Connectivity of sparsified random geometric graphs

Nicolas Broutin, Inria

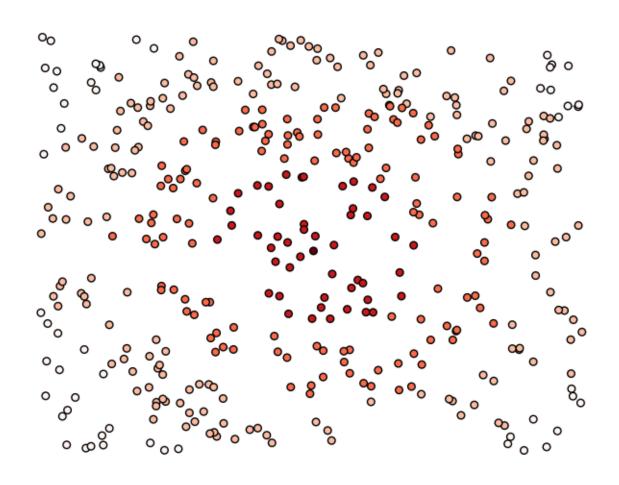
joint work with

Luc Devroye, McGill

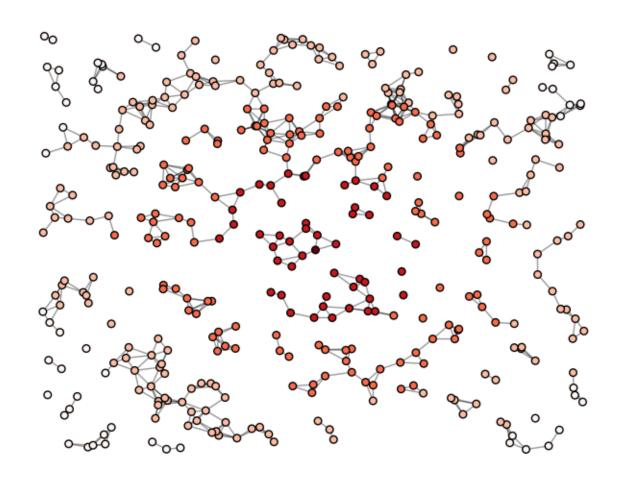
Gábor Lugosi, ICREA and Pompeu Fabra

$$G(n,r)$$
 $N = \mathsf{Poisson}(n)$ uniform points in $\mathcal{D} \subseteq \mathbb{R}^d$ $i \sim j$ iif $\|X_i - X_j\| < r$

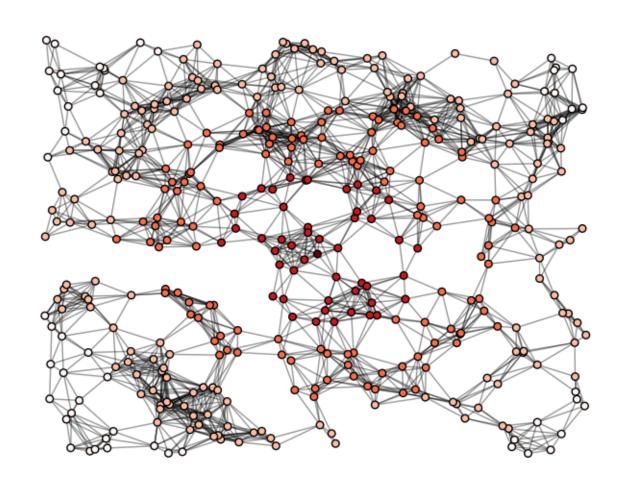
$$G(n,r)$$
 $N = \mathsf{Poisson}(n)$ uniform points in $\mathcal{D} \subseteq \mathbb{R}^d$ $i \sim j$ iif $\|X_i - X_j\| < r$



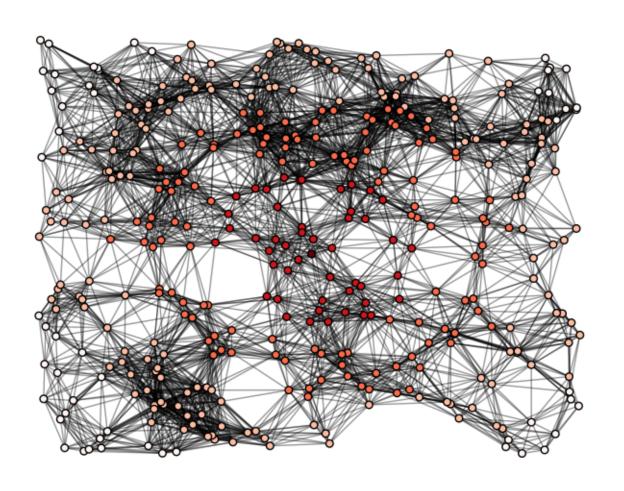
G(n,r) $N = \mathsf{Poisson}(n)$ uniform points in $\mathcal{D} \subseteq \mathbb{R}^d$ $i \sim j$ iif $\|X_i - X_j\| < r$



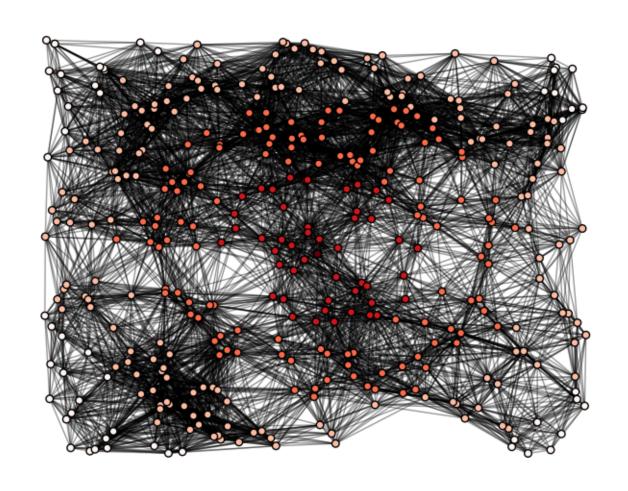
$$G(n,r)$$
 $N = \mathsf{Poisson}(n)$ uniform points in $\mathcal{D} \subseteq \mathbb{R}^d$ $i \sim j$ iif $\|X_i - X_j\| < r$



$$G(n,r)$$
 $N = \mathsf{Poisson}(n)$ uniform points in $\mathcal{D} \subseteq \mathbb{R}^d$ $i \sim j$ iif $\|X_i - X_j\| < r$



$$G(n,r)$$
 $N = \mathsf{Poisson}(n)$ uniform points in $\mathcal{D} \subseteq \mathbb{R}^d$ $i \sim j$ iif $\|X_i - X_j\| < r$



