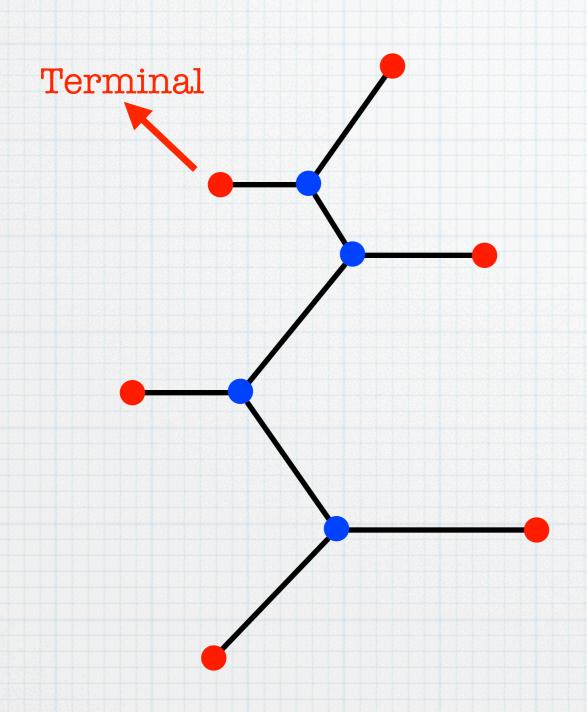
Approximation Algorithms in low-dimensional geometry or on Planar Graphs

Claire Mathieu

Steiner tree



Arora's geometric PTAS technique:

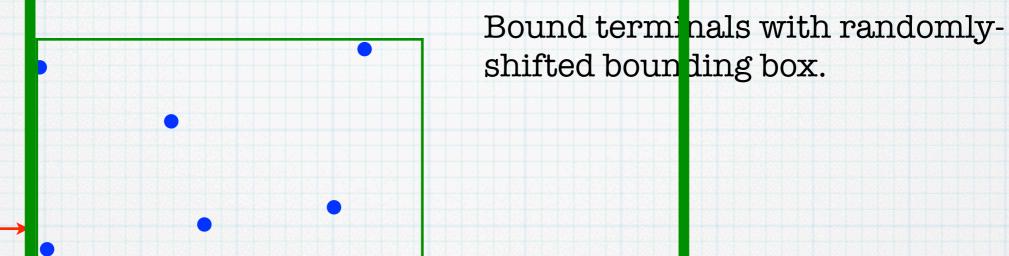
Break the plane into solvable regions.

Combine solutions using DP.

Find a near-OPT solution that can be represented by a small DP table.

PTAS for Steiner tree in low-d geometric space

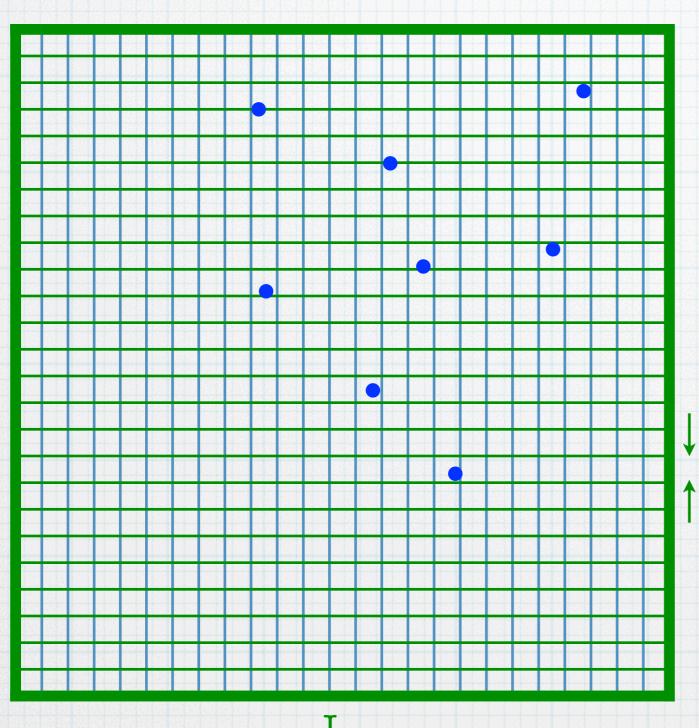
L ,



b = rand(0,L/2)

a

PTAS for Steiner tree in low-d geometric space



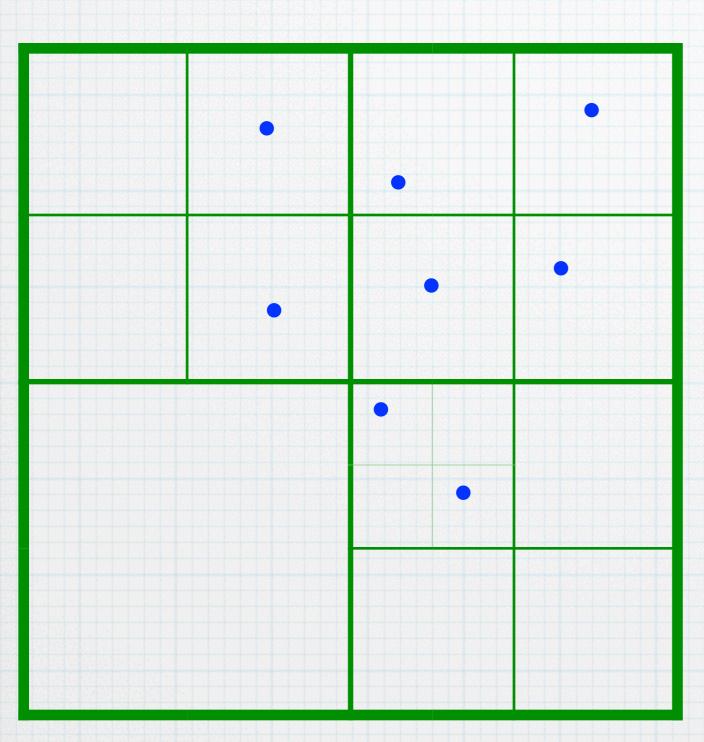
Bound terminals with randomly-shifted bounding box.

Perturb to discrete coordinates.

$$O(\epsilon L/poly(n))$$

Ι

PTAS for Steiner tree in low-d geometric space

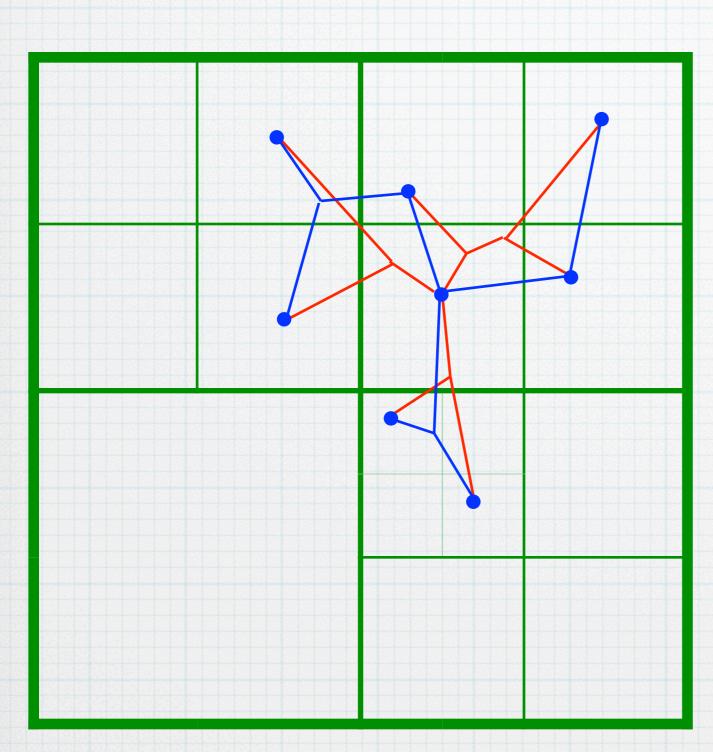


Bound terminals with randomlyshifted bounding box.

