + |p_k p_i|) & \text{if } j = i-1 \end{cases}$$

where $A[2,1] = |p_1p_2|$.

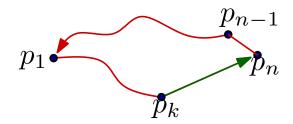
$$A[i,j] = \begin{cases} A[i-1,j] + |p_{i-1}p_i| & \text{if } 1 \leq j < i-1 \\ \min_{1 \leq k < i-1} (A[i-1,k] + |p_kp_i|) & \text{if } j = i-1 \end{cases}$$

where $A[2,1] = |p_1p_2|$.



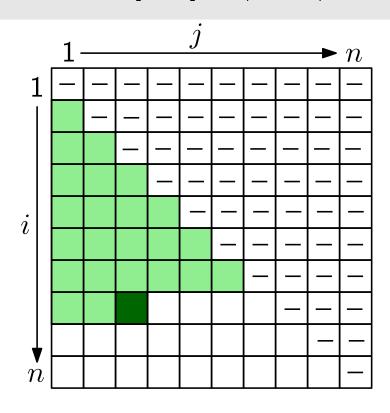
Algorithm

- 1. Fill in table row by row, using recursive formula.
- 2. Compute final solution: $\min_{1 \leq k < n} (A[n, k] + |p_k p_n|)$



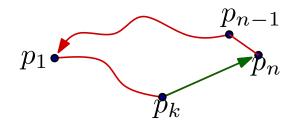
$$A[i,j] = \begin{cases} A[i-1,j] + |p_{i-1}p_i| & \text{if } 1 \leq j < i-1 \\ \min_{1 \leq k < i-1} (A[i-1,k] + |p_kp_i|) & \text{if } j = i-1 \end{cases}$$

where $A[2,1] = |p_1p_2|$.



Algorithm runs in $O(n^2)$ time

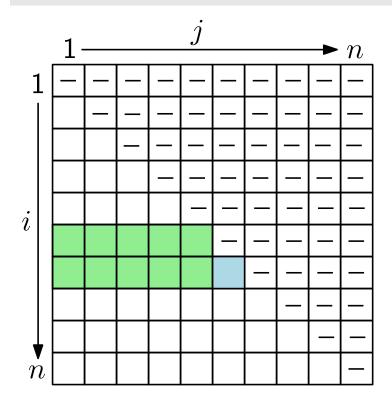
- 1. Fill in table row by row, using recursive formula.
- 2. Compute final solution: $\min_{1 \leq k < n} (A[n, k] + |p_k p_n|)$



Bitonic TSP in the plane: our solution

$$A[i,j] = \begin{cases} A[i-1,j] + |p_{i-1}p_i| & \text{if } 1 \leq j < i-1 \\ \min_{1 \leq k < i-1} (A[i-1,k] + |p_kp_i|) & \text{if } j = i-1 \end{cases}$$

where $A[2,1] = |p_1p_2|$.



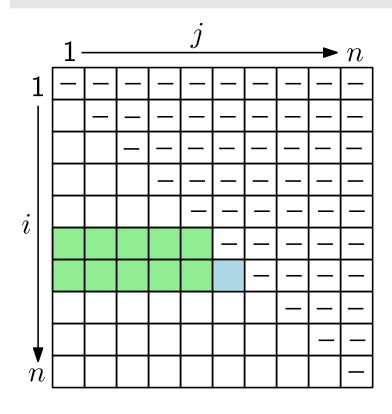
Construct implicit representation of rows, in $O(\log^2 n)$ time per row

- need to find best k quickly
- entries change in same way

Bitonic TSP in the plane: our solution

$$A[i,j] = \begin{cases} A[i-1,j] + |p_{i-1}p_i| & \text{if } 1 \leq j < i-1 \\ \min_{1 \leq k < i-1} (A[i-1,k] + |p_k p_i|) & \text{if } j = i-1 \end{cases}$$

where $A[2,1] = |p_1p_2|$.



