
GEOMGRAPHS: Algorithms and Combinatorics of Geometric
Graphs

MPRI 2025-2026

Arnaud de Mesmay

These are the lecture notes for my half of the course GEOMGRAPHS. The other half is
taught by Luca Castelli Aleardi and the slides and exercise sheets for his half are available on
the course’s webpage.

Some practicalities:

• The course is on Thursdays, from 8:45 to 11:45, in Sophie Germain room 1002.

• There is an exercise session in the middle of each lecture, after the half-time break.

• The class will be graded with a final written exam.

• There will be two optional exercise sheets, with points contributing extra credits for the
final grade.

This aim of this course is to provide an overview of the combiantorial, geometric and al-
gorithmic properties of embedded graphs: we start with planar graphs and then move on
to surface-embedded graphs. These are graphs that can be drawn without crossings in the
plane or on more complicated surfaces, see Figure 1. Therefore they form a combinatorial
object with a topological constraint. The objective of the course is to explore how topology
interacts with combinatorics and algorithms on this very natural class of objects. Some
questions we will explore are:

1. What are the combinatorial consequences of being planar? Are there combinatorial char-
acterizations?

2. How to test algorithmically whether a graph is planar? If yes, how to draw the graph?

3. Can one exploit planarity to design better algorithms for planar graphs than for general
graphs?

4. How do the previous answers generalize to graphs embedded in these more complicated
surfaces?

5. How to solve certain topological questions algorithmically on surfaces?

While the focus of the course stays very theoretical (e.g., mostly with a theorem, lemma,
proof structure), embedded graphs are of great interest for the practically-oriented mind, as
they appear everywhere, for example in road networks (where underpasses and bridges can be
modeled using additional topological features), chip design or the meshes that are ubiquitous
in computer graphics or computer aided design. In all these applications, there is a strong need

1

Figure 1: Graphs embedded in the plane, the torus, and the three-holed torus.

for a theoretical understanding of embedded graphs, as well as algorithmic primitives related
to their topological features. Additionally, embedded graphs are an important lens to study
graphs in general, since any graph can be embedded on some surface. This is especially the case
in graph minor theory, where embedded graphs play an absolutely central role (but we barely
touch on this topic).

The class is taught alternatively by Luca and myself: his class focuses on combinatorial
aspects and graph-drawing questions, while my half covers some algorithmic questions and
topological aspects of surface-embedded graphs.

These lecture notes follow quite closely the material taught in my half of the class. This
is actually their point, as in my experience lecture notes with too much content can easily get
overwhelming (especially when one misses a class). Thus we refrain from (too many) digressions
and heavy references. The tone aims to be conversational. I will do my best however to add
each week the missing details for the proofs which may have been a bit handwavy during the
lectures. The content has a strong overlap with the lecture notes of a previous iteration of the
class (by Éric Colin de Verdière), and with those for a course on Computational Topology I
co-taught with Francis Lazarus in 2016-2018, and we refer to, and strongly recommend those
for the missing digressions and references.

Instead of the standard list of references at the end, in these notes I directly provide hyper-
links to some relevant papers, but alas, this does not work too well if you print the notes.

2

http://monge.univ-mlv.fr/~colinde/cours/all-algo-embedded-graphs.pdf
http://monge.univ-mlv.fr/~colinde/cours/all-algo-embedded-graphs.pdf
http://monge.univ-mlv.fr/~demesma/FullLectureNotes.pdf

1 Planar Graphs

1.1 A partial recap of the first lecture

A planar graph is a graph that can be embedded, i.e., drawn without crossings, in the plane,
or equivalently the sphere. Throughout this course, it is quite important that we allow graphs to
have multiple edges and loops, which is handled seamlessly by the previous definition. A graph
without multiple edges nor loops is called a simple graph . A plane graph is an embedding
of a planar graph, and two plane graphs are considered equivalent if there is a homeomorphism
of the plane sending one to the other one (or intuitively, if one can continuously deform one
into the other without adding crossings). Note that a planar graph can correspond to multiple
different plane graphs: think for example of a graph with a single vertex and multiple loops.

Compared to just a general graph, a plane graph has an additional combinatorial structure:
there are now faces, which are the connected components of the complement R2 \ G. This
additional structure interacts with the initial graph in multiple ways:

• The Euler characteristic stipulates that for any connected plane graph, we have v −
e+ f = 2, where v, e and f are respectively the number of vertices, edges and faces.

• This implies that planar graphs are sparse : for v ≥ 3, e ≤ 3v− 6 (and in general e ≤ 3v.
So planar graphs are very particular compared to general graphs.

• To any plane graph G we can associate a dual graph G∗, whose vertices are the faces of
G and whose edges connect adjacent faces of G (with multiplicity and loops if needed).
Note that the dual of a simple graph is in general not simple, and that the dual of graph
depends on the embedding.

• The combinatorial data of the faces is actually all that is needed to encode a plane graph.
There are various data structures one can use to do that. In these notes, we will simply
consider that we have such a data structure that allows us to do “intuitive” operations in
the natural time: for example moving from an edge incident to a vertex to the next edge
in the circular order in constant time, or listing the k edges adjacent to a face in time
O(k), etc.

All of the properties of planar and plane graphs boil down to “intuitive” (but hard to prove)
topological properties of the plane: the Jordan curve theorem shows that any simple (i.e.,
non self-intersecting) closed curve in the plane separates it into two components, one bounded
and one unbounded. The Jordan Schoenflies theorem shows that the bounded component
is homeomorphic to a disk. These theorems are hard to prove because simple closed curves in
the plane can be very complicated, as pictured in Figure 2. If one restricts our attention, say,
to polygonal curves, then the proofs become much easier. This leaves us with two alternatives
for the class: either we define all our graphs to have edges as polygonal segments, and then all
the intuitive facts are easy to prove (there is such a proof for the Jordan curve theorem in my
older lecture notes), or we take the general definition and then trust these hard theorems that
everything works. I leave you to choose your preferred option.

In particular, all the bounded faces of a connected plane graph are (homeomorphic to) a
disk. We say that such a graph is cellularly embedded (this definition is quite useless for
plane graphs but will become useful on other surfaces). We will see later on that the failure of
such nice topological properties for more complicated surfaces leads to interesting topological
questions.

3

https://monge.univ-mlv.fr/~demesma/FullLectureNotes.pdf
https://monge.univ-mlv.fr/~demesma/FullLectureNotes.pdf

Figure 2: Three simple closed curves in the plane

We also recall the famous theorem of Kuratowski, which will not be proved in this class (nor
in Luca’s) (you can find a proof in my older lecture notes).

Theorem 1.1 (Kuratowski, 1929). A graph is planar if and only if it does not contain a
subdivision of K5 or K3,3 as a subgraph.

Finally, the Fàry theorem shows that every plane graph can be realized with edges drawn
as straight lines. This is proved in Luca’s half as a corollary of the Tutte embedding theorem
(there are also easier direct proofs).

1.2 Coloring

The sparsity has the following nice implication. A k-(vertex) coloring of a simple graph is an
assignment of k colors to the vertices so that no two adjacent vertices share a common color.

Proposition 1.2. Simple planar graphs are 6-colorable.

Proof. We prove the result by induction on the number of vertices. For low values, this is
immediate. For the induction step, pick a vertex z of degree less than 6 which exists because
of the sparsity, and color inductively G \ z. Then the five neighbors have at most 5 different
colors, and we can color z with one of the remaining colors.

The following improvement is on the exercise sheet, and relies on more than just the Euler
characteristic and the sparsity.

Exercise 1.3. Prove that simple planar graphs are 5-colorable. Hint: look at paths connecting
non-adjacent neighbors of a degree 5 vertex.

As is well-known, planar graphs are actually 4-colorable, and we will not prove this in the
course.

1.3 The crossing lemma

A drawing of a graph if just a continuous map f : G → R2, that is, a drawing of the graph on
the plane where crossings are allowed. We will only consider drawings in general position :
that means that vertices must be mapped to distinct points, edges do not intersect vertices
except at their endpoints, edges only intersect transversely and at most two edges intersect at
each point. Note that such a drawing in general position induces a plane graph, where every
crossing has been replaced by a vertex of degree 4. As we said earlier, via Fàry’s theorem, such
a plane graph can be assumed to have its edges realized as straight lines. So without loss of

4

https://monge.univ-mlv.fr/~demesma/FullLectureNotes.pdf

generality, we can and we will assume that this is the case in all our drawings: this implies that
all the edges are drawn as polygonal segments (which may bend at crossings).

The crossing number cr(G) of a graph is the minimal number of crossings over all the
possible drawings in general position of G. For instance, cr(G) = 0 if and only if G is planar.
The crossing number inequality provides the following lower bound on the crossing number.

Theorem 1.4. cr(G) ≥ |E|3
64|V |2 if |E| ≥ 4|V |.

The proof is a surprising application of (basic) probabilistic tools. There is a nice and much
more indepth discussion of this proof available on Terry Tao’s blog.

Proof. Starting with a drawing of G with the minimal number of crossings, define a new graph
G′ obtained by removing one edge for each crossing. This graph is planar since we removed all
the crossings, and it has at least |E| − cr(G) edges, so we obtain that |E| − cr(G) ≤ 3|V | (Note
that we removed the -6 to obtain an inequality valid for any number of vertices). This gives in
turn

cr(G) ≥ |E| − 3|V |.