Connectivity of random geometric graphs

Theorem. ϑ_d the volume of the unit ball in \mathbb{R}^d

$$r_n^\star$$
 such that $\vartheta_d n(r_n^\star)^d = \log n$

For any $\epsilon \in (0,1)$

$$\lim_{n \to \infty} \mathbf{P}\left(G(n, r_n) \text{ is connected}\right) = \begin{cases} 0 & \text{if } r_n \le (1 - \epsilon)r_n^{\star} \\ 1 & \text{if } r_n \ge (1 + \epsilon)r_n^{\star} \end{cases}$$

G(n,r) gets connected when average degree is $\Theta(\log n)$

idea: sparsify the graph

in a distributed way

while ensuring connected

irrigation graphs $S_n(r,c)$

every point "sees" his neighbours in G(n,r)

every point keeps c neighbours chosen at random

G(n,r) gets connected when average degree is $\Theta(\log n)$

idea: sparsify the graph

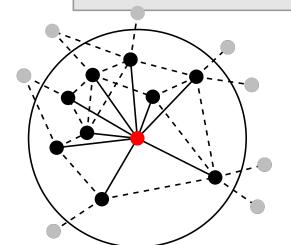
in a distributed way

while ensuring connected

irrigation graphs $S_n(r,c)$

every point "sees" his neighbours in G(n,r)

every point keeps c neighbours chosen at random



G(n,r) gets connected when average degree is $\Theta(\log n)$

idea: sparsify the graph

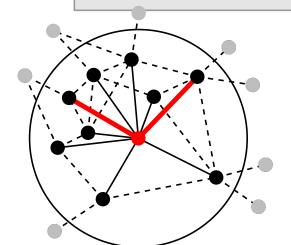
in a distributed way

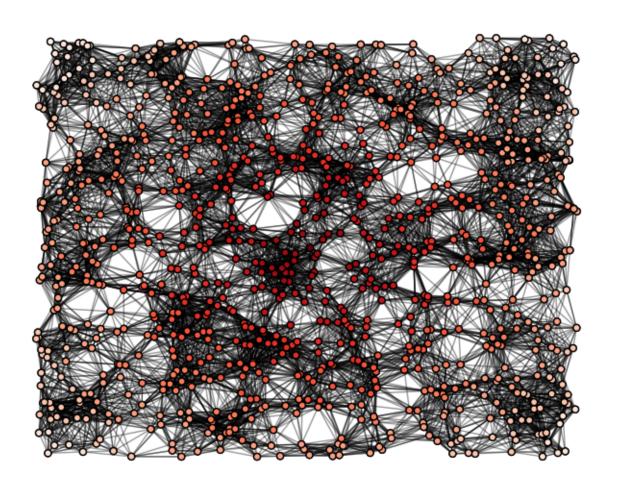
while ensuring connected

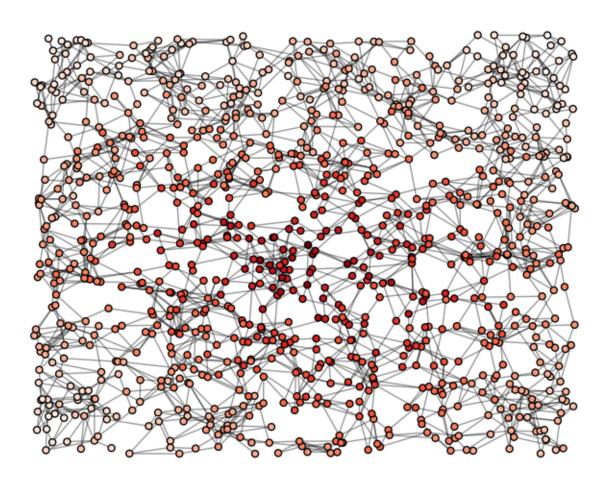
irrigation graphs $S_n(r,c)$

every point "sees" his neighbours in G(n,r)

every point keeps c neighbours chosen at random







History and results

Previous results:

Dubhashi, Johansson, Häggström, Panconesi, and Sozio

$$r = \Theta(1) \implies S_n(r,2)$$
 is connected whp

Crescenzi, Nocentini, Pietracaprina, Pucci

$$d = 2 \quad r > \sqrt{\log n/n} \\ c > \gamma_2 \log(1/r) \Rightarrow \qquad S_n(r,c) \text{ is connected whp}$$

History and results

Previous results:

Dubhashi, Johansson, Häggström, Panconesi, and Sozio

$$r = \Theta(1) \implies S_n(r,2)$$
 is connected whp

but G(n,r) is then an expander!

Crescenzi, Nocentini, Pietracaprina, Pucci

$$d = 2 \quad r > \sqrt{\log n/n} \\ c > \gamma_2 \log(1/r) \Rightarrow \qquad S_n(r,c) \text{ is connected whp}$$

but for $r < n^{-\epsilon}$, $c = \Theta(\log n)!$

Connectivity for small visibility radius

Theorem. (B-Devroye-Lugosi-Fraiman) $\mathcal{D} = [0,1]^d$

Suppose γ large enough

Set

$$r \sim \gamma \left(\frac{\log n}{n}\right)^{1/d}$$
 and $c_n^{\star} = \sqrt{\frac{2\log n}{\log\log n}}$

Then, for any $\epsilon \in (0,1)$

$$\lim_{n \to \infty} \mathbf{P}\left(S_n(r_n, c_n) \text{ is connected}\right) = \begin{cases} 0 & \text{if } c_n \le (1 - \epsilon)c_n^{\star} \\ 1 & \text{if } c_n \ge (1 + \epsilon)c_n^{\star} \end{cases}$$

