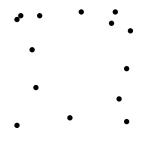
Handling noise and complexity blow-up in topological data analysis.

Mickaël Buchet

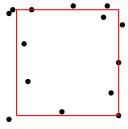
The Ohio State University

June 18, 2015

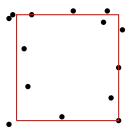
Topological inference



Topological inference



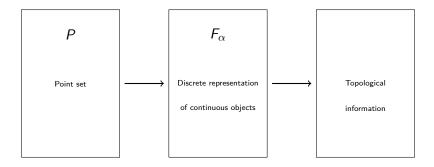
Topological inference





Usual pipeline

Usual pipeline



Accuracy of the representation

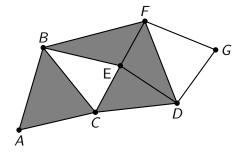
- Accuracy of the representation
- Size of the data structure

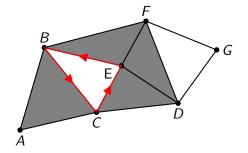
- Accuracy of the representation
- Size of the data structure
- Complexity of the process

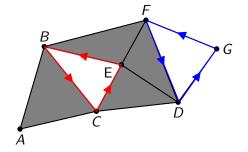
- Accuracy of the representation
- Size of the data structure
- Complexity of the process
- Robustness to noise

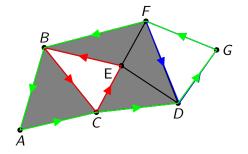
Outline

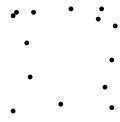
- Topological information
- Classical data structures
- Sparse data structures
- Handling noise and aberrant values
- Sparsification and parameter free analysis

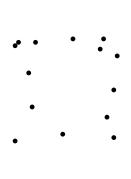


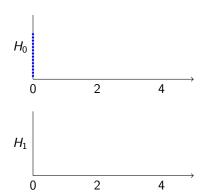


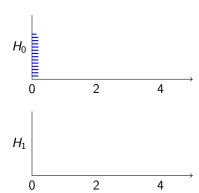


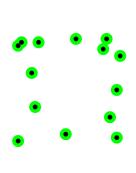


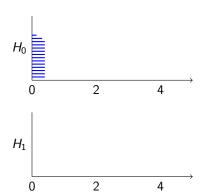


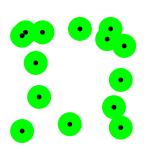


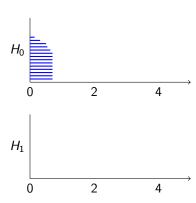


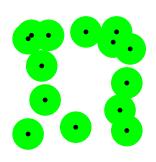


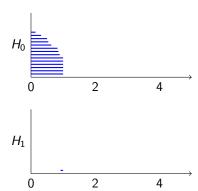


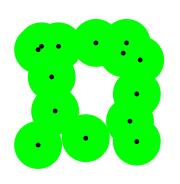


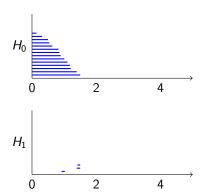


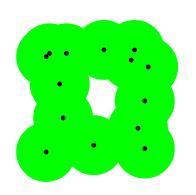


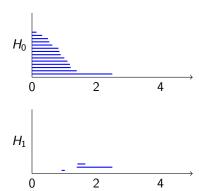


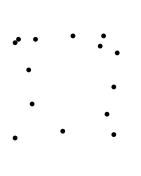


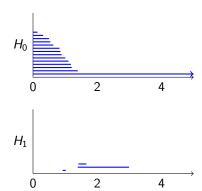




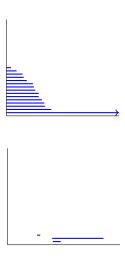




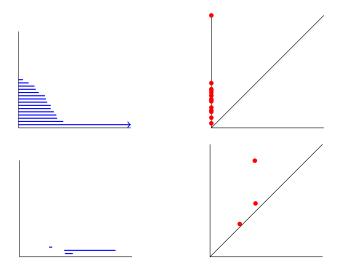




Persistent diagram representation



Persistent diagram representation



Outline

- Topological information
- Classical data structures
- Sparse data structures
- Handling noise and aberrant values
- Sparsification and parameter free analysis

Definition

 (p_1,\ldots,p_l) belongs to the Čech for the parameter α , noted C_{α} , if :

$$\cap_{i=1}^n B(p_i,\alpha) \neq \emptyset$$

Definition

 (p_1,\ldots,p_l) belongs to the Čech for the parameter α , noted C_{α} , if :

$$\cap_{i=1}^n B(p_i,\alpha) \neq \emptyset$$

Mickaël Buchet

Definition

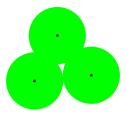
 (p_1,\ldots,p_l) belongs to the Čech for the parameter lpha, noted \mathcal{C}_lpha , if :

$$\cap_{i=1}^n B(p_i,\alpha) \neq \emptyset$$

Definition

 (p_1,\ldots,p_l) belongs to the Čech for the parameter α , noted C_{α} , if :