This can be amplified in the following way. Starting from G, define another graph by
removing vertices (and the edges adjacent to them) at random with some probability 1−p < 1,
and denote by G′′ the resulting graph. Taking the previous inequality with expectations, we
obtain E(cr(G′′)) ≥ E(|E′′|) − 3E(|V ′′|). Since vertices are removed with probability 1 − p, we
have E(|V ′′|) = p|V |. An edge survives if and only if both its endpoints survives, so E(|E′′|) =
p2|E|. Finally a crossing survives if an only if the four adjacent vertices survive1. The resulting
drawing might not be crossing-minimal but it does imply that E(cr(G′′) ≤ p4cr(G), which is
the inequality we will need. So we obtain

cr(G) ≥ p−2|E| − 3p−3|V |,

and taking p = 4|V |/|E| (which is less than 1 if |E| ≥ 4|V |) gives the result.

In particular, applying this inequality to dense graphs, and in particular to complete graphs
Kn shows that any drawing of the complete graph Kn has Ω(n4) crossings. Finding the correct
constants is notoriously difficult though, even for that very specific-looking case of complete
graphs: the Hill conjecture posits that

cr(Kn) =
1

4
⌊n
2
⌋⌊n− 1

2
⌋⌊n− 2

2
⌋⌊n− 3

2
⌋ ∼ 1

64
n4,

but the best known lower bound is quite far off2, at about cr(Kn) ≥ 0.985 1
64n

4 for sufficiently
large n. Likewise, the correct constant is unknown for complete bipartite graphs, and in general
there are tons of simple-looking open problems on crossing numbers (see this exhaustive survey
by Marcus Schaefer).

1There may be less than four adjacent vertices in general, but not in the drawing minimizing the crossing
number, since drawings where there is a crossing forming an α shape can be simplified by removing one crossing.
So in a crossing-minimal drawing, they do not happen
2Note that the fact that 1/64 also appears in Theorem 1.4 is a red herring: the number of edges in a complete

graph is
(
n
2

)
, so a blind application of the crossing lemma only gives cr(Kn) ≥ 1

64·23 n
4.

5

https://terrytao.wordpress.com/2007/09/18/the-crossing-number-inequality/
https://www.combinatorics.org/DS21
https://www.combinatorics.org/DS21

1.4 The Hanani-Tutte theorem

Another interesting result of planar drawings is the following surprising (to me at least) theorem.
Two edges of a graph are independent if they are not incident to a common vertex.

Theorem 1.5 (Strong Hanani-Tutte theorem, 1934). Any drawing in general position of a
non-planar graph contains two independent edges that cross an odd number of times.

Conversely, if one can draw a graph so that all independent edges cross an even number of
times, then the graph is planar (!)

Proof. We first claim that it suffices to prove the theorem for K5 and K3,3. Indeed, let G be
a non-planar graph. By Kuratowski’s theorem, it contains a subdivision of K5 or K3,3. If the
theorem is proved for K5 and K3,3, then we can find a pair of disjoint paths in our graph G that
cross an odd number of times. This means that there exists a pair of independent edges that
cross an odd number of times. Indeed, otherwise, summing all the even number of crossings
among all pairs of edges in the pair of paths would give an even number of crossings for the
pair of paths.

In order to prove the theorem for K5 and K3,3, we prove the stronger result that in any
drawing of these two graphs, the sum of the number of crossings over all independent pairs of
edges is odd. The reason is that this quantity mod 2 does not actually depend on the drawing:

Claim 1.6. For G = K5 or K3,3 and any two drawings G1 and G2 in general position of the
graph G, the quantity ∑

e,e′

independent edges

cr(e, e′) mod 2

is the same.

Proof. We first describe a general way to deform any G1 into any G2, and then prove that the
target quantity is invariant throughout this deformation.

As we said earlier, we can assume that in the drawings G1 and G2, the edges are polygonal
segments. We first move the vertices of G1 one by one so that they coincide with the respectives
vertices of G2. This can be done by choosing, for every vertex v in G, a polyogonal path pv
between its position v1 in G1 and its position v2 in G2. This path can clearly be chosen so that
it avoids vertices of G1 and G2 and so that it intersects their edges transversely and outside of
existing crossings. Then we move v1 along p, dragging all the incident edges along the way, as
pictured in Figure 3, top.

In a second step, we inductively straigthen the edges in G1 and in G2: we focus on G1, the
case of G2 being identical. Each edge of G1 is a polygonal path e = (q1, . . . , qk), where the points
qi and qi+1 are connected with straight segments. We can straighten such a polygonal path by
replacing the triangle q1, q2, q3 by the straight segment q1q3: this is done by moving one tip of
the triangle to the opposite edge. Here again, one can do so along a path that avoids all the
vertices of G1 and G2 and intersects their edges transversely and outside of existing crossings,
see Figure 3, middle.. We then go on inductively so that every edge in G1 is a straight line
between its endpoints, and likewise in G2. Since the vertices coincide, the drawings are now
identical.

Let us now analyze how the crossings evolve as we do these deformations. By our choice
of deformation paths, such evolutions only happen at discrete moments: in the first step this
will be when a vertex passes through an edge (Figure 3, (a)), and in the second step this will
be when a point qi crosses an edge (Figure 3, (b)), when one of the two incident straight lines

6

v1

v2

pv

v1

v2

pv

q1

q2

q3

p
q1

q2
q3

p

(a) (b) (c)

(d) (e)

Figure 3: Deforming drawings.

passes through a vertex or a crossing (Figure 3, (c) and (d)), or when two edges switch their
order around a vertex (Figure 3, (e)). Note that outside of these discrete events, the crossings
do not change: actually the homeomorphism class of the drawing (viewed as a plane graph)
does not change. Also note that the events of type (b), (d) and (e) do change the drawing but
do not change the parity of crossings of independent edges.

There remains events (a) and (c) which both feature, in slightly different ways, a vertex v
passing through an edge e. If v is incident to e , the changes in crossings only involve non-
independent edges and are thus irrelevant to our count. If G = K3,3, the degree of every vertex
is 3, but for any vertex v not incident to e, exactly two of the edges incident to v are independent
with e (look at Figure 4). So the count of independent crossings changes by 2, an even amount.
If G = K5, every vertex v in K5 has degree exactly four, and for any fixed e not incident to v,
exactly two of the edges incident to v are independent with e (look again at Figure 4). So here
again the count of independent crossings changes by 2, an even amount. ⌟

We conclude the proof by exhbiting drawings of K5 and K3,3 where this sum is odd, as done
in Figure 4 (note that the proof implies that any drawing will work).

This theorem and its proof provide a polynomial-time algorithm to test whether a graph
is planar. It is not as efficient as other more standard approaches, but is simple conceptually
and, with a lot of work, can be generalized to higher dimensions. Let G be a graph of which

7

Figure 4: The graphs K5 and K3,3.

e

v

Figure 5: A finger move for a pair p = (e, v).

we want to test planarity. Let us consider the vector space S over the field with 2 elements F2

whose basis consists of pairs of independent edges (e, f) in G.

1. Start with any drawing of the graph G. Write down the vector x(D) ∈ S of the number
of crossings mod 2 of independent edges.

2. For every pair p = (v, e) in the graph G, define a vector u(p) =
∑

f incident to v(f, e) ∈ S:
it contains a 1 for each pair of edges (f, e) such that f is incident to e, and 0 otherwise.

3. Denote by U the subspace spanned by the family u(p). Test whether x(D) belongs to U .
If yes, output that the graph is planar, otherwise, output that it is not planar.

Lemma 1.7. This algorithm is correct and has polynomial complexity.

Proof. The reason why this algorithm is correct follows from (the proof of) Theorem 1.5. Indeed,
starting from any drawing D of G, one can change its vector x(D) by exactly u(p) by applying
a finger move (see Figure 5) from the edge e around the vertex p. If x(D) belongs to U ,
there exists a sequence of finger moves that brings the vector of crossings x(D) to zero mod 2.
Then by Theorem 1.5, the graph is planar. Conversely, if the graph is planar, starting from
any drawing we can deform it similarly to the proof of Theorem 1.5 until there are no crossings
remaining, and this morphing gives a sequence of finger moves, and thus a family of vectors
u(p) showing that x(D) belongs to U .

The third step can be solved by Gaussian elimination in cubic time (or there are faster
algorithms, even more so since the underlying field is F2). Since S has size O(|E|2) = O(|V |2)
(if the graph is not sparse, we can reject it straight away), this yields a complexity O(|V |6).

For the algebraic-minded reader, this algorithm actually amounts to computing an obstruc-
tion class in the equivariant cohomology of the deleted product (ask me in class if you are
interested about what these words mean).