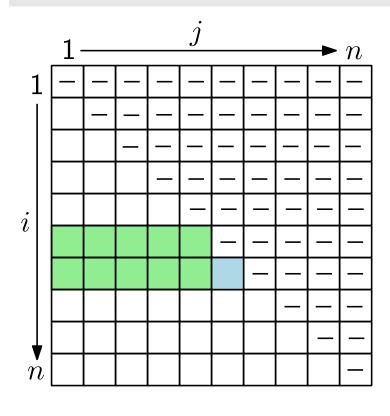
Construct implicit representation of rows, in $O(\log^2 n)$ time per row

- ullet need to find best k quickly
- entries change in same way

Bitonic TSP in the plane: our solution

$$A[i,j] = \begin{cases} A[i-1,j] + |p_{i-1}p_i| & \text{if } 1 \leq j < i-1 \\ \min_{1 \leq k < i-1} (A[i-1,k] + |p_k p_i|) & \text{if } j = i-1 \end{cases}$$

where $A[2,1] = |p_1p_2|$.



Construct implicit representation of rows, in $O(\log^2 n)$ time per row

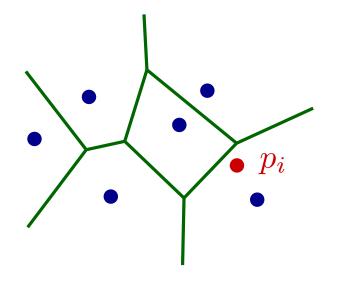
- ullet need to find best k quickly
- entries change in same way

Need data structure supporting queries, insertions and bulk updates

$$A[i,j] = \begin{cases} A[i-1,j] + |p_{i-1}p_i| & \text{if } 1 \leq j < i-1 \\ \min_{1 \leq k < i-1} (A[i-1,k] + |p_kp_i|) & \text{if } j = i-1 \end{cases}$$

$$A[i,j] = \begin{cases} A[i-1,j] + |p_{i-1}p_i| & \text{if } 1 \leq j < i-1 \\ \min_{1 \leq k < i-1} (A[i-1,k] + |p_k p_i|) & \text{if } j = i-1 \end{cases}$$

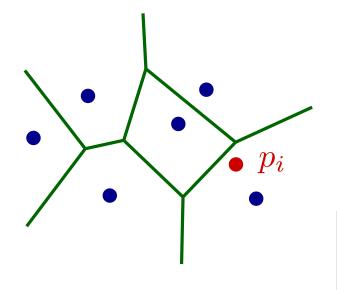
without term A[k-1] we would be looking for nearest neighbor



- point location with p_i in Voronoi diagram of $\{p_1, \ldots, p_{i-1}\}$
- $O(i \log i)$ preprocessing, $O(\log i)$ query

$$A[i,j] = \begin{cases} A[i-1,j] + |p_{i-1}p_i| & \text{if } 1 \leq j < i-1 \\ \min_{1 \leq k < i-1} (A[i-1,k] + |p_kp_i|) & \text{if } j = i-1 \end{cases}$$

without term A[k-1] we would be looking for nearest neighbor



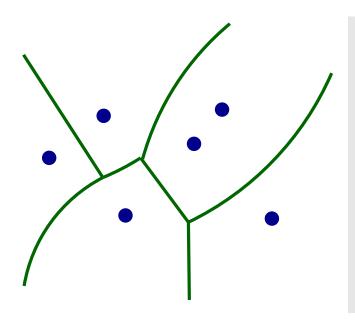
- point location with p_i in Voronoi diagram of $\{p_1, \ldots, p_{i-1}\}$
- $O(i \log i)$ preprocessing, $O(\log i)$ query
 - ullet view $w_k := A[i-1,k]$ as weight of p_k
 - work with additively weighted distance function