Connectivity for large visibility radius

Take

$$r_n \sim \gamma n^{-(1-\delta)/d}$$
 with $\delta \in (0,1)$

Theorem. There exists a constant $c = c(\delta)$ such that

$$\lim_{n\to\infty} \mathbf{P}\left(S_n(r_n,c) \text{ is connected}\right) = 1$$

Theorem. Define:

$$\underline{c^{\star}}(\delta) := \sup \left\{ c : \lim_{n \to \infty} \mathbf{P}\left(S_n(r_n, c) \text{ is connected}\right) = 0 \right\}$$

$$\overline{c^{\star}}(\delta) := \inf \left\{ c : \lim_{n \to \infty} \mathbf{P}\left(S_n(r_n, c) \text{ is connected}\right) = 1 \right\}$$

Then, for any $\epsilon \in (0,1)$ and δ small enough,

$$(1 - \epsilon)\delta^{-1/2} \le c^*(\delta) \le (1 + \epsilon)\delta^{-1/2}$$

Giant component

Refined model: (d = 2)

 $(\xi_i)_{i\geq 1}$ i.i.d. copies of a random variable $\xi\geq 1$

Every node i chooses ξ_i neighbours

 $\mathscr{C}_1(\cdot)$ the size of the largest connected component

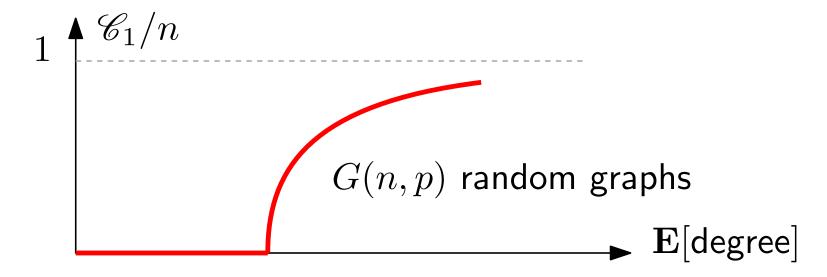
Theorem. Suppose $\mathbf{E}\left[\xi\right] > 1$. For every $\delta \in (0,1)$, there exists a $\gamma > 0$ such that, for $r_n \geq \gamma \sqrt{n^{-1}\log n}$

$$\lim_{n \to \infty} \mathbf{P}\left(\mathscr{C}_1(S_n(r_n, \xi)) \ge (1 - \delta)n\right) = 1$$

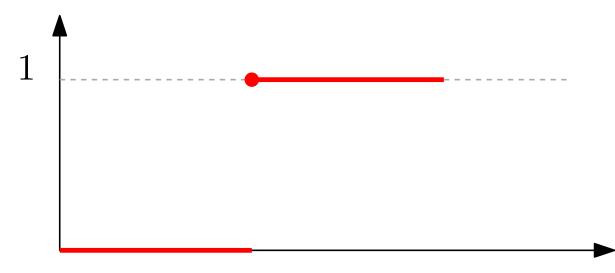
Theorem. Suppose $r_n = o((n \log n)^{-1/3})$. Then $\forall \delta > 0$ $\lim \mathbf{P}(\mathscr{C}_1(S_n(r_n, 1)) \geq \delta n) = 0$

"Explosive" phase transition

Usually: phase transition is continuous



Here: as discontinuous as it can be...



Intuition from the mean-field model

Assume $r_n = \infty$

Theorem. (Fenner-Frieze '82)

$$\lim_{n\to\infty} \mathbf{P}\left(S_n(\infty,2) \text{ is connected}\right) = 1$$

Theorem. There exists a constant $\delta > 0$ such that

$$\lim_{n\to\infty} \mathbf{P}\left(\mathscr{C}_1(S_n(\infty,1)) \ge \delta n\right) > 0$$

Intuition from the mean-field model

Assume $r_n = \infty$

Theorem. (Fenner-Frieze '82)

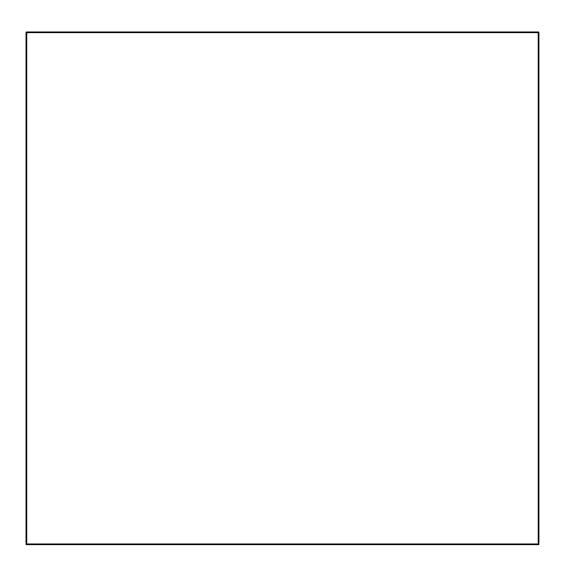
$$\lim_{n\to\infty} \mathbf{P}\left(S_n(\infty,2) \text{ is connected}\right) = 1$$

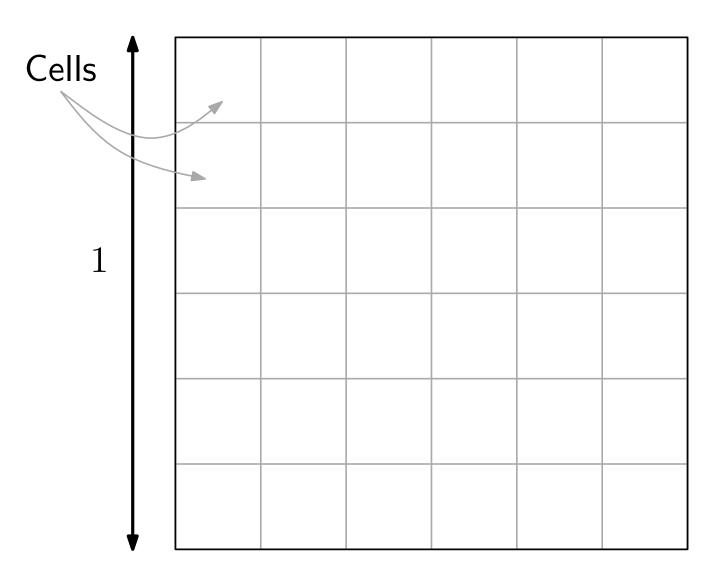
Theorem. There exists a constant $\delta > 0$ such that

$$\lim_{n\to\infty} \mathbf{P}\left(\mathscr{C}_1(S_n(\infty,1)) \ge \delta n\right) > 0$$