Perturb to discrete coordinates.

Quad tree decomposition: $(\log n)$ -depth, O(n) leaves.

PTAS for Steiner tree in low-d geometric space



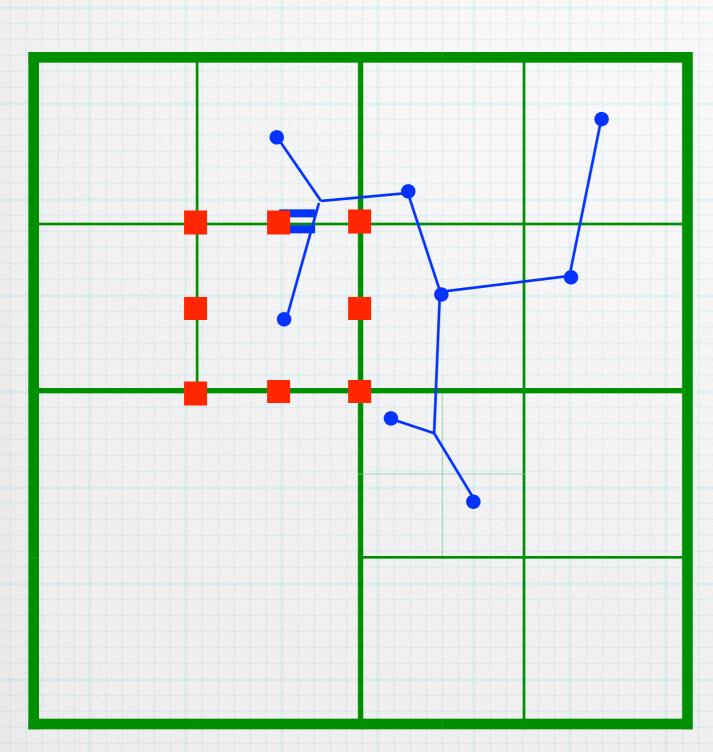
Bound terminals with randomlyshifted bounding box.

Perturb to discrete coordinates.

Quad tree decomposition: (log n)-depth, O(n) leaves.

Structure Theorem: There is a $(1+\epsilon)$ OPT solution that crosses each grid cell < k times.

PTAS for Steiner tree in low-d geometric space



Bound terminals with randomlyshifted bounding box.

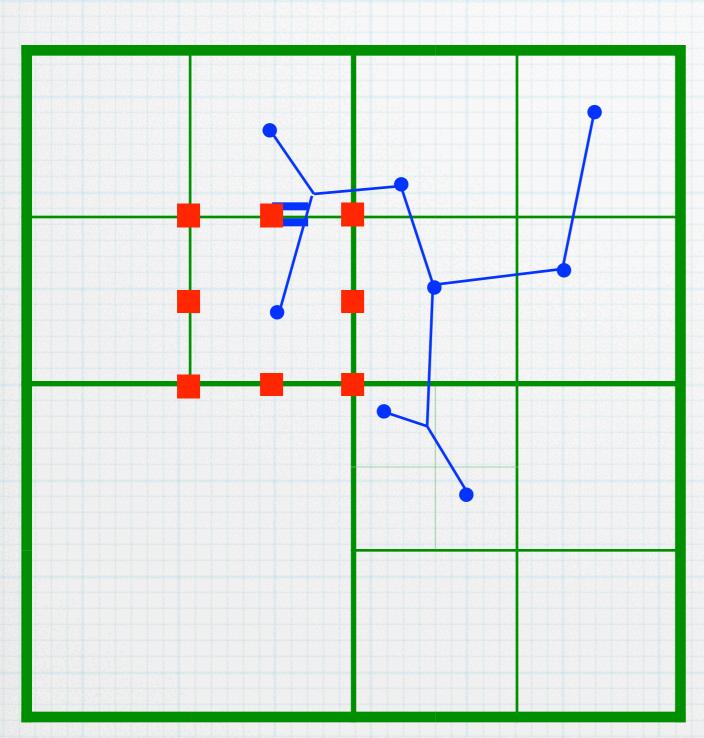
Perturb to discrete coordinates.

Quad tree decomposition: (log n)-depth, O(n) leaves.

Structure Theorem: There is a $(1+\epsilon)$ OPT solution that crosses each grid cell < k times.

Force solution through portals: sum of detours cost $< \epsilon$ OPT.

PTAS for Steiner tree in low-d geometric space



Bound terminals with randomlyshifted bounding box.

Perturb to discrete coordinates.

Quad tree decomposition:

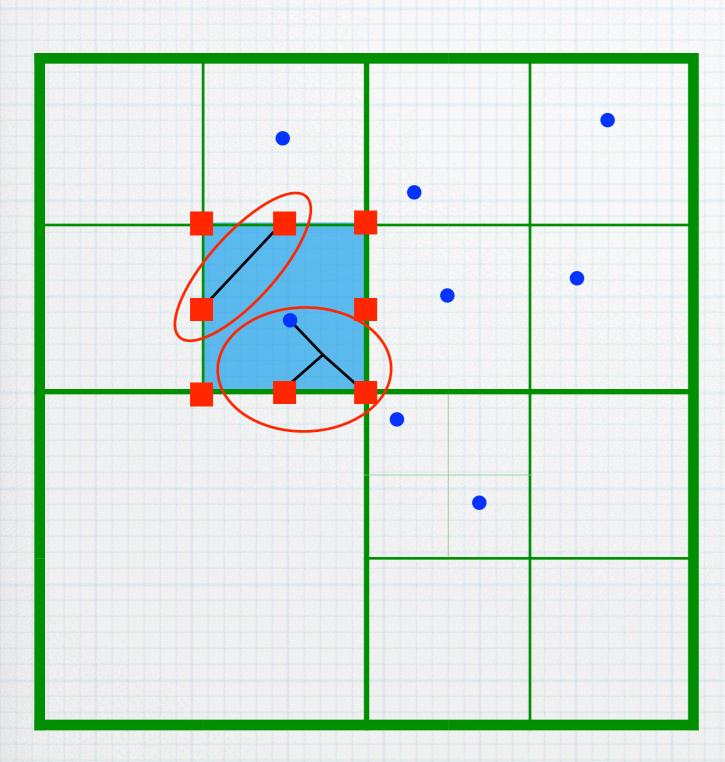
(log n)-depth, O(n) leaves.

Structure Theorem: There is a $(1+\epsilon)$ OPT solution that crosses each grid cell < k times.

Force solution through portals: sum of detours cost $< \epsilon$ OPT.

Find the best portal-respecting solution using dynamic programming.