- P = set of point sites
- w_k = weight of point $p_k \in P$
- distance of $p_k \in P$ to any point $q \in \mathbb{R}^2$: dist $(p_k, q) = w_k + |p_k q|$

additively weighted Voronoi diagram = subdivision of \mathbb{R}^2 into cells such that $\operatorname{Cell}(p_k)$ contains points $q \in \mathbb{R}^2$ for which p_k is closest site

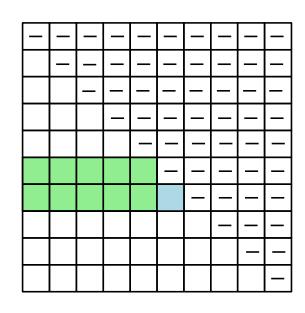
- P = set of point sites
- w_k = weight of point $p_k \in P$
- distance of $p_k \in P$ to any point $q \in \mathbb{R}^2$: dist $(p_k, q) = w_k + |p_k q|$

additively weighted Voronoi diagram = subdivision of \mathbb{R}^2 into cells such that $\operatorname{Cell}(p_k)$ contains points $q \in \mathbb{R}^2$ for which p_k is closest site



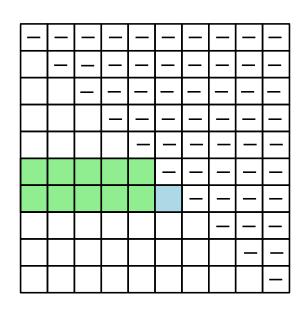
- cell boundaries are line segments or hyperbolic arcs
- some points may not have a corresponding cell
- complexity still O(i) for i points
- can be computed (with point location structure) in $O(i \log i)$ time

$$A[i,j] = \begin{cases} A[i-1,j] + |p_{i-1}p_i| & \text{if } 1 \leq j < i-1 \\ \min_{1 \leq k < i-1} (A[i-1,k] + |p_kp_i|) & \text{if } j = i-1 \end{cases}$$



Computing the next row

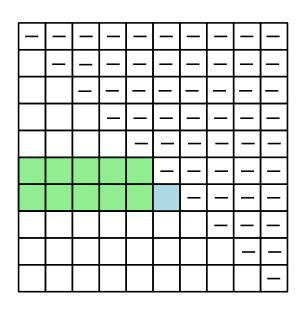
$$A[i,j] = \begin{cases} A[i-1,j] + |p_{i-1}p_i| & \text{if } 1 \leq j < i-1 \\ \min_{1 \leq k < i-1} (A[i-1,k] + |p_kp_i|) & \text{if } j = i-1 \end{cases}$$



Computing the next row

- 1. do point location in AW-VD to compute point p_k defining A[i, i-1]
 - \bullet set $w_{i-1} := w_k + |p_k p_i|$
- 2. update data structure
 - add $|p_{i-1}p_i|$ to weight of each p_j currently in data structure
 - insert p_{i-1} with weight w_{i-1}

$$A[i,j] = \begin{cases} A[i-1,j] + |p_{i-1}p_i| & \text{if } 1 \leq j < i-1 \\ \min_{1 \leq k < i-1} (A[i-1,k] + |p_kp_i|) & \text{if } j = i-1 \end{cases}$$



How can we do this quickly?

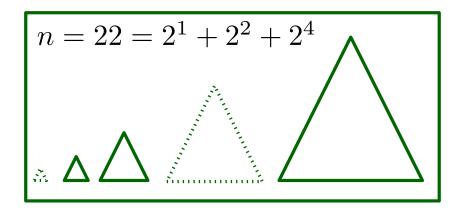
Computing the next row

- 1. do point location in AW-VD to compute point p_k defining A[i, i-1]
 - $\bullet \text{ set } w_{i-1} := w_k + |p_k p_i|$
- 2. update data structure
 - add $|p_{i-1}p_i|$ to weight of each p_j currently in data structure
 - insert p_{i-1} with weight w_{i-1}