1.5 Efficient algorithms for planar graphs

Many algorithmic problems can be solved faster when the input graph is planar. This includes
some problems which are NP-hard in general but can be solved in polynomial time in the planar

8

case: for example Max-Cut, (uniform) Sparsest Cut, Feedback arc set, or computing
the Branch-width of a graph. Similarly, testing for Graph Isomorphism is (probably) not
NP-hard but no polynomial-time algorithm is known in general, while it can be solved efficiently
on planar graphs (take a look at Exercise 3 in the Exercise Sheet accompanying Lecture 4). We
will not study any of those (choices have to be made). Instead, we will look at a few problems
where planarity allows for faster and conceptually simpler algorithms than in the general case.
At the risk of overly simplifying things, there are in my opinion three main reasons as to why
planar graphs tend to be easier to handle algorithmically than general graphs. The first reason
is sparsity, which has strong combinatorial and algorithmic consequences, as we have seen earlier
for colouring problems. The second reason is duality : sometimes a problem that is not easy to
solve in the primal graph becomes much easier to solve in the dual graph. Sometimes juggling
between both the primal and the dual setting allows to make good progress. The third reason
is the existence of small separators, which will be proved in Lucas’s half, and which allows
for efficient divide and conquer approaches for a lot of problems. Famously, a clever use of
(iterated) small separators yields the following theorem, showing that shortest paths, which are
arguably the most important algorithmic primitive, can be computed in linear time on planar
graphs. This is to be compared with Dijkstra’s algorithm which runs in time O(n log n) in
sparse graphs. (But note that for unweighted graphs, a breadth-first search tree from a vertex
is a shortest path tree, so in that case, we can also compute shortest paths in time O(n)).

Theorem 1.8 (Henzinger, Klein, Rao, Subramanian 1997). On an edge-weighted planar graph,
a shortest path tree from any given vertex can be computed in linear time.

1.5.1 Minimum spanning trees

Let G be a graph with a weight function w : E → R+. A minimum spanning tree of a
graph G = (V,E) is a tree T = (V,E′) with E′ ⊆ E that spans all the vertices of G (this was
actually already implied by the notations of the vertices) and such that it has minimal total
weight

∑
e∈E′ w(e) among all the spanning trees. Computing a minimum spanning tree is a

fundamental primitive in algorithm design, and also an important practical problem in its own
right: think about an electric company wanting to wire all the houses in a neighborhood at a
minimal cost. For general graphs with n vertices and m edges, classical algorithms (e.g., Prim’s
or Kruskal’s) run in time O(m log n) (note that in the sparse case, m = O(n), but this is still
not linear). Using some very fancy data structures, one can do better, but there is no known
deterministic algorithm running in linear time.

In contrast, for planar graphs, one can compute a minimum spanning tree very easily in
linear time. The key is the use of duality:

Theorem 1.9. If G is a planar graph with n vertices, one can compute a minimum spanning
tree in time O(n).

We start with exploring how spanning trees interact with duality, as illustrated in Figure 6.

Lemma 1.10. Let G be a planar graph and G∗ be its dual graph. Then if T = (V,E′) and
E′ ⊆ E is a spanning tree, then T ∗ = (F ∗, (E \E′)∗) is also a spanning tree, called the co-tree.
If one is minimal, the other is maximal.

Proof. If T is a spanning tree, it does not contain any cycle, which happens if and only if its
complement R2 \E′ is connected, by the Jordan curve theorem. But R2 \E′ is connected if and
only if T ∗ is connected. Indeed, any two points in R2 \ E′ are in faces of G, and thus can be
connected without crossing edges of E′ if and only if those faces can be connected in the dual

9

https://monge.univ-mlv.fr/~demesma/Exercises2.pdf

Figure 6: A spanning tree and the spanning co-tree. These are sometimes called interdigitat-
ing trees.

graph where one removed the edges dual to those of E′. Since T and T ′ are both connected,
they are both acyclic and thus are both trees. If one of them, say T , is minimal, then T ∗ is
maximal, since otherwise one could increase the weight of T ∗ which would mechanically decrease
the weight of T .

Observe that when we contract an edge in a graph, the corresponding edge in the dual graph
gets removed, and vice-versa.

The following is an easy consequence of Euler’s formula.

Lemma 1.11. In a planar graph G, there is either a vertex of degree at most 3, or a face of
degree at most 3.

Proof. Assume otherwise. Then we can double count edges in two different ways and get
4v ≤ 2e, and 4f ≤ 2e. Then v − e+ f ≤ 0 contradicting Euler’s formula.

We now have all the tools to describe our algorithm.

Proof of Theorem 1.9. The algorithm is based on alternating actions between the primal and
the dual graph. We initialize the set of edges E′ that we pick at the empty set, and:

• Let v be a vertex of the graph G. If v is only surrounded by loops, then the solution is
the trivial empty tree. Otherwise, at least one non-loop edge is adjacent to v. Among all
these non-loop edges, one of minimal weight e necessarily belongs to the minimal spanning
tree: otherwise, one could add it and remove another edge. So we can take it, add it to
E′ and recurse on G/e.

• Let f be a face of the graph G, and thus a vertex of the dual graph G∗. If all the
edges adjacent to f in G∗ are loops, then G∗ has a single face, thus G is a tree, and the
spanning tree is G itself. Otherwise, the dual of an edge e of maximal weight incident to

10

f necessarily belongs to the maximal spanning co-tree, and thus e does not belong to the
minimum spanning tree. So we can recurse on G \ e.

Each of these two actions removes an edge in one way or another from the graph that we
consider, so the number of recursions is O(n). For each of the two actions, the cost of finding
which edge to contract or remove is of the order of the degree of the vertex or the face that we
consider. So if we always pick a vertex or an edge of degree at most 3 (provided by Lemma 1.11),
this will take constant time. Note that contracting (respectively removing) an edge adjacent to a
vertex (respectively a face) of constant degree means updating O(1) flags in the representation,
so the recursive call can be made in constant time.

So there remains to explain how to find the vertex or face of low degree provided by
Lemma 1.11 in constant time. We will amortize this search, i.e., we will prove that the to-
tal time spent looking for these is O(n), and thus it is O(1) in average per round. In order to
do that, we first compute a list L containing all the vertices and the faces of degree 3 of the
initial graph. This takes linear time by traversing both the primal and the dual. The list L
will be updated throughout the algorithm so that it always contains the list of vertices or faces
that may have degree at most 3. When contracting or removing an edge, the degree of the four
adjacent vertices and faces can change, so we add them all to the list L. Since there are O(n)
iterations, this process adds O(n) elements to the list L throughout the algorithm.

Now, whenever we want to take an action, we look at the first element of the list L. If it
does not exist anymore, or if it has degree more than 3, we remove it from the list, and continue.
By Lemma 1.11, we always end up finding a vertex or a face. Since O(n) vertices and faces were
added to the list, we remove O(n) of those throughout the algorithm. So in total, the search
procedure takes O(n) time, which proves our amortized complexity and finishes the proof of the
algorithm.

Note that this algorithm crucially relies on the fact that we work with non-simple graphs
(even if the initial graph is simple, it becomes non-simple after contractions). This is why we
rely on Lemma 1.11 and duality and not merely sparsity.

1.6 Minimum cut

Our second foray into algorithms for planar graphs concerns the computation of a minimum
cut: given two vertices s and t, called terminals, on a planar graph G = (V,E), we want to
compute the minimum set of edges X so that removing X from E separates s and t.

Theorem 1.12. Let G = (V,E) be a connected edge-weighted planar graph, and s and t be two
distinct vertices of G. Then the problem of computing a minimum s− t-cut of G can be solved
in O(n log2 n) time, and even O(n log n) time if one uses Theorem 1.8.

The basic idea of an efficient algorithm for min-cut on planar graphs is to look at it through
the lens of duality: a cut on the primal graph separating s and t dualizes to a cycle in the dual
graph separating the faces dual to s and t.

Proposition 1.13. X ⊆ E is an (s, t)-cut in G if and only if X∗ contains the edge set of some
cycle of G∗ separating s and t.

This proposition is considered obvious pretty much anywhere, but we will prove it, if only
to emphasize that it does not hold on other surfaces (as usual, we will use the Jordan curve
theorem).

11

Proof. The reverse direction is straightforward: if X∗ contains a cycle of G∗ separating s and
t, then any path in G between s and t must cross this cycle, and thus X is an (s, t)-cut.

For the forward direction, we take X an (s, t)-cut in G, and choose C to be an inclusionwise
minimal subset of X that is also an (s, t)-cut in G. We show that C∗ is a cycle separating s
and t. By minimality of C, each vertex of G can be connected to either s or t without taking
edges of C, and the two cases are exclusive. We label vertices with “S” or “T” depending on
which one they are connected to. Moreover, for any edge in C, its two endpoints cannot have
the same label, and for any other edge, its endpoints have the same label. So if we look at a
face f of G adjacent to an edge of C, the labels on the facial walk on the face alternate only
when the edge is in C, and thus there is an even number of edges of C adjacent to f . So C∗ is
an Eulerian subgraph of G∗, that is, a subgraph where each vertex has even degree. Pick any
cycle in that subgraph. By the Jordan curve theorem, it is separating, and since the faces on
each side of each edge are labelled “S” and “T”, it separates s and t. By minimality, C∗ is that
cycle.