PTAS for Steiner tree in low-d geometric space



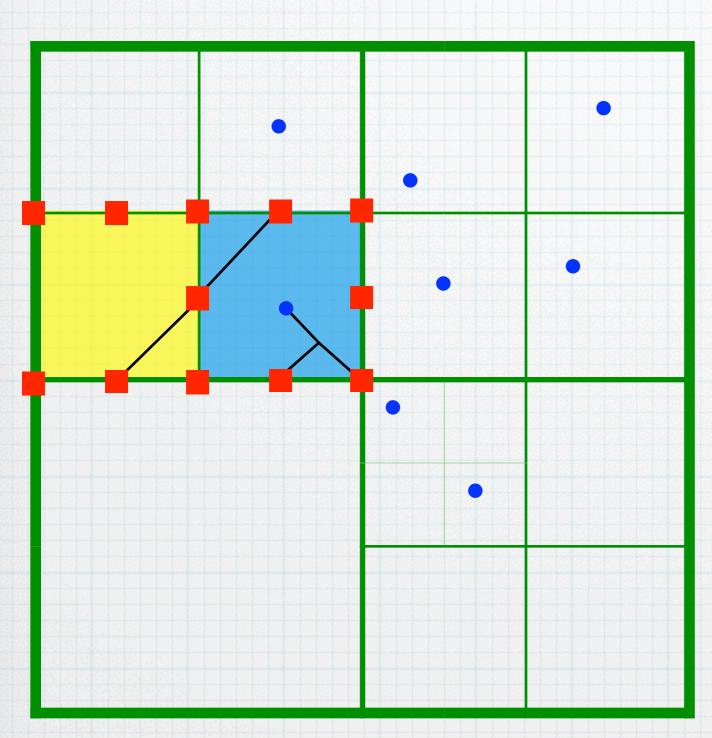
Find the best portal-respecting solution using dynamic programming:

DP table is indexed by:

quad-tree square

quad-tree square subsets of portals (log n choose k)

PTAS for Steiner tree in low-d geometric space



Find the best portal-respecting solution using dynamic programming:

DP table is indexed by:

quad-tree square

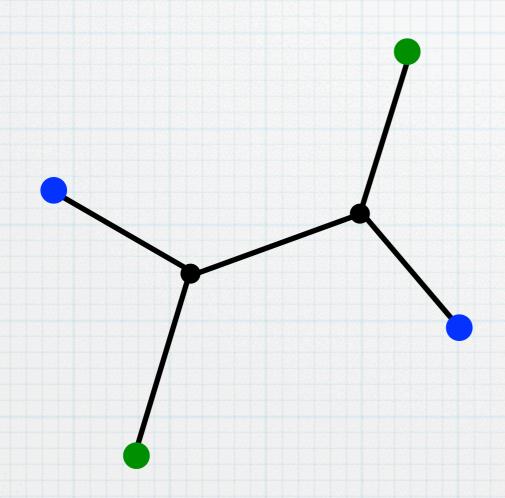
subsets of portals (log n choose k)

Combine entries: match up portal subsets.

Feasibility check: terminals must eventually connect.

Run time: O(n polylog n)

From Steiner Tree to Steiner Forest Terminal Pair

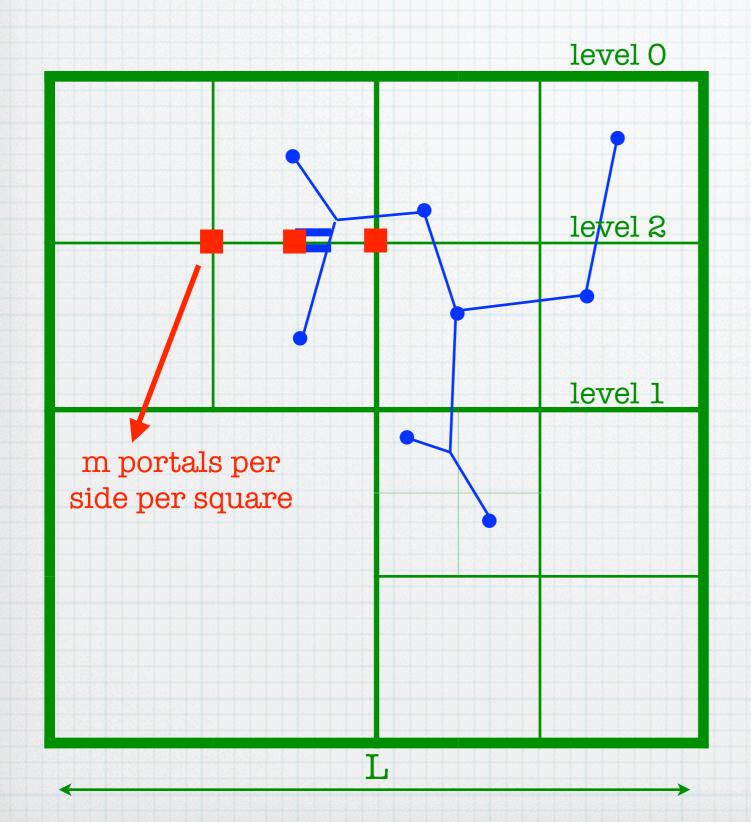


Two main issues:

Bounding the portal error.

Bounding the size of the DP table.

Issue 1: Portal Error



Expected detour length:

$$\sum_{i=1}^{\log L} \frac{L}{2^{i}m} \frac{2^{i}}{L} = \frac{1}{m} \log L$$

level-i P(line at level i)

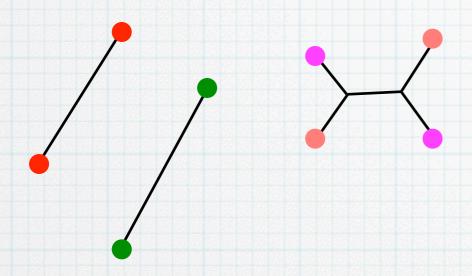
interportal distance

Number of detours = 2 OPTIf m = $O(\log L/\epsilon)$, total error = $O(\epsilon \text{ OPT})$

$$m = O(log(n))$$
 if $L = poly(n)$

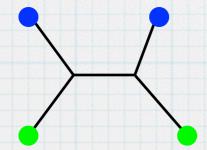
Fixing Issue 1

Preprocess the instance



Idea: If you know a priori the components of the Steiner forest, solve a Steiner tree problem on each instance.

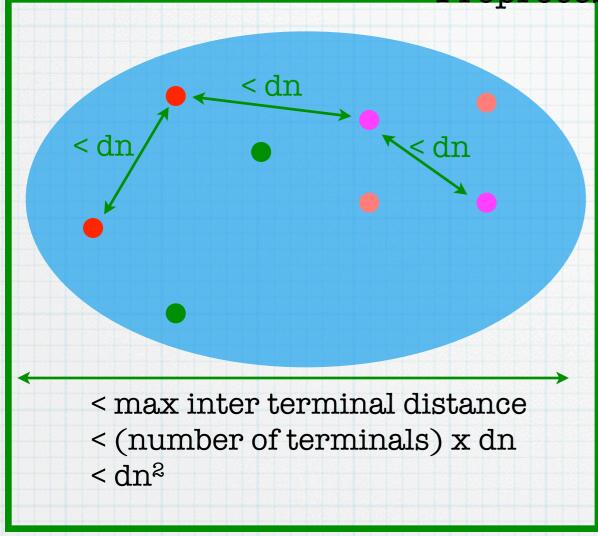
Problem: We don't know the components a priori.



Solution: Find an approximate partition.

Fixing Issue 1

Preprocess the instance



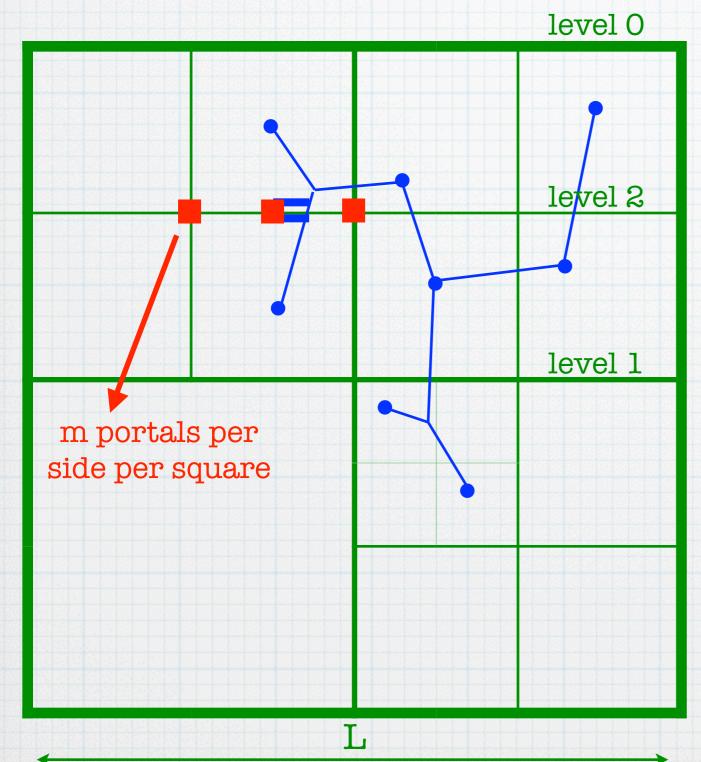
|minimal set of requirements| $\leq n/2$ d = max pair distance Group into connected components induced by distances < dn.