insertions and bulk updates in additively weighted Voronoi diagrams

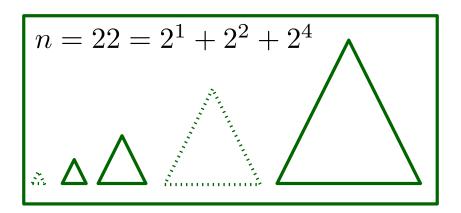
insertions and bulk updates in additively weighted Voronoi diagrams

use logarithmic method \Longrightarrow maintain $O(\log n)$ data structures on subsets of exponentially increasing sizes



insertions and bulk updates in additively weighted Voronoi diagrams

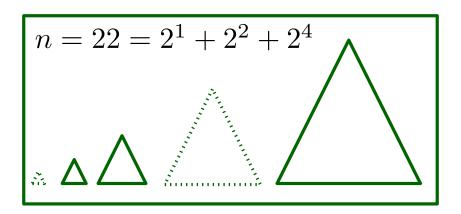
use logarithmic method \Longrightarrow maintain $O(\log n)$ data structures on subsets of exponentially increasing sizes



query: do on all structures and take best answer

insertions and bulk updates in additively weighted Voronoi diagrams

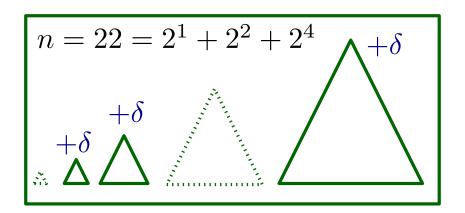
use logarithmic method \Longrightarrow maintain $O(\log n)$ data structures on subsets of exponentially increasing sizes



- query: do on all structures and take best answer
- insertion: find first empty structure, destroy all smaller structures, build new one from scratch

insertions and bulk updates in additively weighted Voronoi diagrams

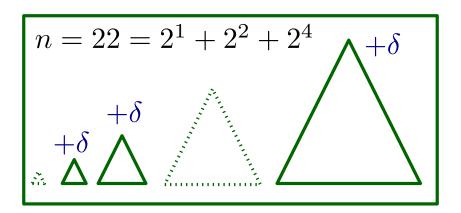
use logarithmic method \Longrightarrow maintain $O(\log n)$ data structures on subsets of exponentially increasing sizes



- query: do on all structures and take best answer
- insertion: find first empty structure, destroy all smaller structures, build new one from scratch
- bulk update: add correction term to each structure

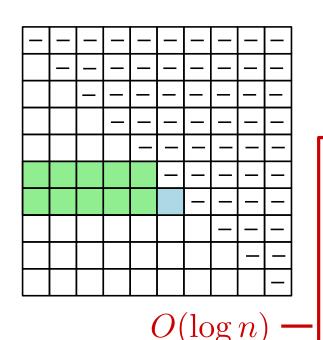
insertions and bulk updates in additively weighted Voronoi diagrams

use logarithmic method \Longrightarrow maintain $O(\log n)$ data structures on subsets of exponentially increasing sizes



- ullet query: do on all structures and take best answer $O(\log n \cdot Q(n))$
- insertion: find first empty structure, destroy all smaller structures, build new one from scratch $O(\log n \cdot B(n)/n)$ amortized
- bulk update: add correction term to each structure $O(\log n)$

$$A[i,j] = \begin{cases} A[i-1,j] + |p_{i-1}p_i| & \text{if } 1 \leq j < i-1 \\ \min_{1 \leq k < i-1} (A[i-1,k] + |p_kp_i|) & \text{if } j = i-1 \end{cases}$$



Computing the next row

- 1. do point location in AW-VD to
 ► compute point p_k defining A[i, i 1]
 - $\bullet \text{ set } w_{i-1} := w_k + |p_k p_i|$
- 2. update data structure
 - add $|p_{i-1}p_i|$ to weight of each p_j currently in data structure
 - insert p_{i-1} with weight w_{i-1}

Complexity of *k***-OPT**

Theorem. Finding the shortest bitonic tour (or: pyramidal tour) on a set of n points in the plane can be done in $O(n \log^2 n)$ time.