This proposition transforms a combinatorial problem into a topological one, namely, finding
in the dual graph the shortest cycle enclosing a given face and not another given one. Even
more topologically, if we remove the faces s∗ and t∗ from the dual graph, we obtain a surface
homeomorphic to an annulus, and we look for the shortest cycle that goes around this annulus.
However, this runs into an interesting technical issue: is s∗ and t∗ are adjacent, then removing
s∗ and t∗ does not actually yield an annulus. Morally, this should not pose a problem: we just
want to add an infinitesimally small buffer between s∗ and t∗ and we will be fine. One way to
do this is to enlarge a tiny bit the set of curves that we look at. When working on the primal
graph, we generally work with walks on the primal graph. When working on the dual graph,
we work with walks on the dual graph, which correspond by duality to closed curves that are
in general position with respect to G, i.e., they do not meet the vertices of G and cross the
edges of G transversely. So our solution is to directly work in this setting of curves in general
position with respect to G. The length of such a curve is defined to be the number of edges of
G that it crosses. Note that this is a bit more general than just looking at walks on the dual
graph: now we can define a pair of small curves in general position around s and t that are
disjoint, even if s and t are adjacent in G. Yet from an algorithmic perspective, all the curves
in general position can be pushed on the dual graph in a way that does not change the length,
so any computation, for example shortest paths, can be made in the dual graph. In this new
setting, Proposition 1.13 becomes:

Proposition 1.14. Let γ be a simple closed curve in general position with respect to G, that
separates s from t and that has minimal length among all such curves. Then the set of edges
crossed by γ is a minimum (s, t)-cut in G.

Recall that a simple closed curve on a sphere is an injective map γ : S1 → S2..

Proof. Any path connecting s to t in G crosses γ, thus the set of edges crossed by γ is an
(s, t)-cut. Conversely, a minimum (s, t)-cut dualizes to a cycle in G∗ separating s and t, which
corresponds to a simple closed curve γ in general position with respect to G, that separates s
from t.

Now, we remove a small disk around s and t, getting an annulus A, and a portion of the
graph G embedded on this annulus as in Figure 7. How do we compute a shortest closed curve
that goes around the annulus A? We can fix one point on each boundary, and compute a
shortest path between these two points, and call it p. Then we show that some shortest closed
curve does not cross p more than once, and thus can be found by a shortest path computation.

12

t

s
p

A

v0 v1

Figure 7: The annulus obtained after removing a small disk around s and t.

Lemma 1.15. Some shortest closed curve separating the two boundaries of A is simple and
crosses p exactly once.

Proof. This is illustrated in the left of Figure 8. Let γ be such a curve. If we cut A along p, we
obtain a topological disk B, where the path p got cut into two paths p′ and p′′ on the boundary.
The curve γ, once cut on B, contains a simple path q connecting p′ to p′′, otherwise γ would
not separate s from t. Now we reglue B along p, and connect the two endpoints q1 and q2 of q
by running parallel to p. We obtain a closed curve that is simple, crosses p exactly once and is
no longer than γ since γ was connecting q1 to q2 as well.

From this we get a naive quadratic algorithm. We compute the shortest path p, which has
some length k. We pick points v0, . . . , vk on this path such that the subpath [vi, vi+1] has length
one. Then, cutting along p, each vertex vi gets duplicated into v′i and v′′i , and we compute all
shortest paths between each v′i and v

′′
i . Following all the lemmas, one of them is the dual of a

minimal cut. Since shortest paths in the dual graph can be computed in time O(n log n), this
takes O(n2 log n) time.

We can speed this up doing some divide-and-conquering.

Lemma 1.16. Let (x, y, z) be points on p, appearing in this order. When cutting A along p,
these get duplicated into (x′, y′, z′) and (x′′, y′′, z′′). If γx and γz are disjoint shortest paths
between x′ and x′′, respectively z′ and z′′, then some shortest path between y and y′ does not
cross γx nor γz.

Proof. This is illustrated in the right of Figure 8. Say that γy crosses γx, then it crosses it in
at least two points. Let a and b be the first and the last crossing points when going from y′

to y′′. Then we can replace whatever γy was doing between a and b with the subpath of γx
between a and b (or more precisely, some shortest paths infinitesimally close to it). Since γx is

13

p p

x′
y′
z′

x′′
y′′
z′′

x′
y′
z′

x′′
y′′
z′′

Figure 8: The two shortcutting arguments of Lemma 1.15 and Lemma 1.16.

a shortest path, the new curve is at most as along as γy. Doing the same for the crossings with
γz concludes the proof.

This suggest the following recursive approach. Having computed our shortest path p of
length k between the two boundaries of A, if k > 2,

1. we pick a vertex v := v⌊k/2⌋, cut along p and compute on B a shortest path p between the
two vertices v′ and v′′ corresponding to v,

2. we reglue B into A, and the shortest path p is a simple closed curve γ. We cut A along γ
and get two annuli A1 and A2.

3. we recurse on A1 and A2 and output the shortest of the two solutions.

We stop the recursion when we reach one of the following two base cases for the recursion:
(1) when k ≤ 2, we can compute the shortest closed curve by brute forcing the problem in O(n)
time as in the quadratic algorithm, and (2) if there exists a face adjacent to both boundaries,
we can compute a shortest cycle going through that face directly in time O(n log n).

Here again, this algorithm would be quite a bit more annoying to describe purely in the dual
graph, as the shortest path p might be following the boundary of an annulus, and thus when
cutting along γ in step 2 we do not obtain annuli. This can be dealt with by appropriately
subdividing in the correct places, which, when thinking about it, is exactly what this algorithm
does – but I believe that the description using curves in general position is more transparent
(this “cross-metric” perspective is directly taken from Éric Colin de Verdière’s notes).

To conclude the proof of the theorem, we establish the correctness and the complexity
analysis:

Proof of Theorem 1.12. The algorithm terminates in O(log n) recursion levels since the length
of the path p in the recursive calls shrinks by a half at each recursive call. The correctness
follows from Proposition 1.14, Lemmas 1.15 and 1.16, since they prove that some minimal cut
will be dual to the shortest cycle that our recursive calls will find.

The proof of correctness is not as immediate as one could expect, as recursive calls share a
lot of structure with their parent: for example it looks like the same edge of G might be cut
several times by the shortest paths in the recursion, and thus appear in several of the annuli.
But note that if an edge e is cut into subedges e1, . . . , eℓ, then in all the recursive calls involving
the annulus between ei and ei+1, the recursion stops directly, since there is a face adjacent to
both sides of the annulus. Therefore, only e1 and eℓ actually lead to recursive subcalls, and
thus at each level of the recursion, throughout all branches of the recursion tree, each edge only
appears a constant number of times.

Therefore, at each level of the recursion, the annulus A is cut into k subannuli A1 ∪ . . .∪Ak

of total complexity O(n), and thus solving the shortest path computations in all of them takes
O(n log n) time (because the map x 7→ x log x is concave).

14

https://monge.univ-mlv.fr/~colinde/cours/all-algo-embedded-graphs.pdf

Each computation in steps 1 and 2 of the algorithm takes time linear in the complexity of
the annulus at this stage. There are O(log n) levels, and by the previous observations, each
them costs O(n log n) time in total, so the total complexity is O(n log2 n). Using linear-time
shortest paths, this improve to O(n log n).

2 Surfaces

We now turn our attention to other topological spaces of dimension 2, and the graphs embedded
thereon.

2.1 Definition and classification

A surface is a topological space locally homeomorphic to the plane, i.e., every point has an
open neighborhood homeomorphic to R2. In this course, we restrict our attention to compact
and connected surfaces. Behind this very wide-looking definition, there are actually only a few
(yet infinitely many) different surfaces, and their classification is the topic of this subsection.
Examples of surfaces are the sphere, the torus, and the projective plane, see Figure 9. As before,
we consider spaces up to homeomorphism. It turns out that these are exhaustive in the sense
that all the other surfaces can be built by gluing those together.

Figure 9: A sphere, a torus, a Klein bottle, and a projective plane (in the last one, the right
boundary is identified to the left boundary in the direction indicated by the arrow).

In the first chapter, we saw how a connected graph embedded on the plane naturally cuts
the plane into disks. Similarly, we will investigate and classify surfaces by the graphs embedded
on them. The definition is the same as in the planar case: a graph G = (V,E) is embeddable
on a surface S if there exists an injective map f : G → S, i.e., G can be drawn without crossings
on S. A graph is cellularly embedded if every connected component of S \G is homeomorphic
to an open disk.

Theorem 2.1 (Kerékjártó-Radó). On any compact connected surface, there exists a cellularly
embedded graph.

Start of a proof. By definition of a surface, every point has an open neighborhood homeomor-
phic to the plane, or an open two-dimensional disk. By compactness, we can extract a finite
covering out of this collection of open sets. Their boundaries form a family of simple closed
curves embedded on the surface. If they cross finitely many times, the interiors of their inter-
sections can be seen to be bounded by simple closed curves, and thus, by the Jordan-Schoenflies
theorem (which applies in the small neighborhoods since they are homeomorphic to the plane),
they bound disks. Hence we have cut the surface into disks, and we win. If they cross infinitely
many times, we can tinker with them to reduce to the case of finite crossings.

15

This is more subtle than it appears: this sketch can be made correct in two and three
dimensions (see for example this mathoverflow thread), but not in higher dimensions, as there
are example of higher dimensional manifolds that can not be triangulated (a higher dimensional
analogue of our cutting into disks).

While we are not proving theorems, let us add the following one. A triangulation is a
cellularly embedded graph where every face has degree 3. A refinement of a triangulation is
obtained by either subdividing a face (adding a vertex in that face and edges adjacent to each
vertex incident to that face), or an edge (adding a vertex on an edge and edges adjacent to each
non-adjacent vertex in the two incident faces).