OPT < nd, so terminals in different components cannot connected by OPT.

Each component can be enclosed by a $dn^2 \times dn^2$ box.

A similar technique used to preprocess for facility location. [ARR]

Issue 1: Portal Error



Expected detour length:

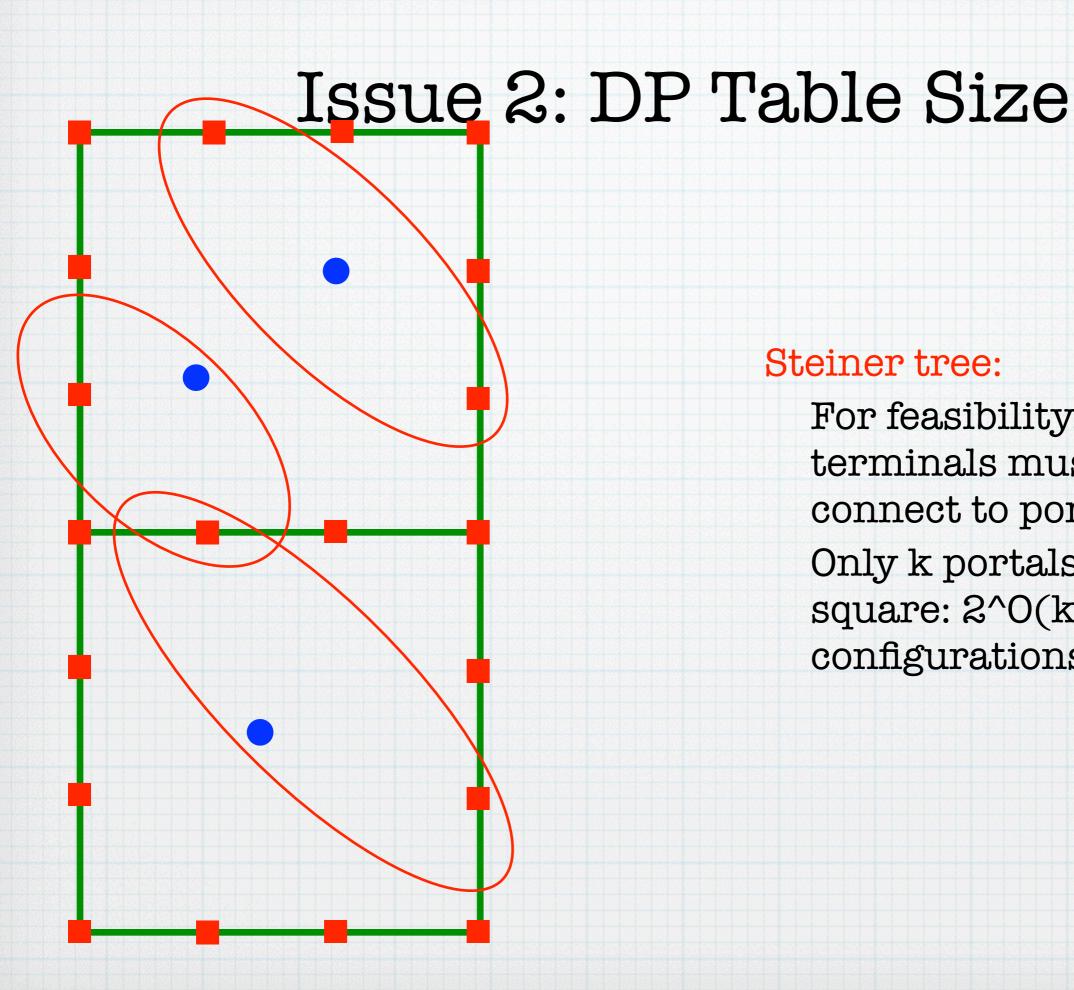
$$\sum_{i=1}^{\log L} \frac{L}{2^{i}m} \frac{2^{i}}{L} = \frac{1}{m} \log L$$

level-i P(line at level i)

interportal distance

Number of detours = 2 OPTIf m = $O(\log L/\epsilon)$, total error = $O(\epsilon \text{ OPT})$

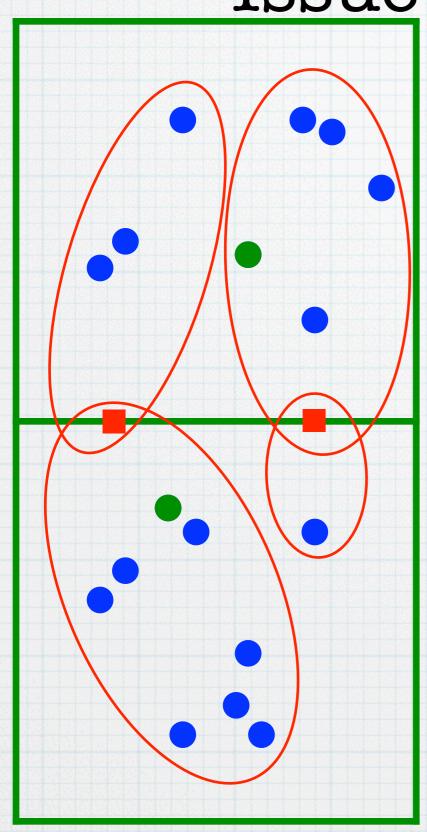
m = O(log(n)) if L = poly(n)



Steiner tree:

For feasibility, terminals must connect to portals. Only k portals per square: $2^0(k)$ configurations.

Issue 2: DP Table Size

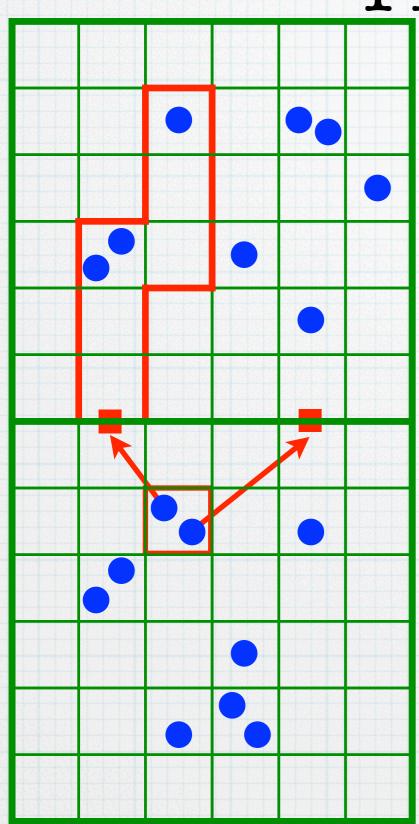


Steiner forest:

For feasibility, must know mapping from terminals to portals.

This requires a kⁿ size table!

