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Exercise 1:

Recall that a simple closed curve on a surface S is an embedding of the circle S1 ↪→ S.
Therefore, any two simple closed curves are homeomorphic since they are all homeomorphic
to S1. However, it makes sense to ask whether two simple closed curves are congruent by a
homeomorphism of the surface, which we abusedly also call homeomorphic (there is no risk of
confusion since the other definition is vacuous).

1. Show that on an orientable surface of genus g > 0, there are exactly ⌊g/2⌋+2 homeomor-
phism classes of simple closed curves.

2. What about non-orientable surfaces?

Solution: It is important for this exercise to *not* try to imagine what a homeomorphism
can look like. Even up to homotopy, this is a complex topic, see for example here. Instead, one
can just rely on the classification of surfaces with boundary.

1. In the orientable case, when one cuts a surface of genus g along a simple non-contractible
non-separating curve, one obtains a surface with one connected component (the curve
is non-separating), two boundaries (each side of the curve), orientable (cutting does not
create orientation-reversing gluings) and of genus g − 1 (as you can check by computing
the Euler characteristic). There is exactly one such surface up to homeomorphism by the
classification of surfaces with boundary. This homeomorphism carries over when one glues
back the surface. Therefore, any two simple non-contractible non-separating curves are
homeomorphic. For separating curves, we obtain two orientable surfaces of genus g1 and
g2 with one boundary each, where g1, g2 ≥ 0 and g1 + g2 = g (as you can check again by
computing the Euler characteristic): these are classified depending on how the genus g
splits in g1 and g2: there are exactly ⌊g/2⌋+ 1 choices.

2. In the non-orientable case, the fauna is richer: there are more cases depending on whether
cutting along the curve yields one or two boundaries and whether the resulting surface(s)
is(are) orientable. The second exercise of the homework encourages you to think over
the most mysterious case: correcting curves such that cutting along them yields a single
orientable component. Are they all homeomorphic? The remaining cases are:

• One-sided non-separating non-correcting curve: after cutting one gets a single ori-
entable surface with one boundary component. This is for example a in the surface
aabbccdd. (if this troubles you, make a Mobius band out of paper, cut along the
middle curve and notice that this only adds one boundary and not two!)

• Two-sided non separating non-correcting curve: after cutting one gets a single ori-
entable surface with two boundary component. This is for example a in the surface
abāb̄ccdd.
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• Curves cutting in two non-orientable components of genus g1 and g2 such that g1 +
g2 = g. For this you can take the relevant diagonal in the polygonal scheme aabbccdd.

• Curves cutting in one non-orientable component and one orientable component of
genus g1 and g2 such that g1 + 2g2 = g. The case g2 = 0 is the case of con-
tractible curves. For this you can take the relevant diagonal in the polygonal scheme
a1b1ā1b̄1 . . . ag1bg1 āg1 b̄g1c1c1 . . . cg2cg2 .

Note that separating curves always yield two boundaries (one in each component) and
that gluing two orientable surfaces always yields an orientable surface, so these are all the
possible cases.

Exercise 2 (already in the previous sheet but I like it):

Recall that a cellular embedding is an embedding where all the faces are disks, and that
a non-orientable surface of genus g is a surface with polygonal scheme a1a1a2a2 . . . agag. A
convenient way to represent a graph on a non-orientable surface is to draw it on top of this
polygonal scheme. For example, here is a cellular embedding of K5 on a non-orientable surface
of genus two.

a1

a1

a2

a2

1. Provide an explicit cellular embedding of K4 on a non-orientable surface of genus 3.

2. Let G be a simple graph with v vertices, e edges cellularly embedded on a non-orientable
surface of genus g. Prove that g ≤ e− v + 1.

3. Let G be a simple graph with v vertices and e edges, and let g1 be the smallest genus of
a non-orientable surface on which G embeds. Prove that for any g such that g1 ≤ g ≤
e− v + 1, G can be cellularly embedded on a non-orientable surface of genus g.

4. In particular, G can always be cellularly embedded on a non-orientable surface of genus
e− v + 1. Provide a linear-time algorithm to compute such an embedding.

Exercise 3:

A cut-graph is a graph C embedded on a surface S so that cutting S along C yields a disk.

1. Provide a linear-time algorithm that, given as input a graph G cellularly embedded on an
orientable surface of genus g, outputs a subgraph C of G that is a cut-graph.

Given a cut-graph C, we define a reduced cut-graph by inductively applying the following
two operations until none of them are available:

• If there is a vertex of degree 1, remove it and its adjacent edge.

• If there is a vertex v of degree 2, dissolve it, that is, replace its two adjacent edges uv
and vw with a single edge uw.
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2. Show that a reduced cut-graph on an orientable surface of genus g has O(g) vertices and
O(g) edges.

A pair of pants is a surface homemorphic to a sphere with 3 boundaries. The picture
below explains this somewhat surprising name.

A pants decomposition of an orientable surface S of genus g is a family of closed curves
Γ = (γ1, . . . , γk) such that cutting S along Γ yields a family of surfaces with boundary, each of
which is homeomorphic a pair of pants. The figure below pictures a pants decomposition of an
orientable surfaces of genus 2.

3. Show that a pants decomposition of a surface of genus g contains exactly 3g − 3 curves.
Hint: You can add a well-chosen family of vertices and edges to a pants decomposition in
order to obtain a cellularly embedded graph

4. Provide a polynomial-time algorithm that, given as input a graph G cellularly embedded
on an orientable surface S of genus g, computes a family of curves in general position with
respect to G that forms a pants decomposition of S.
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