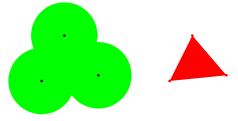
$$\cap_{i=1}^n B(p_i,\alpha) \neq \emptyset$$



Definition

 (p_1,\ldots,p_l) belongs to the Čech for the parameter α , noted C_{α} , if :

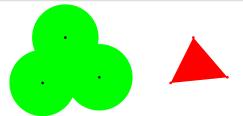
$$\cap_{i=1}^n B(p_i,\alpha) \neq \emptyset$$



Definition

 (p_1,\ldots,p_l) belongs to the Čech for the parameter α , noted C_{α} , if :

$$\cap_{i=1}^n B(p_i,\alpha) \neq \emptyset$$



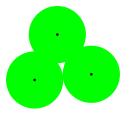
Theorem (Borsuk, 1948)

The Čech complex has the same homology as the union of balls if the space has the good cover property.

Definition

 (p_1,\ldots,p_l) belongs to the Čech for the parameter α , noted C_{α} , if :

$$\cap_{i=1}^n B(p_i,\alpha) \neq \emptyset$$



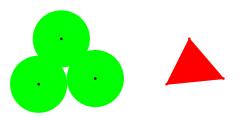
Theorem (Borsuk, 1948)

The Čech complex has the same homology as the union of balls if the space has the good cover property.

Rips complex

Definition

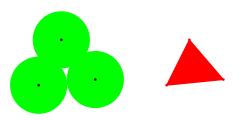
The Rips complex is the maximal complex with the same edges as the Čech complex.



Rips complex

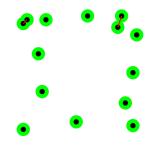
Definition

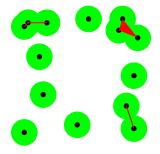
The Rips complex is the maximal complex with the same edges as the Čech complex.

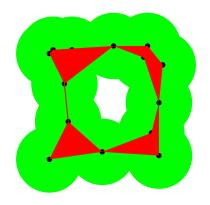


Proposition

$$C_{\alpha} \subset R_{\alpha} \subset C_{2\alpha}$$







• Computing the persistence diagram of a filtered simplicial complex has complexity $O(N^3)$.

- Computing the persistence diagram of a filtered simplicial complex has complexity $O(N^3)$.
- In practice, the computation time is linear in N.

- Computing the persistence diagram of a filtered simplicial complex has complexity $O(N^3)$.
- In practice, the computation time is linear in N.
- A *d*-dimensional Rips complex has $\Theta(n^{d+1})$ simplexes.

- Computing the persistence diagram of a filtered simplicial complex has complexity $O(N^3)$.
- In practice, the computation time is linear in N.
- A *d*-dimensional Rips complex has $\Theta(n^{d+1})$ simplexes.
- The computation of the persistence diagram of n points up to dimension d has complexity $O(n^{d+1})$.

- Computing the persistence diagram of a filtered simplicial complex has complexity $O(N^3)$.
- In practice, the computation time is linear in N.
- A *d*-dimensional Rips complex has $\Theta(n^{d+1})$ simplexes.
- The computation of the persistence diagram of n points up to dimension d has complexity $O(n^{d+1})$.

• Unusable in high dimensions.

Sometimes, there is no parameter such that the Rips complex capture the topology of $\mathsf{M}.$

Sometimes, there is no parameter such that the Rips complex capture the topology of M.

Solution: take two different parameters $\delta < \delta'$ and look at the image of $H_*(R_\delta)$ by the morphism induced by the inclusion $R_\delta \hookrightarrow R_{\delta'}$.

Sometimes, there is no parameter such that the Rips complex capture the topology of M.

Solution: take two different parameters $\delta < \delta'$ and look at the image of $H_*(R_\delta)$ by the morphism induced by the inclusion $R_\delta \hookrightarrow R_{\delta'}$.

$$R_{\delta} \longrightarrow R_{\delta'}$$

Sometimes, there is no parameter such that the Rips complex capture the topology of M.

Solution: take two different parameters $\delta < \delta'$ and look at the image of $H_*(R_\delta)$ by the morphism induced by the inclusion $R_\delta \hookrightarrow R_{\delta'}$.

$$R_{\delta}$$
 \longrightarrow $R_{\delta'}$

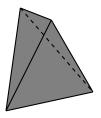
$$H_*(R_\delta) \longrightarrow H_*(R_{\delta'})$$

Outline

- Topological information
- Classical data structures
- Sparse data structures
- Handling noise and aberrant values
- Sparsification and parameter free analysis

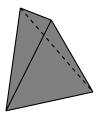
Collapses and contractions (I)

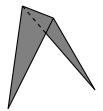
Attali, Lieutier and Salinas 2012, 2013



Collapses and contractions (I)

Attali, Lieutier and Salinas 2012, 2013





Collapses and contractions (II)

• Implicit construction of the simplicial complex.