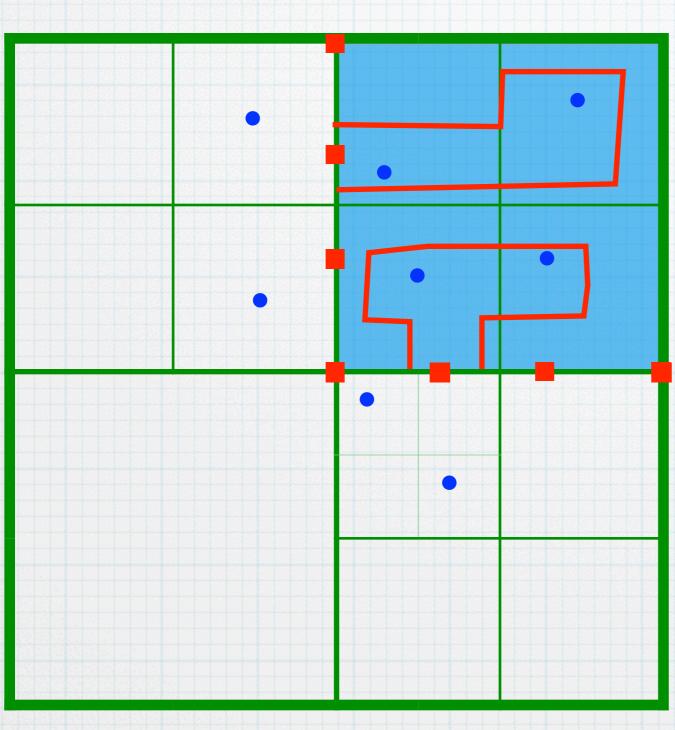
Fixing Issue 2



Claim: Break each square into a t x t grid. Terminals in a common cell connect to a common portal.

Proof idea: Consider nearby terminals connecting to different portals. Connect terminal-portal paths by the (short) cell boundary. Analysis similar to portal error. Uses charging scheme: each addition reduces the number of components.

PTAS for Steiner forest



- 1. Find an O(n)-approximation.
- 2. Partition terminals.
- 3. For each set, decompose with a randomized quadtree.
- 4. For each square, limit interaction to outside through portals.
- 5. Configurations given by regions in a small grid.

Run time:

 $m = O(\log n)$ portals. Configuration size = O(1). Number of configurations = $\log^{O(1)} n$. Number of nodes of quad tree = $O(n \log n)$. DP is $O(n \log^{O(1)} n)$.

What about planar graphs?

Two different but related settings

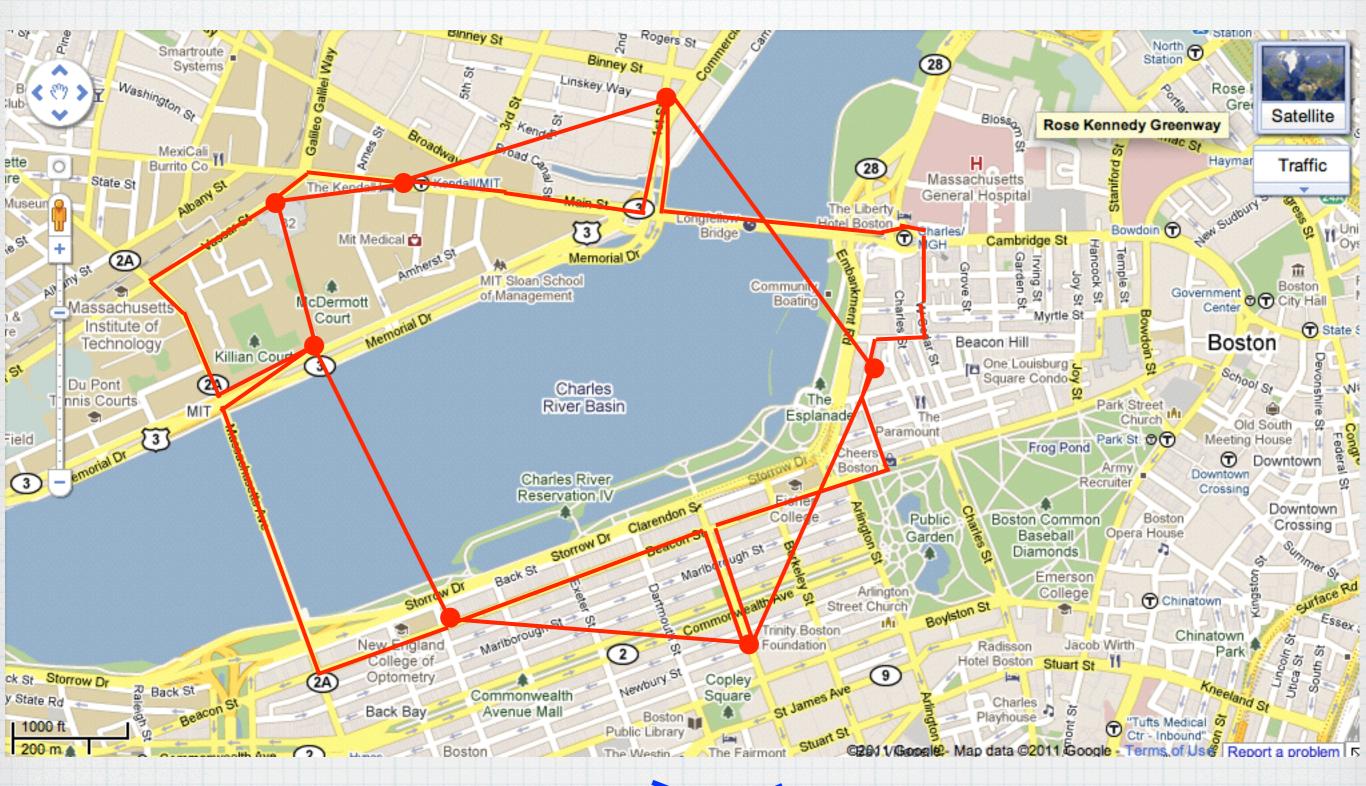
Traveling salesman tour in the Euclidian plane

Traveling salesman tour in a planar embedded graph

Steiner tree in the Euclidian plane

Steiner tree in a planar embedded graph

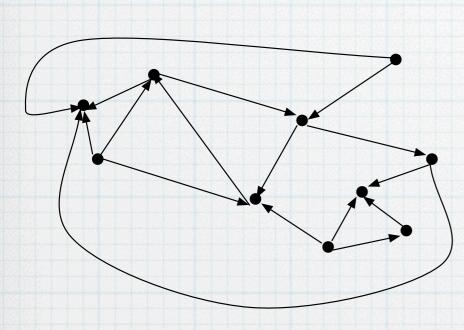
The world is flat... but it's not Euclidean!

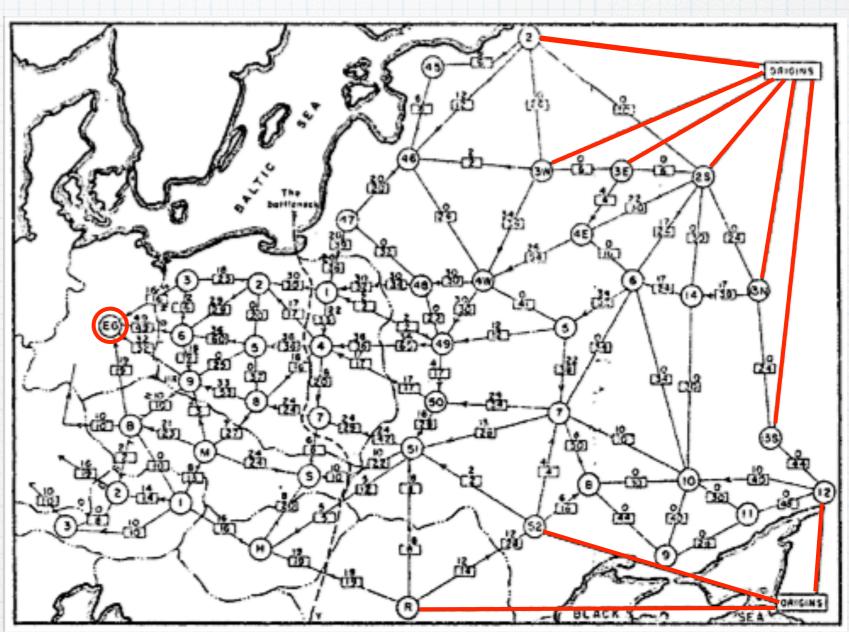


Traveling-salesman tour in the plane a planar embedded graph

Planar graphs

Can be drawn in the plane with no crossings





[Harris and Ross, The RAND Corporation, 1955, declassified 1999]

