# Master 2 Mathematics and Computer Science Symbolic Dynamics. Lecture 6

#### Marie-Pierre Béal

University Gustave Eiffel Laboratoire d'informatique Gaspard-Monge UMR 8049





## Recognizability

## $\sigma$ -representation

Let  $\sigma: A^* \to B^*$  be a substitution. A  $\sigma$ -representation of  $y \in B^{\mathbb{Z}}$  is a pair (x, k) of a sequence  $x \in A^{\mathbb{Z}}$  and an integer k such that

$$y = S^k(\sigma(x)). \tag{1}$$

The  $\sigma$ -representation (x, k) is *centered* if  $0 \le k < |\sigma(x_0)|$ .

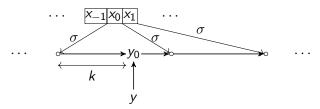


Figure: A centered  $\sigma$ -representation (x, k) of y.

Note, in particular, that a centered  $\sigma$ -representation (x,k) is such that  $\sigma(x_0) \neq \varepsilon$ .

## $\sigma$ -representation

Note that if y has a (not necessarily centered)  $\sigma$ -representation  $(x, \ell)$ , then it has also a centered  $\sigma$ -representation (x', k), where x' a shift of x.

Indeed, assume  $\ell \geq 0$  (the case  $\ell < 0$  is symmetric). Let  $i \geq 0$  be such that  $|\sigma(x_0 \cdots x_{i-1})| \leq \ell < |\sigma(x_0 \cdots x_i)|$ . Set  $k = \ell - |\sigma(x_0 \cdots x_{i-1})|$  and  $x' = S^i x$ . Then  $S^k \sigma(x') = S^{k+|\sigma(x_0 \cdots x_{i-1})|} \sigma(x) = S^\ell \sigma(x) = y$  and  $0 \leq k < |\sigma(x'_0)|$ . Thus, (x', k) is a centered  $\sigma$ -representation of y.

## $\sigma$ -representation

For a shift space X on A, the set of points in  $B^{\mathbb{Z}}$  having a  $\sigma$ -representation (x,k) with  $x \in X$  is a shift space on B, which is the closure under the shift of  $\sigma(X)$ .

Indeed, if (x, k) is a  $\sigma$ -representation of y, then S(y) has the  $\sigma$ -representation (x', k') with

$$(x',k') = egin{cases} (x,k+1) & ext{ if } k+1 < |\sigma(x_0)| \ (S(x),0) & ext{ otherwise}. \end{cases}$$

## Recognizability

Let X be a shift space on A. The substitution  $\sigma \colon A^* \to B^*$  is *recognizable* in X if every  $y \in B^{\mathbb{Z}}$  has **at most one** centered  $\sigma$ -representation (x,k) such that  $x \in X$ .

Thus, in informal terms, for a sequence y on B, there is at most one way to desubstitute y to obtain a sequence in X.

## Example

#### Example

The substitution  $\sigma \colon a \mapsto a, b \mapsto ab, c \mapsto abb$  is recognizable in the full shift  $X = \{a, b, c\}^{\mathbb{Z}}$ .

Indeed, let Y be the closure under the shift of  $\sigma(X)$ .

Any two consecutive occurrences of a are separated by a block of zero, one or two b, which determines the rule of  $\sigma$  to be used for desubstitution. Formally, we have

$$\begin{split} &\sigma([a]_X) &= [aa]_Y, \\ &\sigma([b]_X) &= [aba]_Y, \quad S\sigma([b]_X) = [a \cdot ba]_Y \\ &\sigma([c]_X) &= [abba]_Y, \quad S\sigma([c]_X) = [a \cdot bba]_Y, \quad S^2\sigma([c]_X) = [ab \cdot ba]_Y \end{split}$$

and these sets form a partition of Y.

## Example

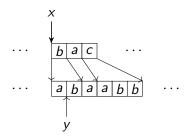


Figure: A centered  $\sigma$ -representation of  $y = \cdots a \cdot baabb \cdots$ .

## Fully recognizable substitutions

Let  $\sigma \colon A^* \to B^*$  be a substitution. Assume that  $\sigma$  is erasing, but that not all letters are erasable. Then  $\sigma$  cannot be recognizable in  $A^{\mathbb{Z}}$ . Indeed, if  $\sigma(a) \neq \varepsilon$ , and  $\sigma(b) = \varepsilon$ , then  $\sigma({}^{\omega}ab \cdot a^{\omega}) = \sigma(a^{\infty})$ .

Let  $\sigma \colon A^* \to B^*$  be a non-erasing substitution. We say that  $\sigma$  is fully recognizable or circular if it is recognizable in  $A^{\mathbb{Z}}$ .

Thus, in particular, a circular substitution is injective.

## Example

#### Example

The substitution  $\sigma$ :  $a \mapsto a, b \mapsto ab, c \mapsto abb$  is fully recognizable.

A coding substitution for a set U of nonempty words on A is a substitution  $\phi\colon B^*\to A^*$  such that its restriction to B is a bijection onto U. The set U is called a code if  $\phi$  is injective and a  $circular\ code$  if  $\phi$  is circular.

#### Proposition

Let X be a minimal shift space on A and let  $u \in \mathcal{B}(X)$ . Any coding substitution  $\phi \colon B^* \to A^*$  for the set  $\mathcal{R}_X(u)$  of return words to u is circular.