Collapses and contractions (II)

- Implicit construction of the simplicial complex.
- Reduction of the simplicial complex with topological guarantees.

Collapses and contractions (II)

- Implicit construction of the simplicial complex.
- Reduction of the simplicial complex with topological guarantees.
- Adapted to homology, not persistence.

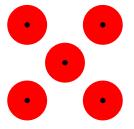
Sheehy, 2012

•

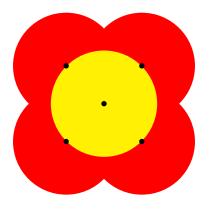
•

• •

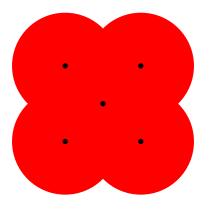
Sheehy, 2012



Sheehy, 2012

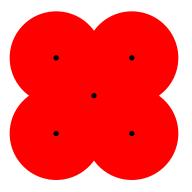


Sheehy, 2012



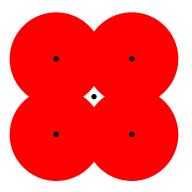
Topological noise

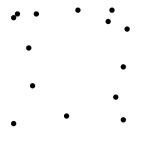
Naively removing points can create topological noise.

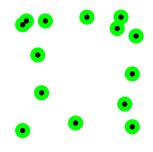


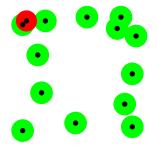
Topological noise

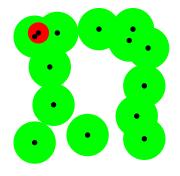
Naively removing points can create topological noise.

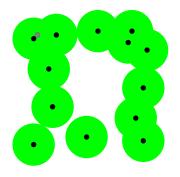


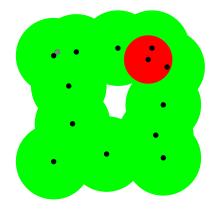


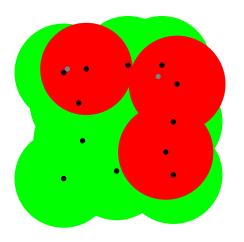












• Let (p_1, \ldots, p_n) be a futhest point sampling of P.

- Let (p_1, \ldots, p_n) be a futhest point sampling of P.
 - p_1 is arbitrary and $\lambda_1 = \infty$.

- Let (p_1, \ldots, p_n) be a futhest point sampling of P.
 - p_1 is arbitrary and $\lambda_1 = \infty$.
 - $p_i = \operatorname{argmax}_{p \in P \setminus P_{i-1}} d_{\mathbb{X}}(p, P_{i-1},)$ and $P_{i-1} = (p_1, \dots, p_{i-1}).$

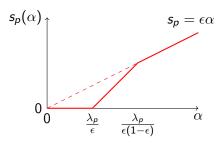
- Let (p_1, \ldots, p_n) be a futhest point sampling of P.
 - p_1 is arbitrary and $\lambda_1 = \infty$.
 - $p_i = \operatorname{argmax}_{p \in P \setminus P_{i-1}} d_{\mathbb{X}}(p, P_{i-1}, p_{i-1})$ and $P_{i-1} = (p_1, \dots, p_{i-1})$.
 - Fix $\lambda_i = d_{\mathbb{X}}(p_i, P_{i-1})$.

Construction (I)

- Let (p_1, \ldots, p_n) be a futhest point sampling of P.
 - p_1 is arbitrary and $\lambda_1 = \infty$.
 - $p_i = \operatorname{argmax}_{p \in P \setminus P_{i-1}} d_{\mathbb{X}}(p, P_{i-1})$ and $P_{i-1} = (p_1, \dots, p_{i-1})$.
 - Fix $\lambda_i = d_{\mathbb{X}}(p_i, P_{i-1})$.
- Fix $\bar{N}_{\gamma} = \{ p \in P | \lambda_p \ge \gamma \}.$

Construction (I)

- Let (p_1, \ldots, p_n) be a futhest point sampling of P.
 - p_1 is arbitrary and $\lambda_1 = \infty$.
 - $p_i = \operatorname{argmax}_{p \in P \setminus P_{i-1}} d_{\mathbb{X}}(p, P_{i-1})$ and $P_{i-1} = (p_1, \dots, p_{i-1})$.
 - Fix $\lambda_i = d_{\mathbb{X}}(p_i, P_{i-1})$.
- Fix $\bar{N}_{\gamma} = \{ p \in P | \lambda_p \ge \gamma \}.$
- Perturbed metric : $f_{\alpha}(p,q) = d_{\mathbb{X}}(p,q) + s_{p}(\alpha) + s_{q}(\alpha)$.