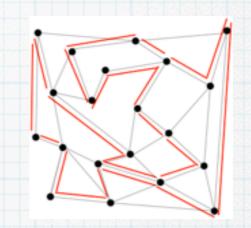
Planar graph research goal:

Exploiting planarity to achieve

- faster algorithms
- more accurate approximations

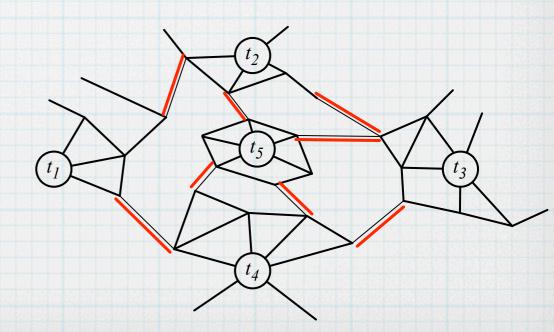
NP-hard even on planar graphs:

Traveling salesman: minimumweight tour visiting all vertices



Steiner tree: given subset S of vertices, find minimum-weight tree connecting S

Multiterminal cut: given subset S of vertices, find minimum-weight set of edges whose deletion separates every pair of vertices in S



Approximation schemes for optimization problems in planar graphs

Definition: An **approximation scheme** is an algorithm that, for any given $\varepsilon > 0$, finds a $1+\varepsilon$ -approximate solution. Running time is stated under the assumption that ε is constant.

For many problems (e.g. traveling salesman, Steiner tree, multiterminal cut), there is no approximation scheme in general graphs unless P=NP

... but we can get approximation schemes if input graph is required to be planar.

Some old approximation schemes for NP-hard optimization problems

1977	Lipton, Tarjan	maximum independent set
1983	Baker	max independent set, partition into triangles, min vertex-cover, min dominating set

Theorem [Klein, 2005]: There is a linear-time approximation scheme for the traveling salesman problem in planar graphs with edge weights

The framework introduced by this paper has since been used to address many other problems....

- Traveling salesman [Klein, 2005]
- Traveling salesman on a subset of vertices [Klein, 2006]
- 2-edge-connected spanning subgraph [Berger, Grigni, 2007]
- Steiner tree [Borradaile, Klein, Mathieu, 2008]
- 2-edge-connected variant [Borradaile, Klein, 2008]
- Steiner forest [Bateni, Hajiaghayi, Marx, 2010]
- Prize-collecting Steiner tree [Bateni, Chekuri, Ene, Hajiaghayi, Korula, Marx, 2011]
- Multiterminal cut [Bateni, Hajiaghayi, Klein, Mathieu, 2012]
- Ball cover [Eisenstat, Klein, Mathieu, 2014]
- Correlation clustering [Klein, Mathieu, Zhou, 2015]
- ...
- Open: facility location

Baker's basic framework

For problems (MIS) s.t. total cost of graph is O(OPT)

1. Delete vertices of total value at most 1/p times OPT

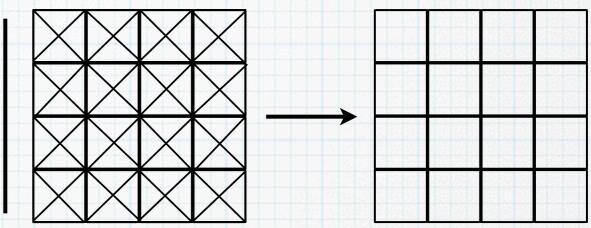
Ensure resulting graph has branchwidth O(p)

- 2. Find (near-)optimal solution in low-branchwidth graph
 - 3. Deduce solution to original graph, increasing cost by $1/p \times O(OPT)$

Choose p big enough so increase is $\leq \epsilon OPT$

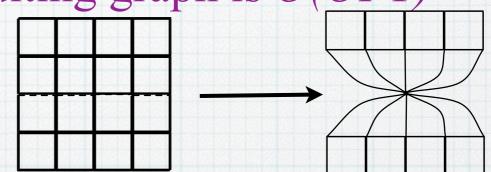
Klein's basic framework

1. Delete some edges while keeping OPT from increasing by more than 1+ε factor



Ensure total cost of resulting graph is O(OPT)

2. *Contract* edges of total cost at most 1/p times total



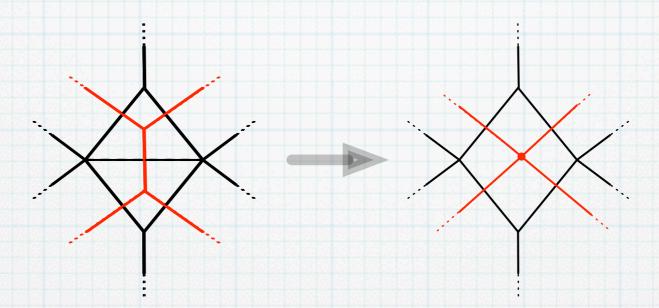
Ensure resulting graph has branchwidth O(p)

- 3. Find optimal solution in low-branchwidth graph by dynamic programming
 - 4. Deduce solution to original graph, increasing cost by $1/p \times O(OPT)$

Choose *p* big enough so increase is $\leq \epsilon OPT$

One key idea for framework

Deletion and contraction* are dual to each other



Deletion of a (non-self-loop) edge in the primal corresponds to contraction in the dual and vice versa

Klein's dual framework

1. Contract some edges while keeping OPT from increasing by more than 1+ε factor

Ensure total cost of resulting graph is O(OPT)

2. *Delete* edges of total cost at most 1/p times total

Ensure resulting graph has branchwidth O(p)

- 3. Find (near-)optimal solution in low-branchwidth graph
 - 4. Lift solution to original graph, increasing cost by $1/p \times O(OPT)$

Choose p big enough so increase is $\leq \epsilon OPT$

New step: "spanner" construction

1. Delete some edges while keeping OPT from increasing by more than $1+\varepsilon$ factor

1. Contract some edges while keeping OPT from increasing by more than $1+\varepsilon$ factor

Ensure total cost of resulting graph is O(OPT)

Traveling salesman problem:

How to ensure that the resulting graph approximately preserves OPT?

Consider optimal tour. Replace each edge by a $1+\varepsilon$ -approximate shortest path. Resulting tour is $1+\varepsilon$ -approximate.

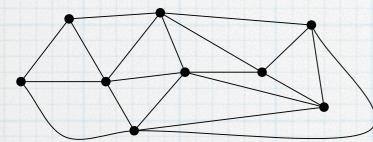
Therefore: it suffices to select a subset of edges that approximately preserves vertex-to-vertex distances.

Selecting a low-weight subset of edges that approximately preserves vertex-to-vertex distances

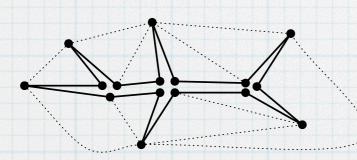
Just achieving finite distances requires a spanning tree.

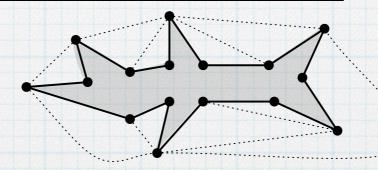
Start with minimum-weight spanning tree (MST).

Will choose additional edges of total weight $\leq (2/\varepsilon)$ weight (MST).