Complexity of *k*-OPT

Theorem. Finding the shortest bitonic tour (or: pyramidal tour) on a set of n points in the plane can be done in $O(n \log^2 n)$ time.

results on bottleneck bitonic TSP

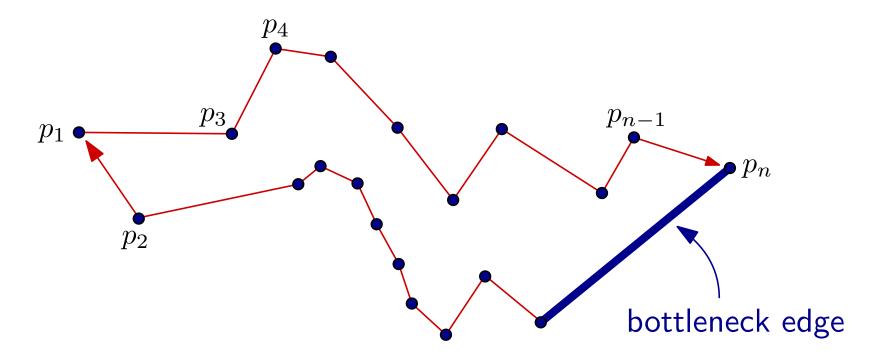
minimize max (instead of sum) of edge lengths

- decision problem: $O(n \log n)$
- optimization problem: $O(n \log^3 n)$

Bitonic Bottleneck TSP in the plane

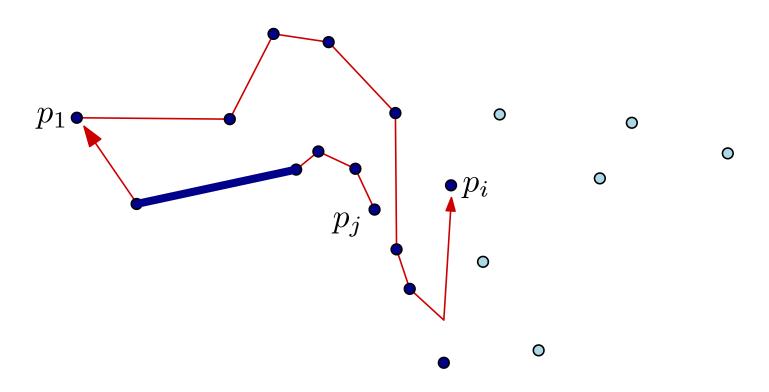
Bitonic Bottleneck TSP — decision variant

- is there a tour whose bottleneck edge has length $\leq B$?
- only allow tours that go left-to-right and then right-to-left



 p_1, p_2, \ldots, p_n : points numbered from left to right

Bitonic TSP in the plane: standard DP solution



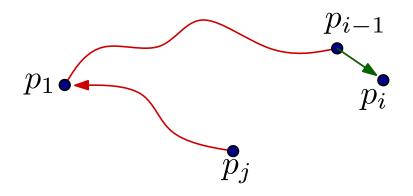
For each pair p_i, p_j with $1 \leq j < i \leq n$, compute

 $A[i,j] = ext{True}$ if there is a "partial solution" whose bottleneck edge has length $\leqslant B$ False otherwise