Construction (II)

Definition

The sparse Rips complex is given by:

$$Q_{\alpha} = \{ \sigma \subset \bar{N}_{\epsilon(1-\epsilon)\alpha} | \forall p, q \in \sigma, \ f_{\alpha}(p,q) < 2\alpha \}$$

Construction (II)

Definition

The sparse Rips complex is given by:

$$Q_{\alpha} = \{ \sigma \subset \bar{N}_{\epsilon(1-\epsilon)\alpha} | \forall p, q \in \sigma, \ f_{\alpha}(p,q) < 2\alpha \}$$

Definition

The sparse Rips filtration is given by:

$$\mathcal{S}_{eta} = igcup_{lpha \leq eta} \mathcal{Q}_{lpha}.$$

Properties of sparse Rips

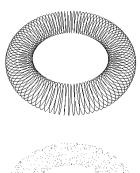
Theorem (Sheehy, 2012)

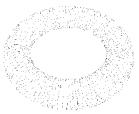
 $\{S_{\alpha}\}$ contains $O(C^{l}n)$ simplexes where l is the intrinsic dimension of the underlying object.

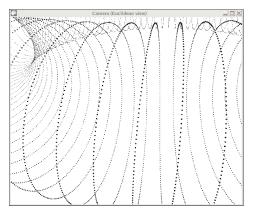
Theorem (Sheehy, 2012)

 $\{S_{\alpha}\}$ is $\frac{1}{1-\epsilon}$ -interleaved with the Rips filtration $\{R_{\alpha}\}$.

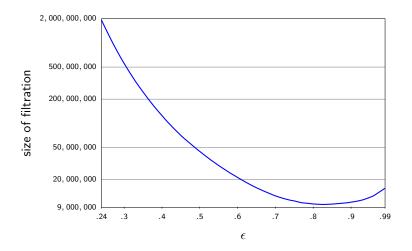
Spiral



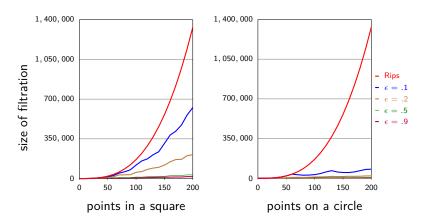




Size of the filtration depending on ϵ

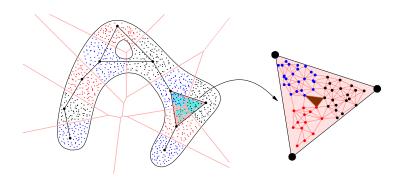


Intrinsic dimension influence



Graph induced complex (I)

Dey, Fan and Wang, 2013



Graph induced complex (II)

• Small construction with good guarantees and complexity for dimension 1.

Graph induced complex (II)

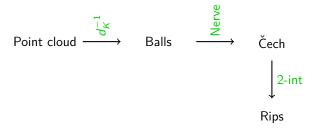
 Small construction with good guarantees and complexity for dimension 1.

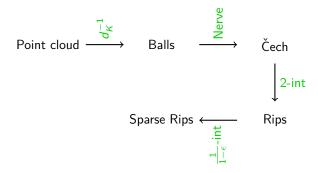
 Extensions to higher dimesion needs more complex computations.

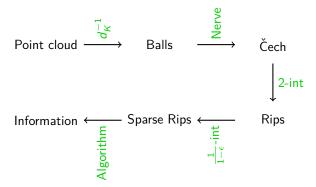
Point cloud

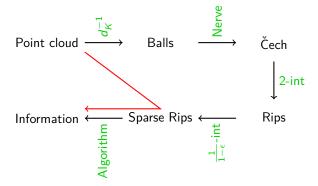
Point cloud
$$\xrightarrow{\frac{1-\chi}{\rho}}$$
 Balls

Point cloud
$$\xrightarrow{\Gamma_{\searrow}}$$
 Balls $\xrightarrow{\Sigma_{\rightleftharpoons}}$ Čech





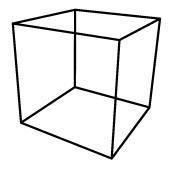




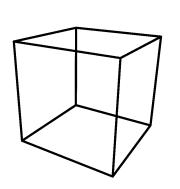
Outline

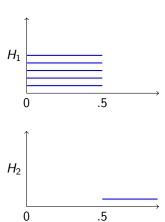
- Topological information
- Classical data structures
- Sparse data structures
- Handling noise and aberrant values
- Sparsification and parameter free analysis

Outliers (I)



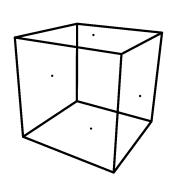
Outliers (I)

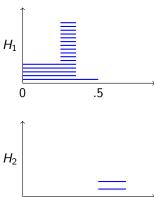




31 / 56

Outliers (II)





Distance to a measure

Definition (Chazal, Cohen-Steiner, Mérigot, 2011)