Theorem 2.2. Any two triangulations of a surface have a common refinement.

The same not-a-proof (does not) work(s): overlay the two triangulations, if they have a
finite number of intersections, we are done. Otherwise, we tinker things. Once again, this is
quickly not true in higher dimensions.

For the reader disappointed in these two omissions (and I understand them), one alternate
way to view this is that we are only looking at surfaces that are defined as disks glued together
in a finite way, with two surfaces being isomorphic if they have a common refinement (this can
be taken as a definition). Then the two omitted proofs show that we obtain the same surfaces
as with the more topological definition, but if we are content within the purely combinatorial
world, we do not need this equivalence.

We describe a graph cellularly embedded on a surface via polygonal schemata , which
encodes the way that the disks are glued together. Starting from a cellularly embedded graph,
we first name the edges and orient them in an arbitrary way. Each facial walk induces a word
(considered up to cyclic permutation), where an edge e taken in the reverse direction is denoted
by ē or e−1. Each such facial walk is called a relation . The polygonal scheme is the data of
all these facial walks. Reciprocally, if one is given a collection of words where each letter of
the alphabet appears exactly twice, one can interpret those as disks glued to each other, which
together form a surface.

With Theorem 2.1 in hand, we are now ready to classify surfaces:

Theorem 2.3. Every compact connected surface is homeomorphic to one of the surfaces given
by one of the following polygonal schemata, each made of a single relation:

1. aā (the sphere),

2. a1b1ā1b̄1 . . . agbgāgbg for some g ≥ 1,

3. a1a1 . . . agag for some g ≥ 1.

The surfaces of the first and second category are called orientable , those of the third
category are non-orientable . The integer g is the genus of the surfaces. The second case
corresponds to g tori glued together (this is called a connected sum), or equivalently, a sphere
to which we have glued g handles. The third case corresponds to g projective planes glued
together, or equivalently, to a sphere with g disks removed on which we have glued g Möbius
bands. See Figure 10, and Figure 11 for the polygonal schemata depicted on the surfaces.
Many non-trivial homeomorphisms are hidden behind this apparently simple classification, and
it almost equally simple proof: for example, the theorem implies that the connected sum of two
projective planes is homeomorphic to a Klein bottle, and that the connected sum of a torus and
a projective plane is homeomorphic to the connected sum of three projective planes.

16

https://mathoverflow.net/questions/17578/triangulating-surfaces

Figure 10: Attaching handles or Möbius bands to a sphere.

=

=

Figure 11: Polygonal schemata of the orientable and non-orientable surfaces. In the non-
orientable cases, X denotes a disk on which a Möbius band has been glued.

17

Proof. Let S be a compact connected surface, and let G be a graph embedded on S, which
exists by Theorem 2.1. We iteratively remove each edge adjacent to two different face, until
there is just a single face. For each edge adjacent to two different vertices, we contract it, and
keep the multiple edges or loops that might result, until there is just a single vertex. We now
have a graph with a single vertex and a single face embedded on S. If there are no more edges,
by uncontracting once we obtain a sphere as in case 1. of the theorem. Thus there is at least
one edge.

The single face induces a polygonal scheme with a single relation. The rest of the proof aims
at transforming this single relation into one of the two forms of Theorem 2.3 via cut-and-paste
operations:

a a

P

Q

a a

P

Q

b
a

P

Qb

b

Figure 12: From aPaQ to bbPQ̄.

a a

b

b

aa c

b

b

aa

c

c

a a

c

c

a

d
d

c

c

d

P Q

RS

P Q

RS

P

S R
Q

S

P

R
Q

PSRQ

Figure 13: From aPbQāRb̄S to cdc̄d̄PSRQ.

a

a

b c

b

c a

a

b c

d b

c d

c b

a

d
b

c

Figure 14: From aabcb̄c̄ to d̄c̄b̄d̄b̄c̄.

• If the polygonal scheme has the form aPaQ where P and Q are possibly empty words,
then we can transform it into bbPQ̄ by adding a new edge and removing a, see Figure 12.
Inductively, we conclude that each pair of symbols with the same orientation appears
consecutively in the polygonal scheme.

• If the polygonal scheme has the form aUāV , then U and V must share an edge b since
otherwise G′ would have more than one vertex. By the preceding step, b must appear in

18

opposite orientations in U and V , so we have the form aUāV = aPbQāRb̄S. This can
be transformed into dcd̄c̄PSRQ, as pictured in Figure 13. Inductively, at the end of this
step the relation is a concatenation of blocks of the form aa or abāb̄. If all the blocks are
of one of these types, we are in case 2 or 3 and we are done.

• Otherwise, the relation has a subword of the form aabcb̄c̄. This can be transformed into
d̄c̄b̄d̄b̄c̄, as in Figure 14, and then using the first step again this can be transformed into
eeffgg. Inductively, we obtain a relation of the form 3.

This concludes the proof.

During the class I had written in the statement of the theorem that the possibilities were
exclusive (i.e., that these surfaces are all pairwise non-homeomorphic) but here I prefer to prove
it separately, because the Euler characteristic deserves better than being hidden inside a proof.
The Euler characteristic of a surface S is defined to be v − e+ f , where v, e and f are the
numbers of vertices, edges and faces of a cellularly embedded graph on S. The fact that this
actually does not depend on the graph is the object of the following proposition:

Proposition 2.4. For any graph G cellularly embedded on S with v vertices, e edges and f
faces, the value v − e+ f is the same.

It is tempting to prove this using Theorem 2.3: any cellularly embedded graph can be
transformed to one of the three graphs stipulated by the theorem, in a way that does not
change the Euler characteristic. But to conclude, we need to prove that two different outputs
of the theorem are not homeomorphic, which we have not done yet.

Proof. We pick two graphs cellularly embedded on S. We add edges until they are both tri-
angulations, which can easily be seen not to change the Euler characteristic. By Theorem 2.2,
they have a common refinement. The proof follows from the fact that subdividing edges or faces
does not changes the Euler characteristic.

A look at the graphs corresponding to the cases 1, 2 and 3 of Theorem 2.3 shows that the
sphere has Euler characteristic 2 (which should not come as a surprise after the first chapter),
the orientable surface of genus g has Euler characteristic 2− 2g, and the non-orientable surface
of genus g has Euler characteristic 2− g.

Proposition 2.5. A surface is orientable if and only if for any cellularly embedded graph G,
the boundaries of the faces can be oriented so that each edge appears in opposite directions in
the two adjacent faces.

Proof. First note that the property of the proposition is invariant under cut and pasting, as
well as edge or face subdivision. Since the polygonal scheme of orientable surfaces satisfies the
proposition, this proves the first implication. For the reverse implication, it suffices to observe
that for non-orientable surfaces, such orientations of the faces are not possible.

As a corollary, a non-orientable surface is never homeomorphic to an orientable surface.
Since all the orientable surfaces (respectively non-orientable surfaces) have a different Euler
characteristic and the Euler characteristic is a topological invariant, this shows that all the
surfaces given by Theorem 2.3 are pairwise non-homeomorphic. Therefore we have found them
all, and they are all different.

We conclude with a few remarks exploring how the topics we saw earlier generalize to
surfaces:

19

Surfaces with boundary: It is often very convenient to also consider surfaces where points
can be homeomorphic either to R2 or to an open half-space R2 ∩ {x ≥ 0}. These are surfaces
with boundary, where the boundary is the set of points homeomorphic to an open half-space.
Examples are the disk, the annulus, the torus with a disk removed, etc. A similar classification
theorem holds for those: surfaces are still classified by their genus, their orientability, but also
by the number of connected components of their boundary. It can be proved by gluing disks on
the boundary to reduce to the usual case of surfaces. If b is the number of connected components
of the boundary, the Euler characteristic becomes 2 − 2g − b (orientable) or 2 − g − b (non-
orientable). For G a graph embedded on a surface S (in particular for G a simple closed curve),
one can cut S along G and obtain a surface with boundary which we denote by S ✂ G.

Maps and data structures: As in the planar case, the actual description of a cellularly
embedded graph can be made purely combinatorial. This is already the case with the polygonal
schemes, and the same data structures used in planar graphs can be generalized to surfaces. It is
important to understand the following subtlety though: when dealing with orientable surfaces,
one can describe a cellularly embedded graph by just giving the ordered list of edges belonging
to each face: for example if I know that the surface is orientable, I can describe a torus by
the one-face graph abab. Indeed, there is a single way to identify the two a edges or the two
b edges while preserving orientability. But with non-orientable surfaces, it is necessary to add
an orientation information. This is for example the case with our polygonal schemes, in which
aa is very much not the same surface as aā. This orientation information has multiple avatars
depending on the precise data structure in use (for example signatures within a rotation system,
or quad-edges instead of half-edges).

Sparsity: Everything based on the Euler formula directly generalizes by using the Euler
characteristic instead. This includes the crossing lemma, but take a look at this paper of mine
if you care about the asymptotics with respect to g.

Duality: A graph cellularly embedded on a surface naturally induces a dual graph, as in
the planar case. Non-cellularly embedded graphs do have faces, but lead to infinitely many
possible choices for edges connecting these faces, even when identifying “similar” edges, so one
should avoid using duality on those...