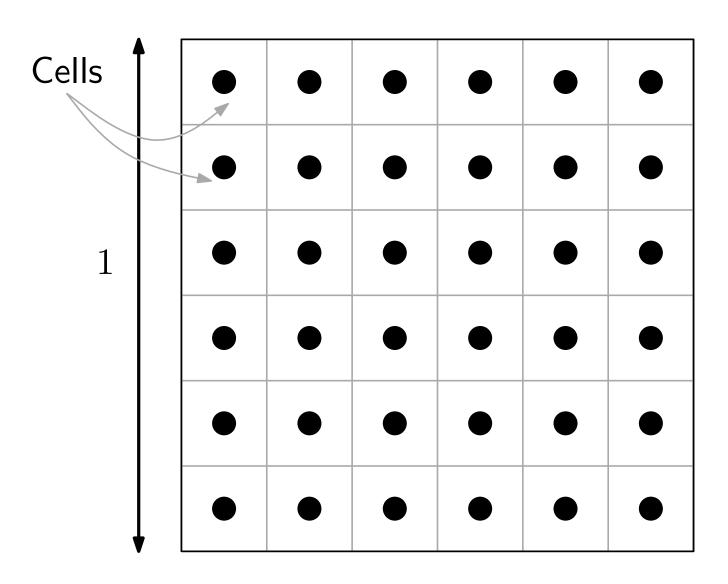
Idea: $S_n(\infty, 1)$ is a random mapping

 $S_n(\infty,2)$ is the union of 2 random mappings

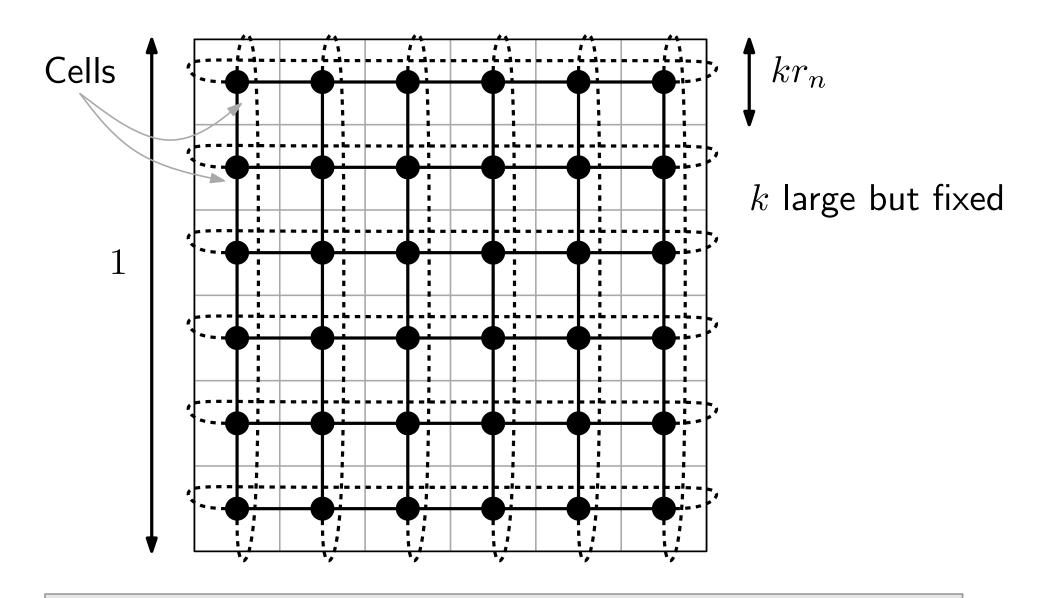




k large but fixed



k large but fixed



Associate: events to nodes/cells events to bonds/faces percolation

Uniformity of the point set

Definition. A cell is δ -good if for all boxes B

$$(1 - \delta) \frac{nr_n^2}{4d^2} \le |B \cap \mathbf{X}| \le (1 + \delta) \frac{nr_n^2}{4d^2}$$

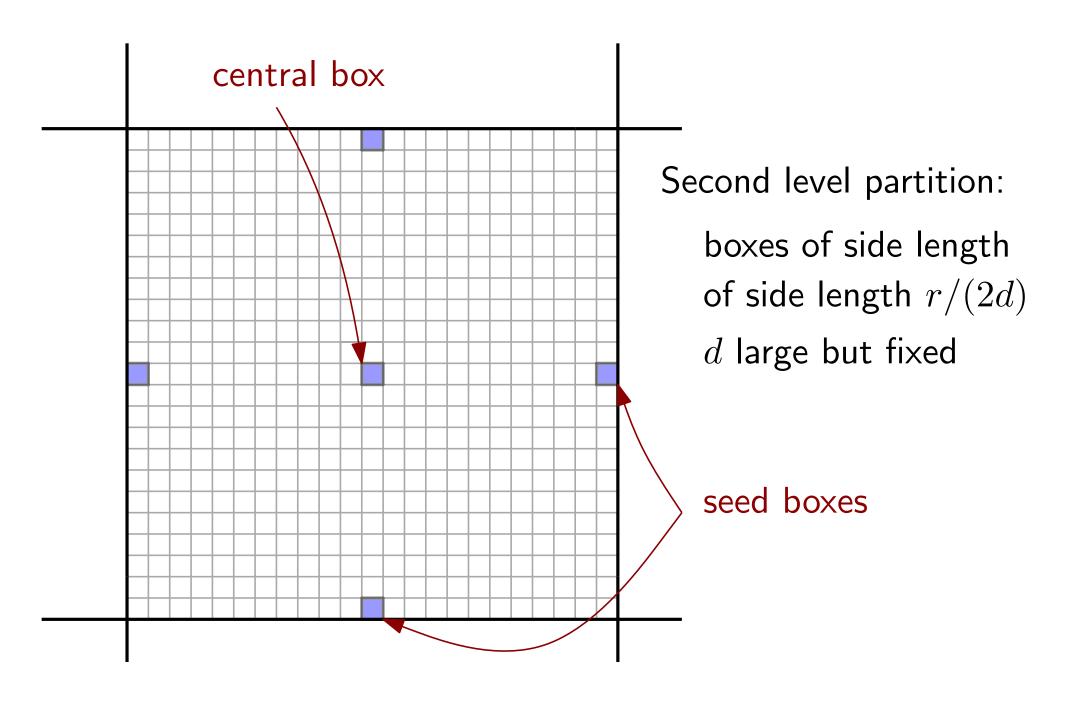
Lemma. Suppose $r_n \ge \gamma \sqrt{\log n/n}$. For any $\delta > 0$, there exists $\gamma_0 > 0$ such that if $\gamma > \gamma_0$