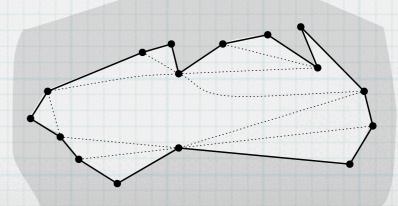


Step 1: Let *T* be the minimum-weight spanning tree. Include it in the spanner.





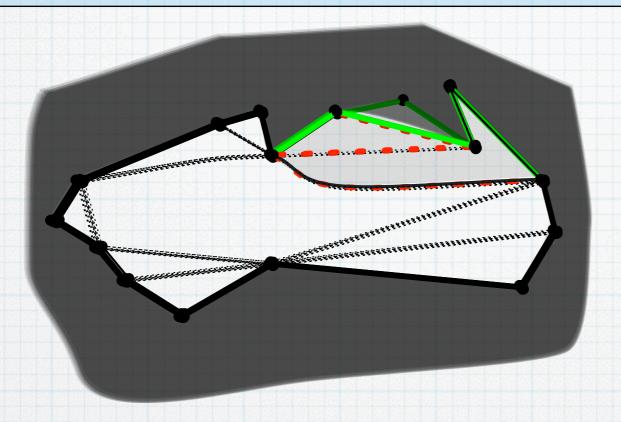
Step 3: Consider resulting face as infinite face.



Step 4: Consider non-tree edges in order.

For each such edge uv, if

 $(1+\varepsilon)$ weight(uv) \leq weight of corresponding boundary subpath then add uv to spanner and chop along uv



Theorem: for any undirected planar graph G with edge-weights, \exists subgraph of cost $\leq 2(\varepsilon^{-1}+1) \times \min$ spanning tree cost such that, $\forall u, v \in V$,

u-to-*v* distance in subgraph $\leq (1 + \varepsilon) u$ -to-*v* distance in *G*

Theorem: for any undirected planar graph G with edge-weights, \exists subgraph of cost $\leq 2(\varepsilon^{-1}+1) \times \min$ spanning tree cost such that, $\forall u, v \in V$,

u-to-*v* distance in subgraph $\leq (1 + \varepsilon) u$ -to-*v* distance in *G*

Corollary: Linear-time approximation scheme for traveling salesman in planar graphs.

But for...

Traveling salesman on a *subset* of vertices

Need a more general spanner result

Traveling salesman on a subset of vertices

What kind of spanner is needed?

We need a subgraph that approximately preserves distances between vertices of the subset.



Minimum weight to just preserve connectivity? weight of minimum *Steiner tree* spanning the subset.

Theorem: for any undirected planar graph *G* with edge-weights, and any given subset *S* of vertices,

 \exists subgraph of weight $\leq f(\varepsilon) \times$ min Steiner tree weight s such that,

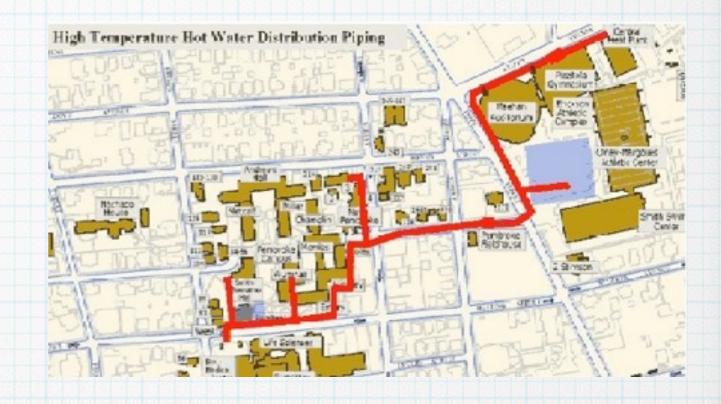
$$\forall u, v \in S$$
,

u-to-*v* distance in subgraph \leq (1+ε) *u*-to-*v* distance in *G*

Steiner tree connecting terminals S

What kind of "spanner" is needed?

We need a subgraph that approximately preserves the min-weight Steiner tree connecting *S*.



Theorem: for any undirected planar graph *G* with edge-weights, and any given subset *S* of vertices,

 \exists subgraph of weight $\leq f(\varepsilon) \times$ min Steiner tree weight such that

min weight of Steiner tree spanning S in subgraph

$$\leq (1+\epsilon)$$
 min weight of Steiner tree spanning S in G

Two "spanner" theorems...

```
Theorem: for any undirected planar graph G with edge-weights, and any given subset S of vertices,
```

∃ subgraph of weight $\leq f(\varepsilon)$ × min Steiner tree weight s such that, $\forall u, v \in S$,

u-to-*v* distance in subgraph \leq (1+ε) *u*-to-*v* distance in *G*

Theorem: for any undirected planar graph *G* with edge-weights, and any given subset *S* of vertices,

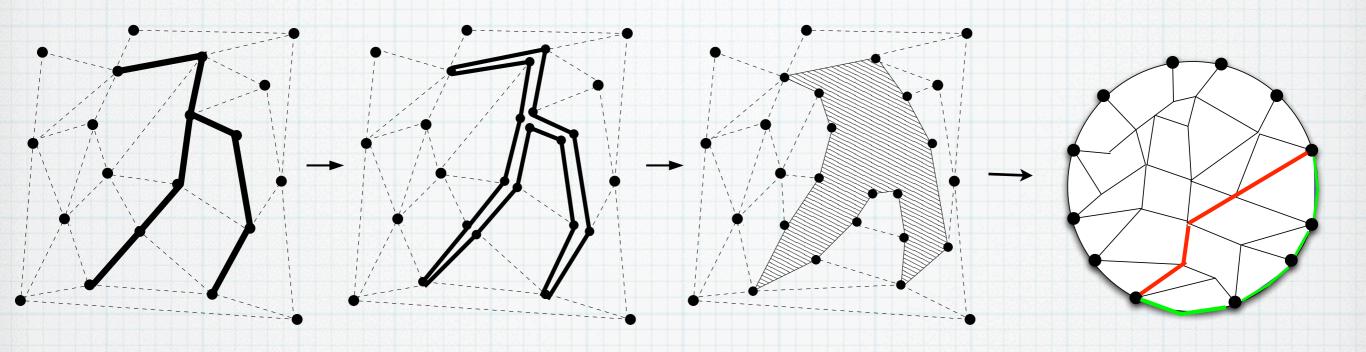
 \exists subgraph of weight $\leq f(\varepsilon) \times$ min Steiner tree weight such that

min weight of Steiner tree spanning S in subgraph

 $\leq (1+\epsilon)$ min weight of Steiner tree spanning S in G

... one graph construction: brick decomposition.

Outline of version used for Steiner tree



Say a boundary-to-boundary path is a *shortcut* if $(1+\varepsilon)$ weight(path) \leq weight of corresponding boundary subpath

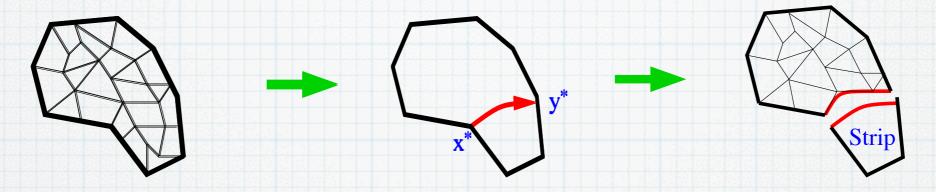
Repeat:

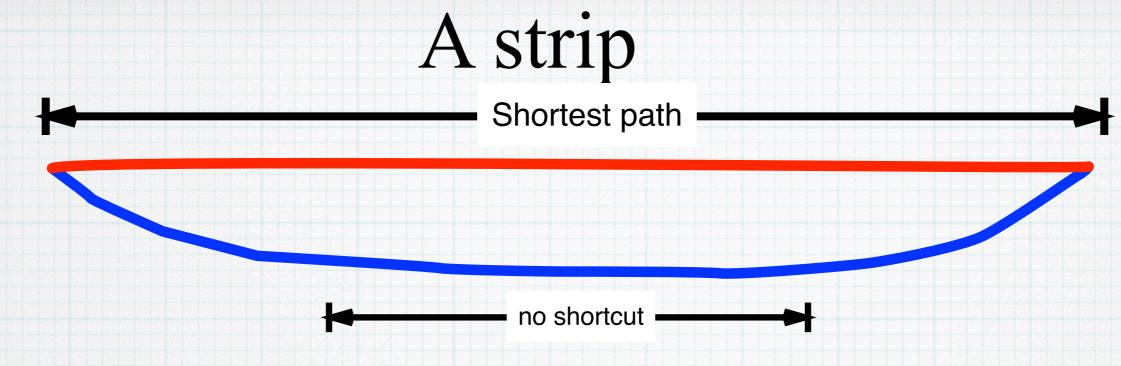
identify a *minimally enclosing* shortcut add shortcut to spanner and chop along shortcut.