Subdivisions and minors: There is no analogue of Kuratowski’s theorem for surfaces,
but there is an analogue for Wagner’s theorem3. However, the proofs are non-constructive, and
the precise list of minors is unknown except for the projective plane.

Hanani-Tutte theorem: The Hanani-Tutte theorem generalizes to the plane and the torus
but not in general. There is a known counter-example in genus 4. A weaker form of the theorem
does hold though, see for example here.

Testing Embeddability: The genus of a graph is the smallest genus of a surface it
embeds on. It is NP-hard to compute the genus of a graph, but for a fixed surface, there exists
a linear-time algorithm to test embeddability on that surface. This will not be covered here (the
original algorithm of Mohar and technical and intricate, a more recent one by Kawarabayashi,
Mohar and Reed is simpler but requires strong familiarity with graph minor theory techniques).
Note that the finite list of excluded minors could be used to test embeddability (even if that list
is unknown, it still proves the existence of an algorithm), but this leads to the delicate question
of how to test minors efficiently. A very recent breakthrough allows do to that in almost-linear
time.

Schnyder Woods: Wait for Luca’s next class!

3Wagner’s theorem is a sibling of Kuratowski’s theorem stating that a graph is planar if and only if it does
not contain K5 or K3,3 as a minor. Here, H is a minor of G if H can be obtained from G with a sequence of
edge contractions, edge deletions and vertex deletions.

20

https://arxiv.org/abs/2506.09974
https://link.springer.com/article/10.1007/s00493-019-3905-7
https://www.sciencedirect.com/science/article/pii/S0195669809000493
https://epubs.siam.org/doi/10.1137/S089548019529248X
https://ieeexplore.ieee.org/document/4691009
https://ieeexplore.ieee.org/document/4691009
https://www.computer.org/csdl/proceedings-article/focs/2024/167400a053/22gEZOHUxY4

2.2 Some topological algorithms

The main difference between the plane and more complicated surfaces is that there is no Jordan
curve theorem outside of the plane, and thus that some simple closed curves can display more
interesting topology. A standard criterion to differentiate closed curves on surfaces is homo-
topy . Two closed curves γ1 and γ2 are homotopic if there is a homotopy between them4: a
continuous map h : [0, 1] × S1 → S so that h(0, ·) = γ and h(1, ·) = γ2. The analogues of the
nice curves in the planar case are the contractible curves: A simple closed curve γ on a surface
S is contractible if it is homotopic to a trivial map at a point p. The following lemma, which
could be taken as a definition, explains why:

Lemma 2.6. A simple closed curve is contractible if and only if it bounds a disk.

Half-proof: The reverse direction is immediate. For the forward direction, the subtlety comes
from the fact the homotopy could introduce self-crossings. It turns out to be the case that such
self-crossings are actually not needed, but we will not prove this.

We will address two basic problems related to non-trivial curves:

1. How to test whether a closed curve is contractible?

2. How to compute the shortest non-contractible, or non-separating curve?

These algorithmic questions will also serve as an opening for the end of the course, as we
use them to illustrate how classical tools from algebraic topology (universal covers, homology)
and geometry (hyperbolic geometry, curvature, Gauss-Bonnet theorem) impact the design of
algorithms for topological problems on surface-embedded graphs.

2.3 Homotopy testing

To test whether a closed curve on a surface S is contractible, if the curve is simple, we can simply
cut along it and see whether one of the components is a disk. This works because of Lemma 2.6.
But if the curve is not simple, the problem is significantly less obvious to tackle. This is a good
excuse to do some more topology. We will focus on getting polynomial algorithms, and with
quite some work, everything can actually be made linear.

The main strategy that we use is to use an auxiliary space from S, called the universal cover
(or at least a portion of it), which differentiates in a natural way curves that are not homotopic.
A covering space (Ŝ, p) for a surface S is a topological space with a continuous map p : Ŝ → S
that is a local homeomorphism: any point x in S has an open neighborhood U so that p−1(U)
is a disjoint union of open sets Ui which are all homeomorphic to U . The universal cover is
a covering space where every simple closed curve is contractible – such a space is called simply
connected. Such a universal cover is unique in some (natural) sense, though we will not prove
this nor use it.

This abstract definition makes much more sense when looking at specific examples, see
Figure 15 for some illustrations:

• The universal cover of a circle S1 is an infinite spiral over this circle.
4This definition requires curves to be oriented, we will often disregard this by considering two curves to be

homotopic if some orientation makes them homotopic.

21

U

pp−1(U)p p

=

Figure 15: The universal covers of the circle, the annulus and the torus.

• The universal cover of an annulus A is an infinite strip over this annulus.

• The universal cover of a sphere is the sphere itself.

• The universal cover of a torus is the plane R2 with a tiling into squares.

Since the map p of a universal cover is a local homeomorphism, every path, or closed curve
γ on S, once a specific preimage of one of its points has been chosen, can be traced on Ŝ,
yielding a lift γ̂. This is pictured in Figure 15 in the annulus example. But this lift might
not be a closed curve. The following lemma shows that it is a closed curve exactly when it is
contractible:

Lemma 2.7. A closed curve γ on a surface lifts in the universal cover to a closed curve if and
only if it is contractible.

Proof. The universal cover is simply connected, and thus each closed curve there can be con-
tracted to a point. This contraction projects via p to a contraction on S, and thus a closed
curve on S that lifts to a closed curve must be contractible. Conversely, the lift of a trivial
curve is a trivial curve, and the contraction on S lifts to a contraction in Ŝ.

The toroidal case: We first look at the easy example of the torus. Given a graph G cellularly
embedded on the torus, and a closed walk w on that graph, we first contract edges in G until
there is a single vertex and remove edges in G until there is a single face. This is the same is in
the proof of the classification theorem of surfaces, except that we must take care to update the
walk while doing these operations. This is straightforward for contractions, and only slightly
less straightforward for deletions: by construction, we only delete edges adjacent to two faces,
and thus any time the walk w uses that edge, it can be rerouted using along one of the adjacent
faces. After these operations, the graph now consists of a single vertex, two edges and a square
corresponding to the polygonal scheme abāb̄.

In this case, the universal cover is R2 tiled by squares, and the boundaries of the square can
be taken to be any pair of edges (a, b) in a single vertex, single face graph embedded on the
torus. One can test the contractibility of a curve by walking on this tiling of R2 and checking
whether we come back to the same vertex at the end of the walk, see Figure 16. This is a
problem on words: this amounts to counting how many times the walk uses (or dually, crosses)

22

p
a

b

Figure 16: Lifting a closed curve on a torus. For illustration purposes, we dualized the tiling so
that the curve crosses a and b instead of following them. In the universal cover, the curve lifts
to a path, hence the curve is not contractible

a and b (counting the crossings positively or negatively depending on how we cross it) and
checking whether at the end of the walk, those algebraic counts are zero.

The hyperbolic case: For the more general case, as in the start of the classification of
surfaces, up to removing and contracting edges, we can obtain from any graph a graph with a
single vertex and a single face, which is often called a system of loops. By Euler’s formula, this
system of loops has 4g loops. Cutting along it yields a 4g-gon. By analogy with the toroidal
case, we want to look for the universal cover at a tiling of R2 where each tile is a 4g-gon, and
every vertex has degree 4g. This is not possible in a Euclidean way, but there are such hyperbolic
tilings, which are tilings in a space of negative curvature, see Figure 17 for an example with the
genus 2 surface. (One model of) Hyperbolic geometry is a geometry where the ambient space
is an open disk (thus homeomorphic to R2) and the straight lines are arcs of circle which are
orthogonal to the boundary of the disk. The reader can check on the picture that we indeed get
a tiling of the disk with octagons, eight of which meet at each vertex. Note that the definition
of universal cover is purely topological, so the metric structure is just here at this stage to help
us with intuition. One could try to trace the walk on this hyperbolic tiling, but now it is much
less trivial to decide when we come back to the same tile. Instead, the following argument,
dating back to Dehn, allows us to make progress locally until the curve is trivial:

A closed curve on a graph G which is a system of loops can be seen as a word on A ∪A−1,
where the alphabet A is the set of loops. A spur is a subword of the form aa−1.

Lemma 2.8. Let γ be a closed curve on a graph G which is a cellularly embedded system of
loops on an orientable surface of genus at least 2. If γ has no spurs and is contractible, then it
has a subpath consisting of more than half of a facial walk of G.

Note that this is not true on a torus: indeed, this is a property that results from the
hyperbolicity of the tiling. One can prove this using Euler’s formula and a bit of sweat, but
since we have introduced a bit of geometry, it is a good occasion to explore a geometric version
of the Euler formula argument. It relies on a discrete notion of curvature, which quantifies
how non-Euclidean a space is, which we first introduce. Let D be a disk on which a graph is
embedded. Around a vertex, between each pair of consecutive edges, there is a corner . For
each corner c, let θ(c) be a positive number which we think of as the angle (in fractions of full
turns) at this corner. In a Euclidean polygon, the sum of angles on a polygon with d sides is
always (d− 2)π, so with our normalizations, this becomes d/2− 1. Therefore, it makes sense to
define the curvature of a face κ(f) to be

23

=

p

Figure 17: Covering a genus-two surface by a hyperbolic tiling of the open disk.

κ(f) =
∑
c∈f

θ(c)− deg(f)/2 + 1.