Let μ be a measure and $m \in]0,1[$, then

$$d_{\mu,m}(x) = \frac{1}{\sqrt{m}} \inf_{\nu \in \operatorname{Sub}_m(\mu)} W_2(m\delta_{\scriptscriptstyle X}, \nu)$$

Distance to a measure

Definition (Chazal, Cohen-Steiner, Mérigot, 2011)

Let μ be a measure and $m \in]0,1[$, then

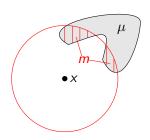
$$d_{\mu,m}(x) = \frac{1}{\sqrt{m}} \inf_{\nu \in \operatorname{Sub}_m(\mu)} W_2(m\delta_x, \nu)$$

Distance to a measure

Definition (Chazal, Cohen-Steiner, Mérigot, 2011)

Let μ be a measure and $m \in]0,1[$, then

$$d_{\mu,m}(x) = \frac{1}{\sqrt{m}} \inf_{\nu \in \mathrm{Sub}_m(\mu)} W_2(m\delta_{\mathsf{X}}, \nu)$$



Case of an empirical measure

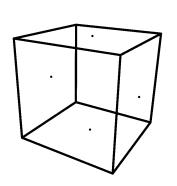
Proposition

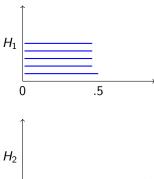
Let μ be the empirical on P and k = m|P| is an integer then:

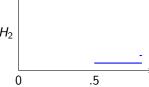
$$d_{\mu,m}(x) = \sqrt{\frac{1}{k}\sum_{i=1}^k d_{\mathbb{X}}(x,p_i(x))^2}$$

where $p_i(x)$ is the i^{th} -neighbour of x in P.

Results







Proposition

Proposition

$$d_{\mu,m}(x)^2 = \frac{1}{k} \sum_{i=1}^k ||x - p_i(x)||^2$$

Proposition

$$d_{\mu,m}(x)^{2} = \frac{1}{k} \sum_{i=1}^{k} ||x - p_{i}(x)||^{2}$$
$$= ||x - bar(x)||^{2} + \frac{1}{k} \sum_{i=1}^{k} ||p_{i}(x) - bar(x)||^{2}$$

where
$$bar(x) = \sum_{i=1}^{k} p_i(x)$$

Proposition

$$d_{\mu,m}(x)^{2} = \frac{1}{k} \sum_{i=1}^{k} ||x - p_{i}(x)||^{2}$$

$$= ||x - bar(x)||^{2} + \frac{1}{k} \sum_{i=1}^{k} ||p_{i}(x) - bar(x)||^{2}$$

$$= ||x - bar(x)||^{2} + w_{bar(x)}^{2}$$

where
$$bar(x) = \sum_{i=1}^{k} p_i(x)$$

Proposition

In Euclidean spaces, the distance to an empirical measure is a power distance.

$$d_{\mu,m}(x)^{2} = \frac{1}{k} \sum_{i=1}^{k} ||x - p_{i}(x)||^{2}$$

$$= ||x - bar(x)||^{2} + \frac{1}{k} \sum_{i=1}^{k} ||p_{i}(x) - bar(x)||^{2}$$

$$= ||x - bar(x)||^{2} + w_{bar(x)}^{2}$$

$$= \min_{b \in B} (||x - b||^{2} + w_{b}^{2})$$

where $bar(x) = \sum_{i=1}^{k} p_i(x)$ and B is the set of all barycentres of k points.

Power distances

Definition

Let P be a point set and $w: P \to \mathbb{R}$ a weight function. The power distance associated with (P, w) is defined by:

$$f(x) = \sqrt{\min_{p \in P} ||x - p||^2 + w(p)^2}$$

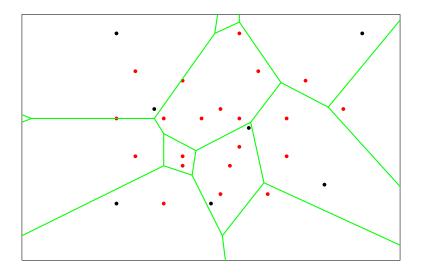
Sub-level sets of a power distance f are unions of balls.

$$f^{-1}(]-\infty,\alpha])=\bigcup_{p\in P}\bar{B}(p,\sqrt{\alpha^2-w(p)^2})$$

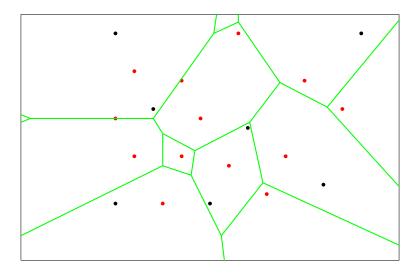
k^{th} -order Voronoi diagram



k^{th} -order Voronoi diagram



k^{th} -order Voronoi diagram



Size of kth-order Voronoi diagram

Sub-level sets of $d_{u,m}$ are unions of balls.

$$d_{\mu,m}^{-1}(]-\infty,\alpha])=\bigcup_{b\in B}\bar{B}(b,\sqrt{\alpha^2-w_b^2})$$

Theorem (Clarkson, Shor, 1989)

The number of non-empty cells in Voronoi diagrams from order 1 to k is

$$O\left(n^{\left\lfloor \frac{d+1}{2} \right\rfloor} k^{\left\lceil \frac{d+1}{2} \right\rceil}\right)$$
.