 $\lim_{n\to\infty} \mathbf{P} \text{ (every cell is } \delta\text{-good)} = 1$

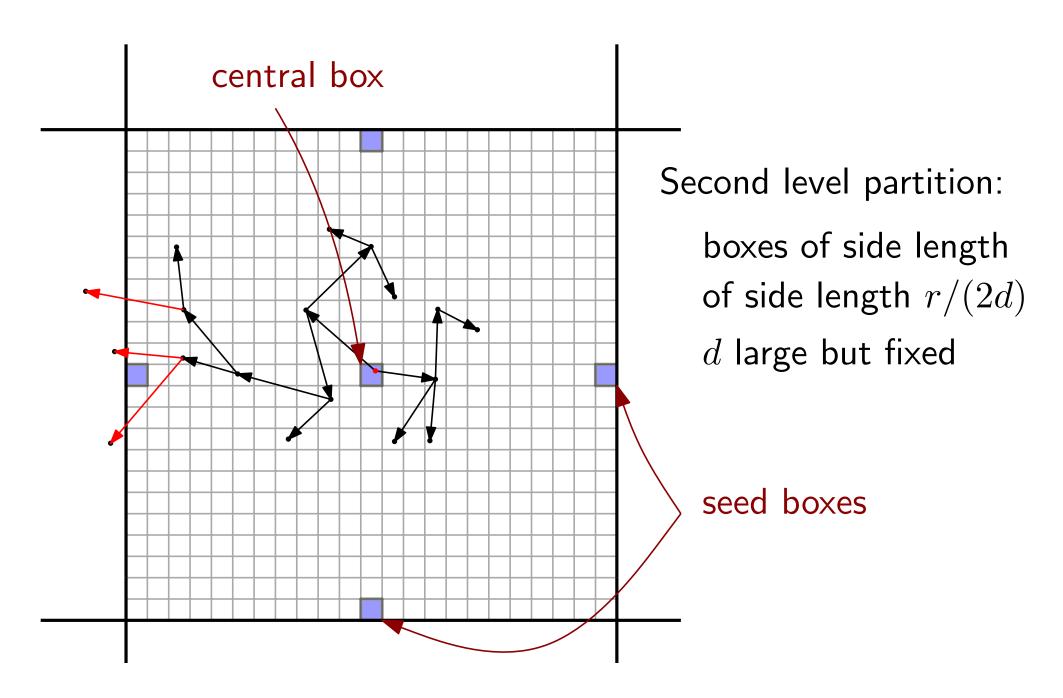
Lemma. $\exists \alpha, \beta > 0$ such that

$$\lim_{n \to \infty} \mathbf{P} \left(\forall x : \alpha n r_n^2 \le |B(x, r_n) \cap \mathbf{X}| \le \beta n r_n^2 \right) = 1$$

Node/Cell events



Node/Cell events



Node events II

Exploration: in a given cell Start from a point $x \in \mathbf{X}$ in the central box Explore the neighborhoods for k^2 generations Kill the paths that leave the cell

Define:

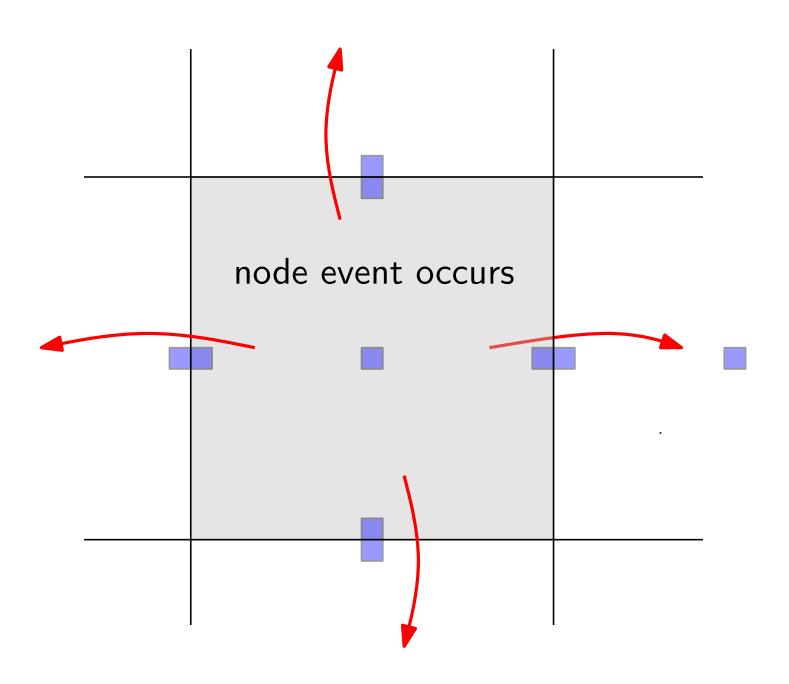
 $\Delta_x(i)$ the collection of points at generation i

$$G_x = \{ \forall \text{ box } B, |\Delta_x(k^2) \cap B| \ge \mathbf{E}\left[\xi\right]^{k^2/2} \}$$