Thus, a triangle where the sum of angles is less than π has negative curvature. Similarly,
in usual space, the sum of angles around a vertex is 2π, or 1 when normalizing by full turns.
Thus we define the curvature of an interior vertex κ(v) is defined to be

κ(v) = 1−
∑
c∈v

θ(c).

In these discrete terms, a vertex with negative curvature is a vertex with too much stuff
around it. Finally, the curvature of a boundary vertex τ(v) is

τ(v) = 1/2−
∑
c∈v

θ(c).

The Gauss-Bonnet formula stipulates that on a surface, the sum of the curvature equals
the Euler characteristic (up to some constant normalizing factor). In our setting, the discrete
version is the following:

Theorem 2.9. For a graph G embedded on a surface S, and any choice of angles χ(c) on its
corners, if we denote by Vi and V∂ its interior and boundary vertices, we have:

∑
v∈Vi

κ(v) +
∑
v∈V∂

τ(v) +
∑
f∈F

κ(f) = χ(S).

Proof. Observe that in the three summands, the terms involving θ(c) cancel each other. What
remains is |Vi|+ 1/2|V∂ |+ |F | −

∑
f deg(f)/2. The last sum counts the inner edges and half of

the edges on the boundary, or equivalently, all the edges minus half the edges on the boundary.

24

Figure 18: A double torus realized geometrically with Euclidean triangles in R3

Since on the boundary of the disk, there are as many edges as vertices, this sums to |Vi| +
1/2|V∂ |+ |F | − (|E| − |V∂ |/2) = |V | − |E|+ |F | which is exactly the Euler characteristic.

Let us comment a bit on this formula before using it. In order to make sense of the notions
of angles and curvature, it makes sense to look at specific geometric instances of surfaces.

• One such instance is the case of a surface realized in R3 by Euclidean triangles pasted
along their boundaries, as pictured in Figure 18. Such a surface is not purely topological
and is also endowed with a piecewise-Euclidean structure inherited from the triangles.
This structure endows each corners with angles. Since each triangle is actually Euclidean,
the angles in each triangle sum up to π (which is 1 in our normalization), so the curvature
in each triangle is zero. Then the Euler formula connects the curvature at the vertices
with the topology of the surfaces.

• A different instance occurs if we consider a disk drawn on a hyperbolic tiling such as the
one in Figure 17. There, the geometry also yields a notion of angle at each corner, and
by construction the surface is planar so the angles sum to 2π (1 in our normalization)
around each internal vertex, so there is no curvature there. However, the curvy edges lead
to an angular defect in each face, and the curvature appears there. The curvature also
occurs at the boundary vertices, depending on how many tiles such a boundary sees. The
Gauss-Bonnet formula connects the sum of these facial and boundary curvatures to the
topology of the surface.

The confusing and magical thing about the discrete Gauss-Bonnet formula is that these are
just inspiring examples but the formula holds irrespective of any geometry: we get to choose the
value of the angles θ(c) in the corners however we want. This is the case for the following proof
where the angles are not taken to be their natural geometric values in the hyperbolic tiling.

Proof of Dehn’s Lemma 2.8. If γ is contractible, it lifts to a closed curve in the universal cover.
This closed curve might self-intersect, and thus partitions our tiling of R2 into disks (and the
outer face). Therefore it suffices to prove that any disk D bounded by a closed curve on a
(4g, 4g)-tiling of R2 contains a subpath of length at least 2g + 1 on the boundary of one tile.
The idea of the proof is to choose the angles so that a lot of positive curvature has to happen
on the boundary vertices, which will force the subpath that we are looking for.

Therefore, we set all the corners to have angle 1/4. Then all the faces and all the interior
vertices all have negative curvature. The vertices of the boundary have positive curvature if and
only if they are adjacent to a single face, in which case they have curvature 1/4. We call such
a vertex convex. So by the combinatorial Gauss-Bonnet formula, there will be a lot of convex
vertices:

25

∑
v∈Vi

κ(v) +
∑
v∈V∂

τ(v) +
∑
f∈F

κ(f) = 1

|F |(1− g) + |Vi|(1− g) + |Vconvex|/4 ≥ 1

|Vconvex| ≥ (4g − 4)|F |+ 4

So some face is adjacent to 4g − 3 convex vertices. Since edges adjacent to these convex
vertices are on the boudary of the disk, 4g− 3 of these convex vertices must be consecutive. So
some face has 4g − 2 consecutive edges on ∂D, which is strictly bigger than 2g for g ≥ 2.

With Lemma 2.8 in hand, we can describe a combinatorial algorithm to test contractibility:
after having reduced to a system of loops, we look at the word formed by the walk. We
first inductively remove all the spurs. Then we scan it for a subword consisting of more than
half of the facial walk of the system of loops. Whenever there is one, we replace it by the
complementary part of the facial walk: this is a homotopy, and thus does not change the
contractibility of the walk. Each of these changes reduces the complexity of the word, and we
induct. By Lemma 2.8, if the closed curve is contractible, we will reach the trivial word. The
complexity is clearly polynomial. With quite a lot of care, it can be made linear.

Zooming out a bit: Both in the toroidal and the hyperbolic variants, the problem boils
down to a problem on words: deciding whether a given word reduces to a trivial word under
spur reductions and a more complicated relation defining the surface. The underlying reason
behind this is that the problem can be phrased in terms of combinatorial group theory. Indeed,
the homotopy classes of loops on a surface, with the concatenation law, forms a group called the
fundamental group of the surface, and a presentation for this group can be readily computed
from a graph embedded on the surface: it is the single-relator group obtained with the system
of loops as generators and the facial walk as a relation. Then the contractibility test amounts
to testing the triviality of an element of this group. This perspective is easily misleading: in
general testing triviality in a group defined by generators and relations is undecidable. The fact
that this can be solved for the fundamental group of surface is therefore remarkable.

More generally, we can try to test whether two given curves are homotopic. This is more
subtle, but can also be made in linear time, using similar tools, see for example here.

2.4 Computing shortest interesting cycles

In this subsection, we provide algorithms to compute shortest non-contractible and non-separating
curves. This is a natural and important topological primitive, and here are two applications for
such algorithms:

• The first thing one often wants to do when given a surface is to cut it into something more
planar. This is relevant for practical purposes (e.g., topological noise removal, texture
mapping) and algorithm design, since then one can use the good old planar algorithms.

• In the planar case, as we saw, the min-cut problem reduces to computing a shortest cycle
that “goes around” the annulus in the dual, i.e., the shortest non-contractible cycle. We
are considering the direct generalization of this. This turns out to be relevant to solve
min-cut on higher genus surfaces, but we will not have enough time to cover this in this
course.

26

https://jeffe.cs.illinois.edu/pubs/dehn.html

a bc

Figure 19: A graph and its dual. The walk abāc is definitely not a cycle in the primal graph,
but when we look at it in the cross-metric perspective and push it a bit, it is a nice simple
closed curve (in red).

We will prove the following theorem:

Theorem 2.10. For a graph G with n vertices embedded on a surface of genus g, we can
compute a shortest non-contractible cycle, respectively a shortest non-separating cycle, in time
O(n2 log n).

As we saw during the min-cut algorithm, when cutting surfaces, cutting along cycles in
the primal or the dual graph can lead to annoying issues. For example when one cuts once
along a cycle, and then along a second cycle sharing edges with the first one, this yields some
degeneracies. In order to deal with these issues in a clean way, we formalize the approach that
we used for min-cut, based on considering curves in general position with respect to a graph.

Recall that a curve is in general position with respect to an embedded graph if they cross
transversely, away from the vertices, and a finite amount of times. A cross-metric surface
(S,G∗) is a topological surface S with a (possibly edge-weighted) graph G∗ embedded on it.
A cross-metric surface assigns lengths to any curve γ in general position by simply counting
the (possibly weighted) number of intersections with G∗. For a (possibly edge-weighted) graph
G cellularly embedded on a surface S, measuring the length of a walk in G is the same as
measuring its length in the cross-metric surface (S,G∗), where G∗ is the dual (hence the no-
tation). Similarly, shortest paths in the cross-metric surface (S,G∗) can be computed by the
usual graph algorithms on G. The added value with the cross-metric surface, compared to just
using duality, is that we are considering more curves than in the pure graph-theoretical world:
for example there are often walks on a graph that are not really self-crossing, in the sense that
one could clearly push them infinitesimally to make them simple. In the cross-metric setting,
we can directly pick them to be simple, which makes proofs more streamlined. See Figure 19.

Algorithmically speaking, while we will be considering arbitrary topological curves in trans-
verse position with the graph G∗, we do not need to encode the precise location of a curve γ,
merely its crossing points with G∗, its self-crossing points if there are any, and what it does
in between. Equivalently, we can encode the superposition of γ with G∗, which is also a cel-
lularly embedded graph. Likewise, when there is more than one curve, we simply encode their
superposition with the graph G∗.

Now that the setup is set up, we move forward. We first compute shortest loops: a loop ℓ
is a closed curve ℓ : S1 → S going through a fixed point b, called the basepoint of the loop.