We used a weighted Rips filtration to compute the persistence diagram:

$$R_{\alpha} = \left\{ \sigma \subset P | \forall p, q \in P, \ d_{\mathbb{X}}(p,q) \leq \sqrt{\alpha^2 - w_p^2} + \sqrt{\alpha^2 - w_q^2} \right\}$$

We used a weighted Rips filtration to compute the persistence diagram:

$$R_{\alpha} = \left\{ \sigma \subset P | \forall p, q \in P, \ d_{\mathbb{X}}(p,q) \leq \sqrt{\alpha^2 - w_p^2} + \sqrt{\alpha^2 - w_q^2} \right\}$$

This structure induces a metric \tilde{d} .

We used a weighted Rips filtration to compute the persistence diagram:

$$R_{\alpha} = \left\{ \sigma \subset P | \forall p, q \in P, \ d_{\mathbb{X}}(p,q) \leq \sqrt{\alpha^2 - w_p^2} + \sqrt{\alpha^2 - w_q^2} \right\}$$

This structure induces a metric \tilde{d} .

Replacing $d_{\mathbb{X}}$ by \tilde{d} causes loss of properties on the size of the sparse filtration.

We used a weighted Rips filtration to compute the persistence diagram:

$$R_{\alpha} = \left\{ \sigma \subset P | \forall p, q \in P, \ d_{\mathbb{X}}(p,q) \leq \sqrt{\alpha^2 - w_p^2} + \sqrt{\alpha^2 - w_q^2} \right\}$$

This structure induces a metric \tilde{d} .

Replacing $d_{\mathbb{X}}$ by \tilde{d} causes loss of properties on the size of the sparse filtration.

Adaptation to the weighted Rips

Definition

The sparse weighted Rips is defined by:

$$T_{\alpha}=R_{\alpha}\bigcap S_{\alpha}.$$

Adaptation to the weighted Rips

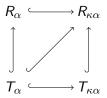
Definition

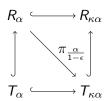
The sparse weighted Rips is defined by:

$$T_{\alpha}=R_{\alpha}\bigcap S_{\alpha}.$$

Theorem (Buchet et al., 2015)

 R_{lpha} and T_{lpha} are κ -interleaved where $\kappa=1+rac{\sqrt{1+t^2}\epsilon}{1-\epsilon}$, id est :



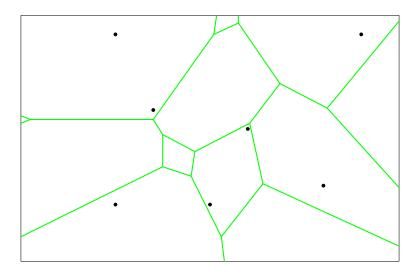


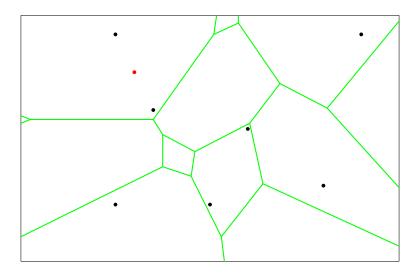
Witnessed k-distance

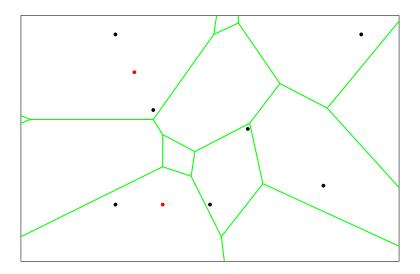
Approximation by sampling barycentres.

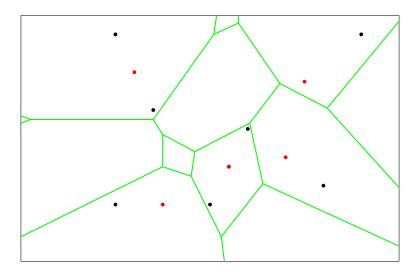
Definition (Guibas, Mérigot, Morozov, 2011)

$$d_{\mu,m}^{W}(x) = \min_{p \in P} \sqrt{||x - bar(p)||^2 + w_{bar(p)}^2}$$









Guarantees of the witnessed k-distance

Approximation by sampling barycentres.