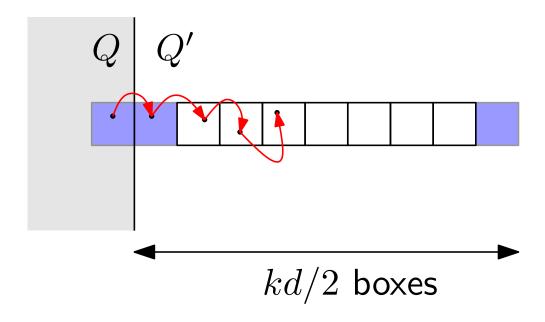
Lemma. $\forall \eta > 0$, can choose all the constants such that for all n large

$$\mathbf{P}(G_x \mid \mathbf{X}, \delta\text{-good}) \geq 1 - \eta$$

Link events



Link events II



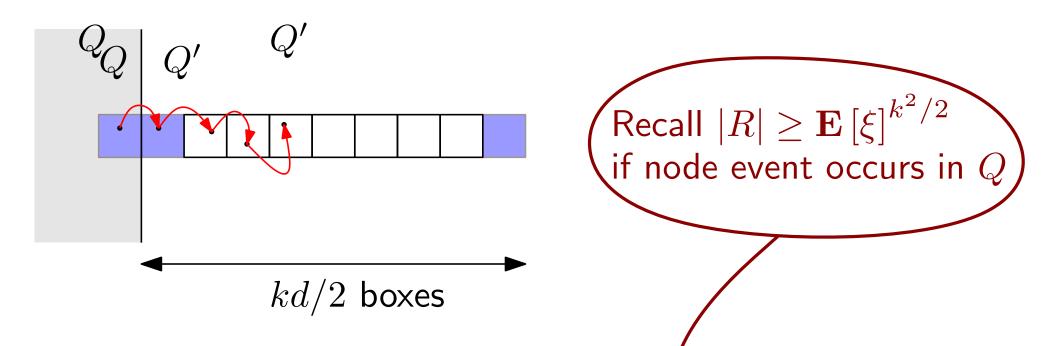
 $J_x(Q,Q')$ the sequence of first neighbors of x reaches the central box in a ladder fashion

 $J_R = \cap_{x \in R} J_x$, with R the population of the seed box in Q

Lemma.

$$\mathbf{P}(J_R(Q, Q') \mid \mathbf{X}, R) \ge 1 - \exp\left(\frac{|R|}{(10\beta d^2)^{kd}}\right)$$

Link events II

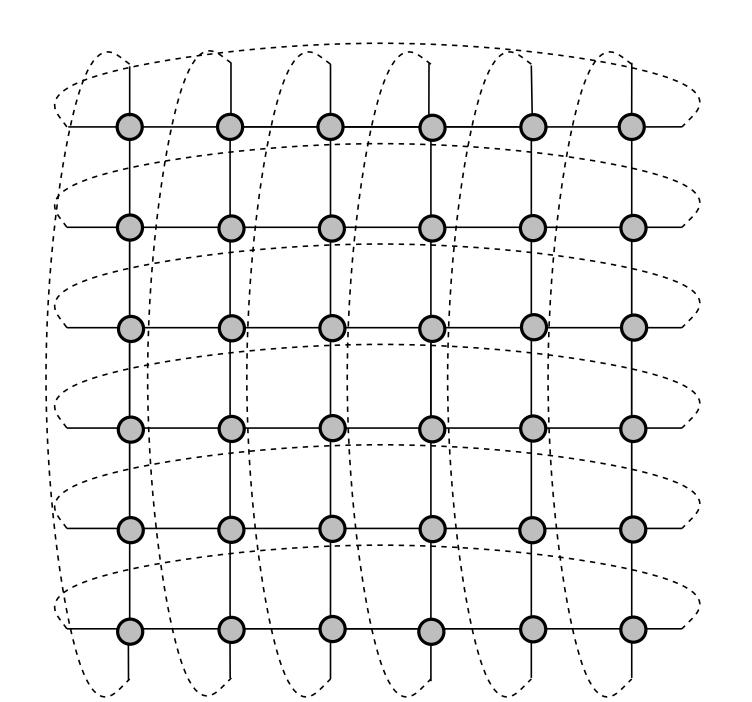


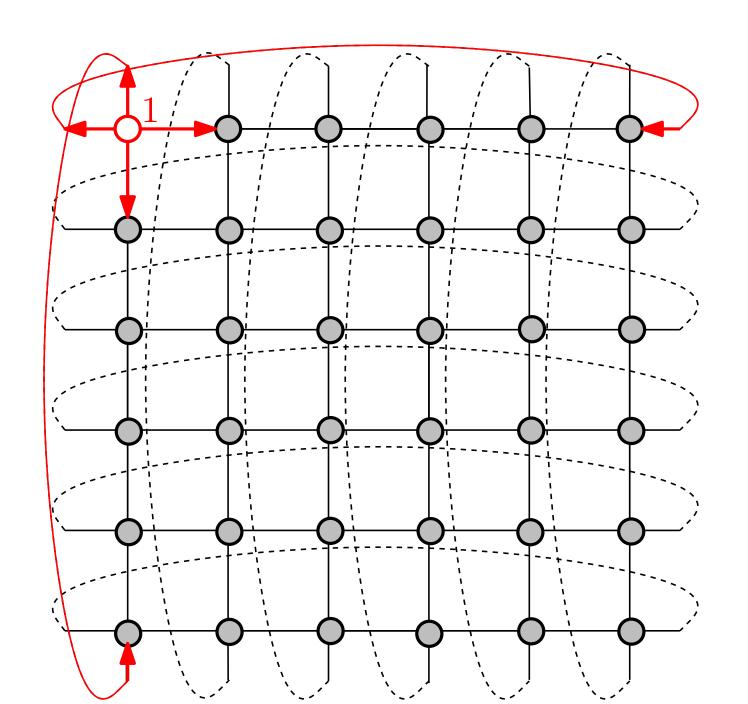
 $J_x(Q,Q')$ the sequence of first neighbors of x reaches the central box in a ladder fashion