For a point b in a face of (S,G∗), we denote by T a shortest path tree rooted at b, which can
be computed by using Dijkstra’s algorithm in the primal graph. The cut locus C of (S,G∗)
with respect to b is the set of edges not crossed by T . Informally, we are blowing a balloon
based at b, and the cut locus is the set of points where it self-intersects. This should be very
reminiscent of the tree-cotree duality that we explored on planar graphs, and thus the following
lemma should not come as a surprise. See Figure 20 for an illustration.

Lemma 2.11. The cut locus cuts S into a disk.

27

e

b
σ(e)

Figure 20: A shortest path tree, in black, defining a cut locus (in blue). Cutting the surface
along the cut locus yields a disk. On the right, an edge of the cut locus corresponds to loop
σ(e) going through the basepoint b.

Proof. While growing the shortest path tree, the set of open faces visited by the tree union
all the edges that it crosses is an open disk, and this is maintained until the end. At the end,
the complement of this disk is exactly the set of of edges in the cut locus, which proves the
lemma.

For an edge e in the cut locus, we denote by σ(e) the loop obtained by starting from b,
taking a shortest path to one of the two faces of G∗ adjacent to e, crossing e, and coming back
to e via the shortest path on the other side of e. The weight of e is defined to be the length
of σ(e). The following key lemma shows that the shortest non-contractible loop can be found
among the σ(e):

Lemma 2.12. Some shortest non-contractible loop has the form σ(e).

Proof. Let L be a shortest non-contractible loop crossing the cut locus C as few times as
possible. If L crosses C at least twice, there is a point p between the two crossings, cutting L
into L1 and L2. This point p is connected to the root via a path ρ on the shortest path tree
T . Then either L1 concatenated with ρ or L2 concatenated with ρ is non-contractible, since
otherwise the contraction of both would yield a contraction of L. This argument is sometimes
called the 3-path condition, after Thomassen.

So L crosses C at most once. It has to cross it at least once, since otherwise it bounds
a disk by the Jordan-Schoenflies theorem on the surface cut along the cut locus, and is thus
contractible. So L crosses the cut locus at some edge e, and since L goes through the root, it
has to have at least the length of σ(e), which concludes the proof.

This immediately suggests a brute-force algorithm to find the shortest non-contractible loop:
try all the σ(e), test their contractibility (which is easy since they are simple) and output the
shortest one.

This is where the last lecture stopped. For completeness, we explain the rest of
the argument and the non-separating case in what follows. This will not be part
of the syllabus for the exam.

But one can be smarter, and figure out a combinatorial criterion to decide whether a σ(e)
is contractible:

Lemma 2.13. Let e be an edge of C. Then σ(e) is contractible if and only if some component
of C \ e is a tree.

Proof. For the reverse direction, if some component of C\e is a tree, one can homotope σ(e) into
a trivial loop by following this tree. For the forward direction, if σ(e) is contractible, it bounds

28

a disk by Lemma 2.6. If no component of C \ e is a tree, then in particular the component that
is a disk is not a tree, and thus it contains a cycle. But this contradicts Lemma 2.11.

We now have all the tools to prove the first half of Theorem 2.10:

Finding a shortest non-contractible cycle in O(n2 log n) time. For each face of G, we fix a root
r at G. Then we compute in O(n log n) time the cut locus based at r as well as the weight
of each of its edges, i.e., the length of σ(e). There remains to prune the cut locus, that is, to
remove all of its useless arborescent parts. Since each tree has a degree-one vertex (its leaves),
this can be done by removing all the degree one vertices, and then the new degree one vertices,
etc. Our shortest non-contractible loop through r is then the smallest of the remaining σ(e)s.
Looping through all the possible rs increases the complexity to O(n2 log n), and we output the
shortest of the resulting cycles.

In order to find the shortest non-separating loop, we first want to establish that one of them
is of the form σ(e). For non-contractible loops, this relied on the three-path condition, and we
need something similar here, something like “Let a and b be two points on S and p, q and r be
three paths from a to b, oriented from a to b. If pq̄ and rq̄ are both separating, then so is pr̄.”

This poses an annoying issue, as it is not clear what it means for a curve that is not simple
to be separating. So we first address this, and the convenient language for that is the language
of (mod 2) homology.

Let G be a graph embedded on a surface S, with its set of vertices, edges and faces. We
think of those as being 0-dimensional, 1-dimensional and 2-dimensional objects. A k-chain ,
for k = 0, 1 or 2 is a subset respectively the set of vertices, edges or faces. We think of a chain
as being an element in a vector space over Z2, the set of integers mod 2. Therefore, chains can
be added, using the rule 1 + 1 = 0. These vector spaces are denoted by C0, C1 and C2. We
define the boundary of an edge to be the sum of its endpoints, and the boundary of a face to
be the sum of its boundary edges. These two boundary maps extend by linearity on the whole
spaces C1 and C2, defining linear maps ∂1 : C1 → C0 and ∂2 : C2 → C1. A 1-chain is a cycle
if its boundary is trivial, and it is a boundary if it is the boundary of some 2-chain. Cycles
are generally denoted by Zi, and boundaries by Bi. Convince yourself that the boundary of a
boundary is empty.

Now, a closed walk γ on G or a closed curve in general position with G can naturally be
considered as a 1-chain (either for the graph G or in the graph that is the overlay of G and
γ). The following lemma shows that being a homology boundary naturally generalizes being
separating.

Lemma 2.14. A non-trivial simple closed curve γ is a homology boundary if and only if it is
separating.

Proof. If γ is separating, then it is equal to the boundary of the sum of the faces of (either) one
of the two connected components. If γ is a homology boundary, then it is the boundary of a
sum of faces F . Note that this set of faces cannot be all the faces, as the boundary of the sum
would be empty. Then the faces in F are separated from the faces not in F , since any path
connecting them would cross the boundary γ.

The homology group Hi is defined as the quotient of the space Zi by the space Bi: it is the
space of cycles which are not boundaries. So it directly generalizes the separating curve.

With this language, we have the two tools needed to prove our missing lemma: a notion of
sum of cycles, and a notion of separating for non-simple curve:

29

Lemma 2.15. Some shortest non-separating loop going through the root r has the form σ(e).

Proof. Since a non-separating loop is a non-trivial homology cycle, we can equivalently look for
a shortest loop that is non-trivial in homology if we can prove (which we will) that one of them
is simple. As in the non-contractible case, any shortest non-trivial homology loop L must cross
C at least once. We pick one that crosses C a minimal number of times. If it crosses it more
than once, we take p to be a point between two crossings, which is connected to the root via a
path ρ. The point p cuts L into L1 and L2, and we look at the three cycles L, L1 concatenated
with ρ and L2 concatenated with ρ. Note that the sum (as chains) of any two of these cycles
forms the third cycle, and the set of homology boundaries is a vector space, and thus is closed
under addition. So if both L1 + ρ or L2 + ρ were homology boundaries, then so would be L,
which is a contradiction. So the shortest homology loop crosses C exactly once, and since it
contains r it must be at least as long as σ(e). Hence some shortest homology loop has the form
σ(e). Thus it is simple, and is thus non-separating.

Now we can bruteforce and try all the σ(e)s to find a shortest non-separating one. Or we
can try to be smarter, and prove that:

Lemma 2.16. A loop σ(e) is separating if and only if e separates C.

Proof. If σ(e) is separating, it separates C into at least two components. In the other direction,
if e separates C, then any path on the surface connecting these two components and not crossing
σ(e) can be pushed back to C since S \ C is a disk.

The set of edges e separating C are called bridge edges. Note that edges corresponding
to a contractible σ(e), as characterized by Lemma 2.13 are bridge edges, which makes sense
since contractible curves are separating. One can determine in linear time all the bridge edges
of C using depth-first search, this is very similar to the block decomposition alluded to in the
planarity testing. Plugging everything together:

Finding a shortest non-separating cycle in O(n2 log n) time. For each face of G, we fix a root
r at G. Then we compute in O(n log n) time the cut locus based at r as well as the weight of
each of its edges, i.e., the length of σ(e). We compute all the bridge edges and compare the
remaining ones to find the shortest non-separating loop based at r. Looping through all the
possible rs increases the complexity to O(n2 log n), and we output the shortest of the resulting
cycles.

Zooming out a bit: These two algorithms work because of the algebraic structure behind
the curves: the concatenation of two contractible curves is contractible (i.e., the set of homotopy
classes forms a group under concatenation), and the concatenation of two “separating” curves
is “separating” (the homology classes form a group under addition). There are some other
algebraic structures of interest, in particular, we can leverage relative homology to compute
shortest systems of loops (see the lecture notes of Éric Colin de Verdière). Yet when there
is no such known algebraic structure behind the problem that we consider, any optimization
problem becomes much harder: how to compute the shortest polygonal scheme of the form
a1b1ā1b̄1 . . . agbgāgbg for an orientable surface? How to compute the shortest collection of closed
curves cutting a surface into a collection of sphere with three holes (a pants decomposition)?
No polynomial algorithm nor hardness proof is known for these two problems.

30

http://monge.univ-mlv.fr/~colinde/cours/all-algo-embedded-graphs.pdf

	Planar Graphs
	A partial recap of the first lecture
	Coloring
	The crossing lemma
	The Hanani-Tutte theorem
	Efficient algorithms for planar graphs
	Minimum spanning trees

	Minimum cut

	Surfaces
	Definition and classification
	Some topological algorithms
	Homotopy testing
	Computing shortest interesting cycles