Definition (Guibas, Mérigot, Morozov, 2011)

$$d_{\mu,m}^{W}(x) = \min_{p \in P} \sqrt{||x - bar(p)||^2 + w_{bar(p)}^2}$$

Theorem (GMM, 2011; Buchet et al., 2015)

$$d_{\mu,m} \le d_{\mu,m}^W \le \sqrt{6}d_{\mu,m}$$

Approximation supported by the points

Using a power distance supported by input points.

Definition (Buchet et al., 2015)

$$d_{\mu,m}^P(x) = \min_{p \in P} \sqrt{d_{\mathbb{X}}(x,p)^2 + d_{\mu,m}(p)^2}$$

Approximation supported by the points

Using a power distance supported by input points.

Definition (Buchet et al., 2015)

$$d_{\mu,m}^P(x) = \min_{p \in P} \sqrt{d_{\mathbb{X}}(x,p)^2 + d_{\mu,m}(p)^2}$$

Theorem (Buchet et al., 2015)

In Euclidean space:

$$\frac{1}{\sqrt{2}}d_{\mu,m} \leq d_{\mu,m}^P \leq \sqrt{3}d_{\mu,m}$$

Approximation supported by the points

Using a power distance supported by input points.

Definition (Buchet et al., 2015)

$$d_{\mu,m}^P(x) = \min_{p \in P} \sqrt{d_{\mathbb{X}}(x,p)^2 + d_{\mu,m}(p)^2}$$

Theorem (Buchet et al., 2015)

In Euclidean space:

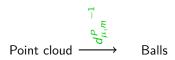
$$\frac{1}{\sqrt{2}}d_{\mu,m} \leq d_{\mu,m}^P \leq \sqrt{3}d_{\mu,m}$$

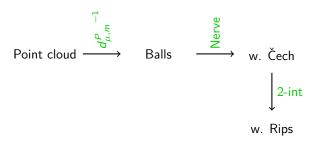
In any metric space:

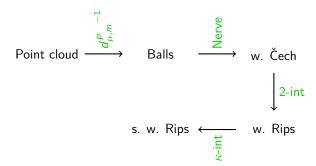
$$\frac{1}{\sqrt{2}}d_{\mu,m} \leq d_{\mu,m}^P \leq \sqrt{5}d_{\mu,m}$$

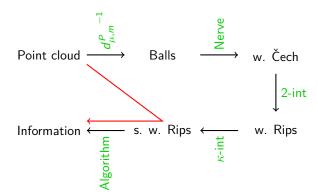
All these bounds are tight.

Point cloud









Outline

- Topological information
- Classical data structures
- Sparse data structures
- Handling noise and aberrant values
- Sparsification and parameter free analysis

Parameter free analysis

Is it possible to obtain a good analysis in an (almost) parameter-free mehod?

Parameter free analysis

Is it possible to obtain a good analysis in an (almost) parameter-free mehod?

Yes, if we have a good sampling.

We assume that we have a point cloud P describing an underlying compact set K in a metric space \mathbb{X} . Given a mass parameter m, what is a "good" sampling to use the distance to a measure?

We assume that we have a point cloud P describing an underlying compact set K in a metric space \mathbb{X} . Given a mass parameter m, what is a "good" sampling to use the distance to a measure?

The (ϵ, r) sampling.

We assume that we have a point cloud P describing an underlying compact set K in a metric space \mathbb{X} . Given a mass parameter m, what is a "good" sampling to use the distance to a measure?

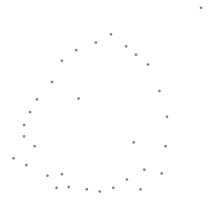
The (ϵ, r) sampling.

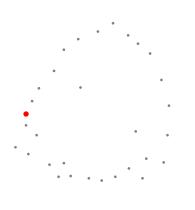
We assume that we have a point cloud P describing an underlying compact set K in a metric space \mathbb{X} . Given a mass parameter m, what is a "good" sampling to use the distance to a measure?

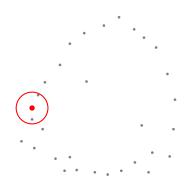
The (ϵ, ∞) sampling.

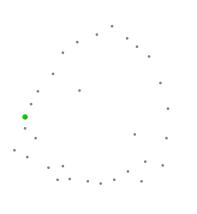
We assume that we have a point cloud P describing an underlying compact set K in a metric space \mathbb{X} . Given a mass parameter m, what is a "good" sampling to use the distance to a measure?

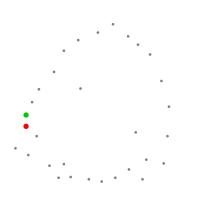
The (ϵ, r, c) uniform sampling.