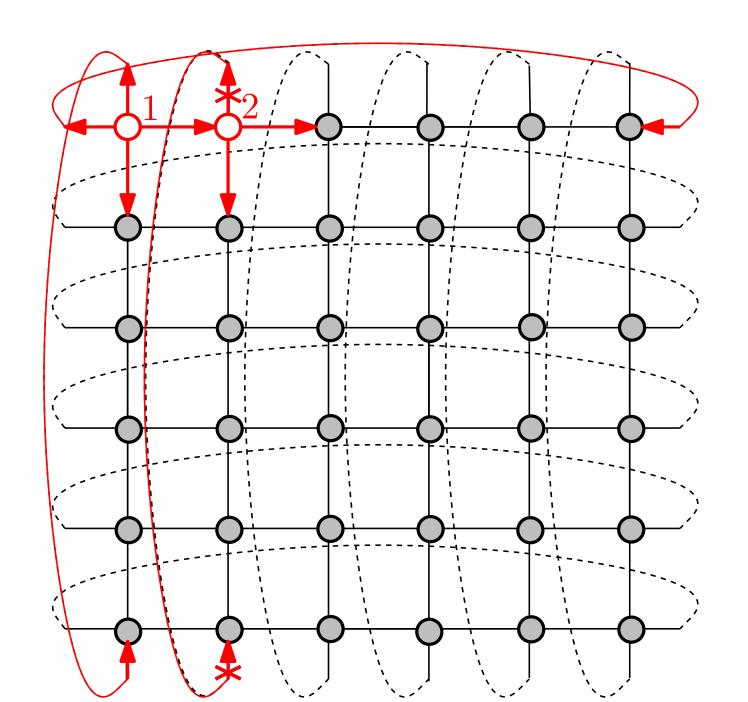
 $J_R = \cap_{x \in R} J_x$, with R the population of the seed box in Q

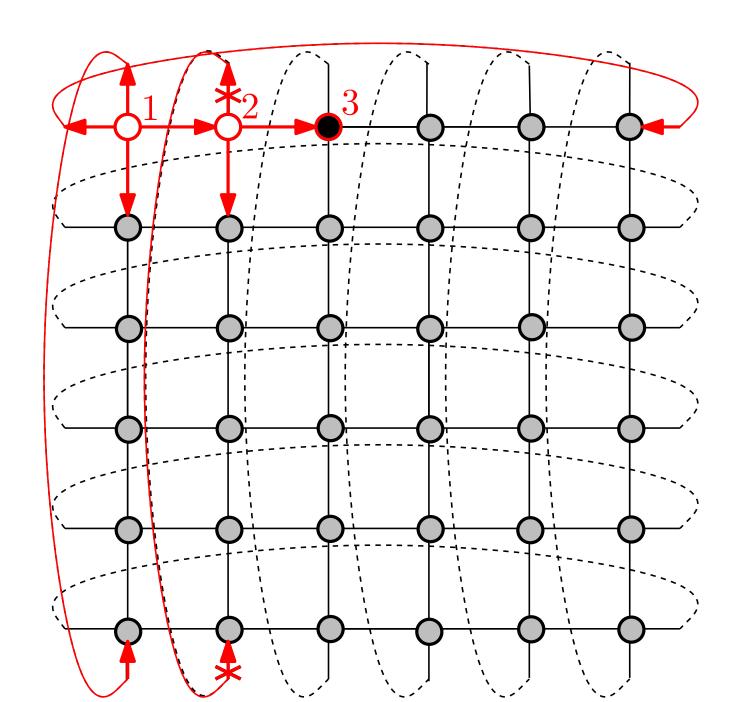
Lemma.

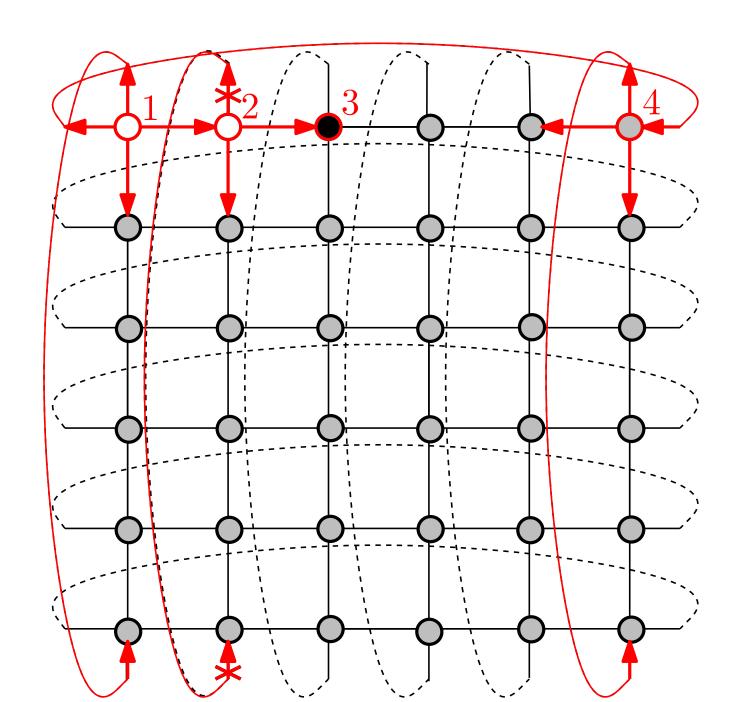
$$\mathbf{P}(J_R(Q, Q') \mid \mathbf{X}, R) \ge 1 - \exp\left(\frac{|R|}{(10\beta d^2)^{kd}}\right)$$