Bitonic TSP in the plane: standard DP solution

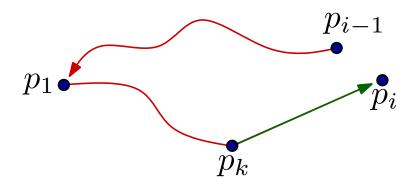
Recursive formula for A[i, j]

case (i): j < i - 1



must connect p_i to p_i

case (ii): j = i - 1

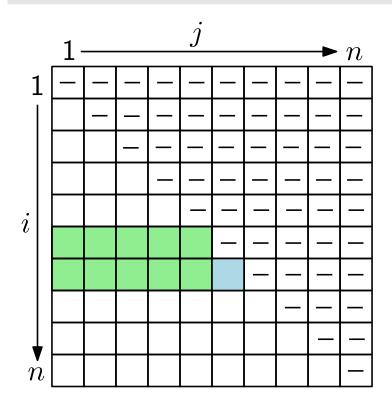


can connect to any p_k with k < i - 1

$$A[i,j] = \begin{cases} A[i-1,j] \land (|p_{i-1}p_i| \le B) & \text{if } 1 \le j < i-1 \\ \forall_{1 \le k < i-1} (A[i-1,k] \land (|p_k p_i| \le B)) & \text{if } j = i-1 \end{cases}$$

where A[2,1] = True if $|p_1p_2| \leq B$.

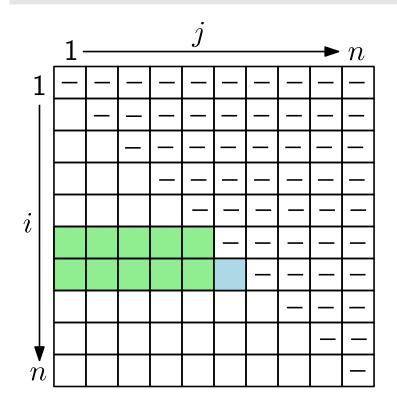
Bitonic TSP in the plane: our solution



Implicit representation of i-th row: set S containing those points p_j with j < i such that A[i,j] = TRUE

Bitonic TSP in the plane: our solution

$$A[i,j] = \begin{cases} A[i-1,j] \land (|p_{i-1}p_i| \le B) & \text{if } 1 \le j < i-1 \\ \bigvee_{1 \le k < i-1} (A[i-1,k] \land (|p_k p_i| \le B)) & \text{if } j = i-1 \end{cases}$$

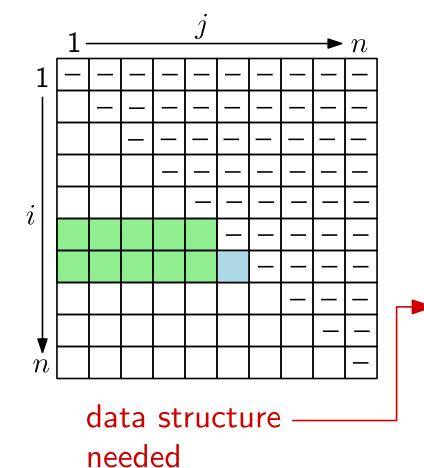


Implicit representation of i-th row: set S containing those points p_j with j < i such that A[i,j]=True

To handle p_i we check if

- (i) $|p_{i-1}p_i| \leqslant B$
- (ii) there is a $p_k \in S$ with $|p_k p_i| \leq B$ answer to (i) is yes \Longrightarrow keep S answer to (i) is no \Longrightarrow empty S
- answer to (ii) is yes \Longrightarrow add p_i to S

Bitonic TSP in the plane: our solution



Implicit representation of i-th row: set S containing those points p_j with j < i such that A[i,j] = TRUE

To handle p_i we check if

- (i) $|p_{i-1}p_i| \leqslant B$
- (ii) there is a $p_k \in S$ with $|p_k p_i| \leqslant B$ answer to (i) is yes \Longrightarrow keep S answer to (i) is no \Longrightarrow empty S answer to (ii) is yes \Longrightarrow add p_i to S