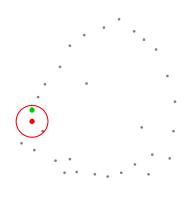


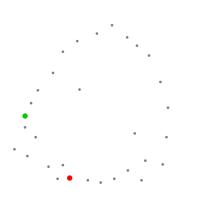


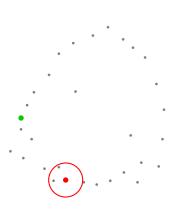


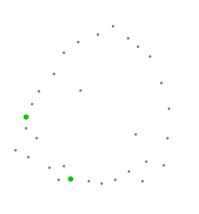


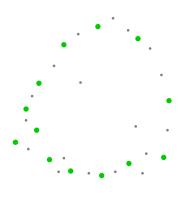


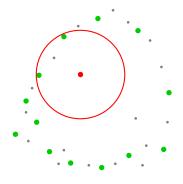


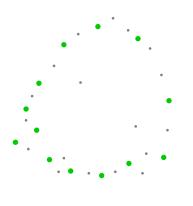












Algorithm

- $Q_0 = \emptyset$
- Sort P according to increasing distance to the empirical measure.
- **3** For i from 1 to n = |P|, if $B(p_i, 2d_{\mu,m}(p_i)) \cap Q_{i-1} = \emptyset$:
 - then $Q_i = Q_{i-1} \cup p_i$
 - else $Q_i = Q_{i-1}$.

Guarantees

$\mathsf{Theorem}$

If P is an (ϵ, ∞) sampling of K then:

$$d_H(Q_n, K) \leq 7\epsilon$$
.

$\mathsf{Theorem}$

If P is an (ϵ, ∞) uniform sampling of $K \subset \mathbb{R}^d$, with $\epsilon < \frac{1}{28} \mathrm{wfs}(K)$. Then for all α , $\alpha' \in [7\epsilon, \mathrm{wfs}(K) - 7\epsilon]$ such that $\alpha' - \alpha > 14\epsilon$ and for all $\lambda \in (0, \mathrm{wfs}(K))$, we have

$$H_*(X^{\lambda}) \cong H_*(C_{\alpha}(Q_n) \hookrightarrow C_{\alpha'}(Q_n)).$$

We assume that a feature size function f exists on K which is 1-Lipschitz. The sampling conditions become, for an (ϵ, ∞, c) uniform sampling.

We assume that a feature size function f exists on K which is 1-Lipschitz. The sampling conditions become, for an (ϵ, ∞, c) uniform sampling.

We assume that a feature size function f exists on K which is 1-Lipschitz. The sampling conditions become, for an (ϵ, ∞, c) uniform sampling.

We assume that a feature size function f exists on K which is 1-Lipschitz. The sampling conditions become, for an (ϵ, ∞, c) uniform sampling.

- $\forall y \in \mathbb{X}, \ d_{K}(y) \leq d_{\mu,m}(y) + \epsilon f(\bar{y}).$

Adaptive guarantees

Theorem

Given an input point P which is an (ϵ, ∞) adaptive sample of a compact K with $\epsilon \leq \frac{1}{2}$, our algorithm returns a 7ϵ Hausdorff adaptive sampling of K.

Id est:

$$\forall x \in K, \ \exists q \in Q_n, \ d_{\mathbb{X}}(x,q) \leq 7\epsilon f(x)$$

$$\forall q \in Q_n, \exists x \in K, d_{\mathbb{X}}(x,q) \leq 7\epsilon f(\bar{q})$$

Theorem

Given a set L and the feature function $f=d_L$, we consider an (ϵ,∞,c) -uniform adaptive sample P of K. If $c\leq 2$, $\epsilon\leq \frac{1}{396}$ and $G_{\frac{1}{3}}\cap M_{\frac{\pi}{4}}=\emptyset$ then for any sufficiently small $\beta>0$,

$$H_*(d_K^{-1}([0,\beta])) \cong H_*(B_{.032} \hookrightarrow B_{15.6}).$$

 Aberrant noise can be handled using the distance to a measure.

- Aberrant noise can be handled using the distance to a measure.
- The distance to a measure is compatible with classical data structures.

- Aberrant noise can be handled using the distance to a measure.
- The distance to a measure is compatible with classical data structures.
- Classical data structures have sparse approximations usable in practice.

- Aberrant noise can be handled using the distance to a measure.
- The distance to a measure is compatible with classical data structures.
- Classical data structures have sparse approximations usable in practice.
- Noisy data set can be sparsified with guarantees given only one parameter.

References

- Adaptive and robust sparsification of point data, ongoing work, Buchet, Dey, Wang and Wang
- Collapsing Rips complexes,
 EuroCG 2013, Atalli, Lieutier and Salinas
- Efficient data structure for representing and simplifying simplicial complexes in high dimension,
 SoCG 2011, Attali, Lieuter and Salinas
- Efficient and robust persistent homology for measures, SoDA 2015, Buchet, Chazal, Oudot and Sheehy
- Geometric inference for probability measures, JFoCM 2011, Chazal, Cohen-Steiner and Mérigot
- Graph induced complex on point data, SoCG 2013, Dey, Fan and Wang
- Topological inference from measures, PhD dissertation, Buchet, 2014
- Witmessed k-distance,
 DCG 2013, Guibas, Mérigot and Morozov