Say a boundary-to-boundary path is a *shortcut* if $(1+\varepsilon)$ weight(path) \leq weight of corresponding boundary subpath

Step 4: Repeat:

identify a *minimally enclosing* shortcut add shortcut to spanner and chop along shortcut.





Three properties:

• For every proper subpath of southern boundary, there is no shortcut.

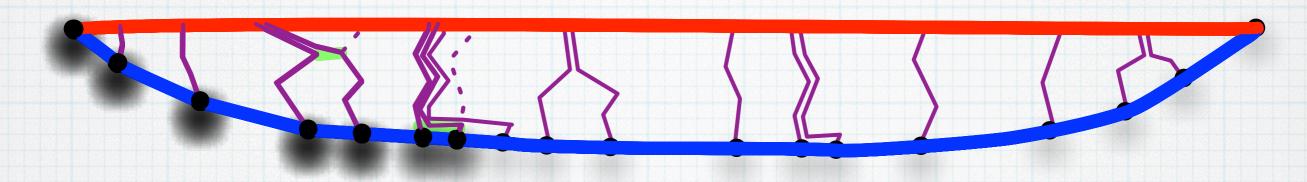
Any proper subpath of southern boundary is an approximate shortest path between its endpoints.

• Northern boundary is a shortest path.

Any subpath of northern boundary is a shortest path between its endpoints.

• No terminals in interior.

Dividing up a strip using columns

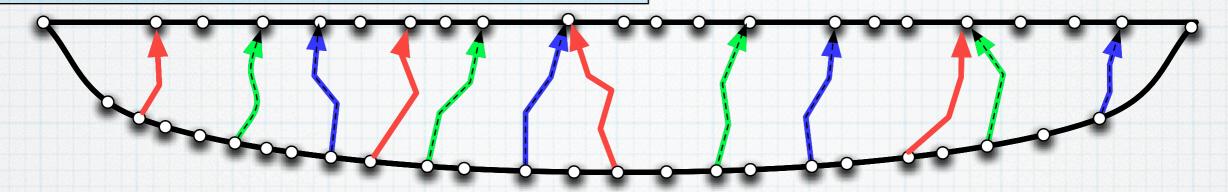


Iterate over nodes of southern boundary from left to right.

For each node v, find the shortest v-to-north path P_v .

If P_{ν} gets too close to column to left, reroute it along that column.

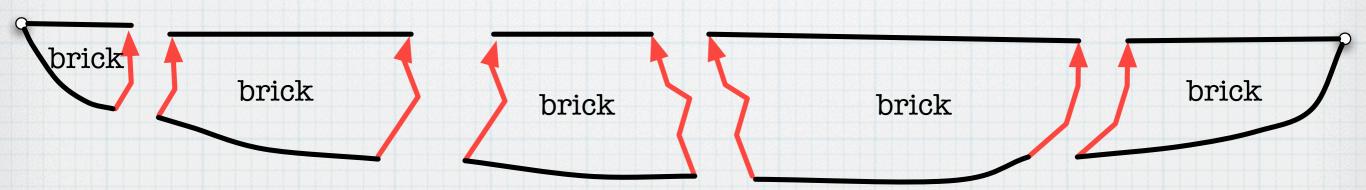
Step 6: Select short set of columns.



For each strip, color the columns according to position mod k Select the color of minimum length

Value of k chosen so that $length(selected\ columns) \leq \epsilon\ OPT$

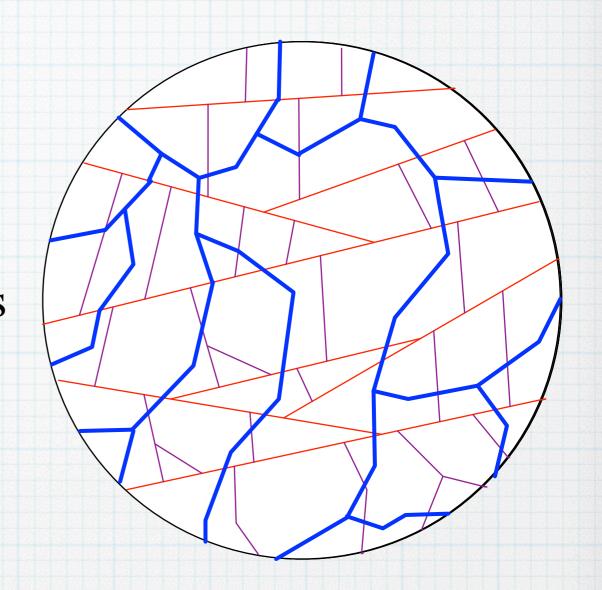
$$k := 4(1/\epsilon + 1)(1/\epsilon)^2$$



The regions bounded by strip boundaries and selected columns are called *bricks*.

Properties of brick decomposition:

- Weight is $O_{\varepsilon}(OPT)$
- There exists a near-optimal solution that, for each brick, crosses the brick's boundary only $O_{\varepsilon}(1)$ times.



Holds for:

- traveling salesman tour
- Steiner tree

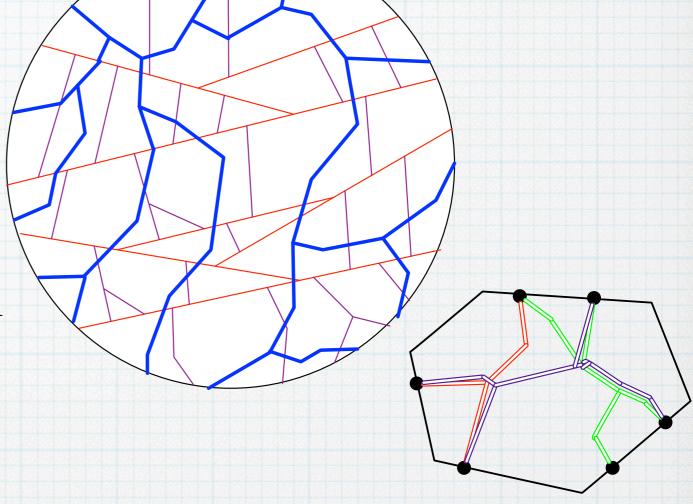
• • •

Using the brick decomposition to get a "spanner"

Building a spanner:

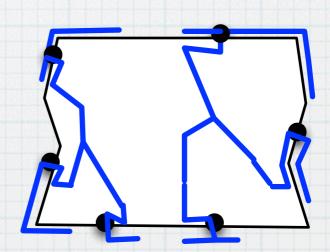
For each brick B,

- place portals on boundary
- for each subset of portals,
 - include in spanner an optimal solution for that subset.



Structural idea: rerouting solution to use portals doesn't add much weight

Theorem: There is an O(n log n) approx. scheme for Steiner tree



Analogy between Euclidian plane and planar graphs