- \bullet S = set of point sites
- \bullet B =threshold distance

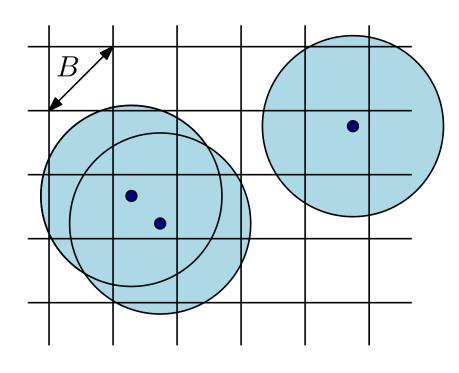
queries: given point q, is there a point $p_k \in S$ with $|p_k q| \leq B$?

insertions must also be supported

- S = set of point sites
- \bullet B =threshold distance

queries: given point q, is there a point $p_k \in S$ with $|p_k q| \leq B$?

insertions must also be supported

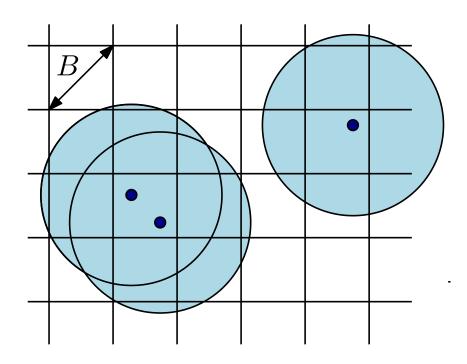


for each cell C: maintain point location structure on union of radius-B disks centered at points in $S\cap C$

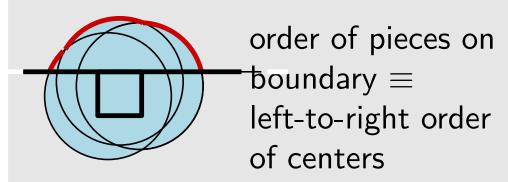
- S = set of point sites
- \bullet B =threshold distance

queries: given point q, is there a point $p_k \in S$ with $|p_k q| \leq B$?

insertions must also be supported



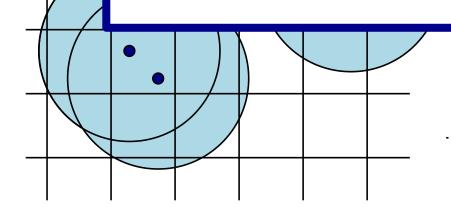
for each cell C: maintain point location structure on union of radius-B disks centered at points in $S\cap C$

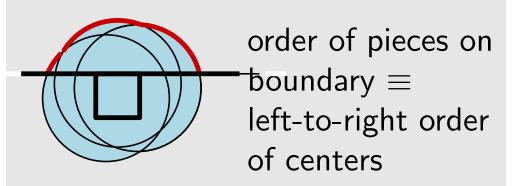


- \bullet S = set of point sites
- \bullet B =threshold distance

queries: g • queries: $O(\log n)$ time • insertions: $O(\log n)$ time amortized

decision algorithm for Bitonic Bottleneck TSP runs in $O(n\log n)$ time





Our Results

k-OPT in general setting

- k=3: lower bound of $\Omega(n^{3-\varepsilon})$ under APSP Conjecture
- k > 3: algorithm with $O(n^{\lfloor 2k/3 \rfloor + 1})$ running time
- iterated k-OPT: $O(n^2)$ preprocessing, $O(n \log n)$ per iteration (k=2) [$O(n^3)$ preprocessing, $O(n^2 \log n)$ per iteration (k=3)]
- Euclidean setting: algorithm with $O(n^{8/5+\varepsilon})$ running time (k=2) algorithm with $O(n^{80/31+\varepsilon})$ running time (k=3)

Bitonic (more generally: pyramidal) Euclidean TSP in the plane

- algorithm with $O(n \log^2 n)$ running time
- bottleneck variant: $O(n \log^3 n)$

Thanks for your attention!