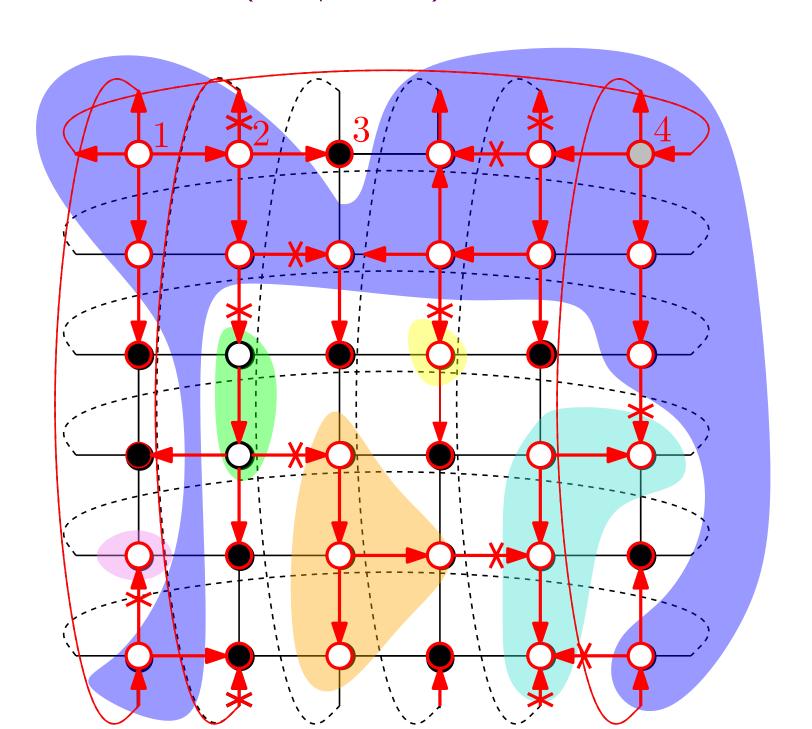


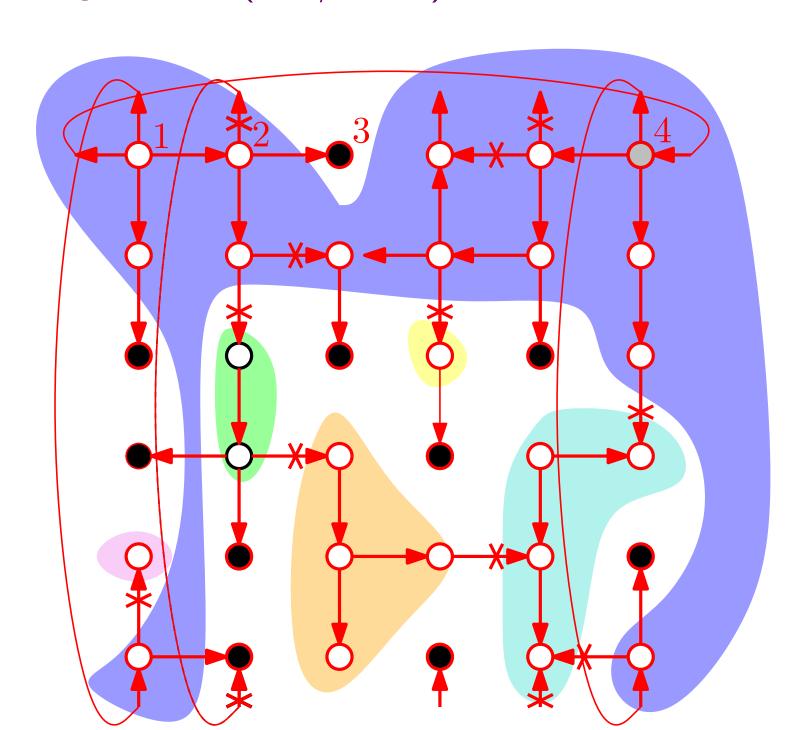












```
percolation process = random configuration, where each edge open with probability p_e and independently!
```

Definition of the coupling:

- 1. Exploration of clusters \Longrightarrow partial percolation process on torus $[m] \times [m]$
- 2. For unassigned values: complete with i.i.d. Bernoulli

Observation. If H is a cluster of cells in the percolation process, then, there is a connected component of $S_n(r_n, \xi)$ which "sees" every single point of S

Cluster built is ubiquitous but too sparse!

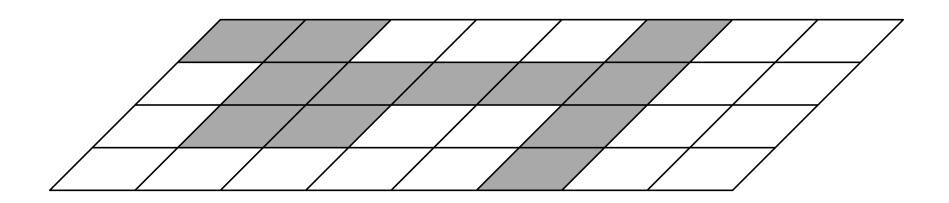
Lemma. For any
$$\epsilon > 0$$

$$\lim_{n \to \infty} \mathbf{P} \left(\exists H : |H| \ge (1 - \epsilon) m^2 \right) = 1$$

Problems:

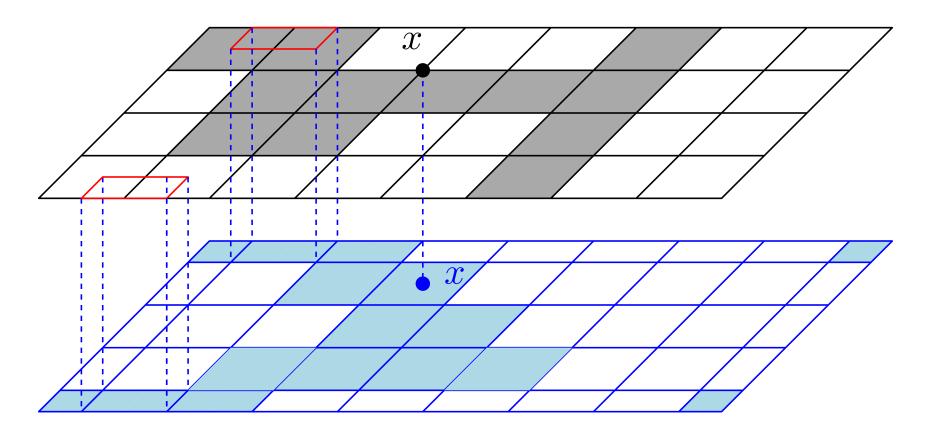
- 1) in $S_n(r_n, \xi)$ only constant number of points per cell so only $O(m^2) = O(n/\log n)$ nodes in total !
- 2) close points do not connect locally !
 - ullet after ℓ generations about $\mathbf{E}\left[\xi\right]^{\ell}$ points
 - ullet need $\ell = \log \log n$ to have a proportion in a cell
 - but these $\Omega(\log n)$ are spread at distance $\Omega(\sqrt{\log \log n})$

Finale: gathering the remaining points



Finale: gathering the remaining points

Consider $x \in \mathbf{X}$: make its box central in the discretization



Cells may not be aligned, but boxes are aligned

Hooking up left over points

Observations.

- 1) $\mathbf{P}(x \text{ in second giant}) \geq 1 \epsilon$
- 2) the two giants overlap on $(1-2\epsilon)$ proportion of the boxes $\Rightarrow \Omega(n/\log n)$ such boxes

The too giants are bound to hook up!

in each of the overlapping boxes: about $\mathbf{E}\left[\xi\right]^{k^2/2}$ points whose neighbors have not yet been chosen!

P (one node fails to hook) $\leq (1 - O(1/\log n))$

P (all node fail to hook) = $(1 - \Omega(1/\log n))^{n/\log n} = e^{-\Omega(n)}$