#### Proof.

Since wu contains exactly two occurrences of u for each  $w \in \mathcal{R}_X(u)$ , for each  $y \in X$ , there is a unique sequence  $z = \cdots w_{-1} \cdot w_0 w_1 \cdots$  with  $w_i \in \mathcal{R}_X(u)$ , and a unique integer k such that  $y = S^k(z)$  with  $0 \le k < |w_0|$ . Since  $\phi$  is a coding substitution, for each  $w_i \in \mathcal{R}_X(u)$ , there is a unique  $b_i \in B$  such that  $\phi(b_i) = w_i$ . Hence, there is a unique  $x \in B^{\mathbb{Z}}$  and k with  $0 \le k < |\phi(x_0)|$  such that  $y = S^k \phi(x)$ .

## Representability

## Existence of a representation

#### **Proposition**

Let  $\sigma: A^* \to A^*$  be a substitution. Every point y in  $X(\sigma)$  has a  $\sigma$ -representation  $y = S^i(\sigma(x))$  for some  $i \ge 0$ , and x in  $X(\sigma)$ .

## Existence of a representation

#### Proof.

Let  $k = |\sigma|$  and let y be in  $X(\sigma)$ . For every  $n \ge 1$ , there is an integer  $m \ge 1$  such that  $y_{[-n,n]}$  occurs in  $\sigma^m(a)$  for some letter  $a \in A$ .

For every n>2k, there is an integer  $0\leq i\leq k$  such that, for an infinity of n>2k, there are words  $u_n,v_n$  with  $u_nv_n\in\mathcal{L}(\sigma)$  such that  $y_{[-n+k,-i)}$  is a suffix of  $\sigma(u_n)$  and  $y_{[-i,n-k]}$  is a prefix of  $\sigma(v_n)$ . Further,  $|u_n|\geq (n-k-i)/k$  and  $|v_n|\geq (n-k+i)/k$ . Therefore, there are infinitely many n>2k for which the value of i is the same.

By a compactness argument, we get that there is a point  $x \in X(\sigma)$  such that  $y = S^i(\sigma(x))$ .

## Elementary substitutions

A substitution  $\sigma \colon A^* \to C^*$  is elementary if for every alphabet B and every pair of substitutions  $A^* \stackrel{\beta}{\to} B^* \stackrel{\alpha}{\to} C^*$  such that  $\sigma = \alpha \circ \beta$ , one has  $Card(B) \geq Card(A)$ .

In this case, one has in particular  $Card(C) \ge Card(A)$ .

Moreover,  $\sigma$  is non-erasing (Exercise).

## Example

#### Example

The Thue-Morse substitution  $\sigma$ :  $a \mapsto ab$ ,  $b \mapsto ba$  is elementary. Indeed, if  $\sigma = \alpha \circ \beta$  with  $\beta$ :  $\{a,b\}^* \to c^*$ , then  $ab = \alpha(c^i)$  and  $ba = \alpha(c^j)$  which is impossible.

#### Example

The substitution  $\sigma \colon a \mapsto ab, b \mapsto abc, c \mapsto cc$  is not elementary. Indeed, we have  $\sigma = \alpha \circ \beta$  with  $\alpha \colon u \mapsto ab, v \mapsto c$  and  $\beta \colon a \mapsto u, b \mapsto uv, c \mapsto vv$ .

 $U \in \mathcal{F}$ .

Note that the property of being elementary is decidable. Indeed, if  $\sigma \colon A^* \to C^*$  is a substitution consider the finite family  $\mathcal F$  of sets  $U \subset C^*$  such that  $\sigma(A) \subset U^* \subset C^*$  with every  $u \in U$  occurring in some  $\sigma(a)$  for  $a \in A$ . Then  $\sigma$  is elementary if and only if  $\operatorname{Card}(U) \geq \operatorname{Card}(A)$  for every

#### Proposition

Let  $A^* \stackrel{\beta}{\to} B^* \stackrel{\alpha}{\to} C^*$  be substitutions. If  $\alpha \circ \beta$  is elementary, then  $\beta$  is elementary.

#### Proof.

Let  $A^* \stackrel{\gamma}{\to} D^* \stackrel{\delta}{\to} B^*$  be such that  $\beta = \delta \circ \gamma$ . Then  $\alpha \circ \beta = \alpha \circ (\delta \circ \gamma) = (\alpha \circ \delta) \circ \gamma$ . This implies  $\operatorname{Card}(D) \geq \operatorname{Card}(A)$ . Thus  $\beta$  is elementary.  $\Box$ 

A sufficient condition for a substitution to be elementary can be formulated in terms of its composition matrix.

#### **Proposition**

If the rank of  $M(\sigma)$  is equal to Card(A), then  $\sigma$  is elementary.

#### Proof.

Indeed, if  $\sigma = \alpha \circ \beta$  with  $\beta \colon A^* \to B^*$  and  $\alpha \colon B^* \to C^*$ , then  $M(\sigma) = M(\alpha)M(\beta)$ . If  $\operatorname{rank}(M(\sigma)) = \operatorname{Card}(A)$ , then

$$Card(A) = rank(M(\sigma)) \le rank(M(\alpha)) \le Card(B)$$
.

Thus  $\sigma$  is elementary.

This condition is not necessary. For example, the Thue-Morse substitution  $\sigma \colon a \mapsto ab, b \mapsto ba$  is elementary, but its composition matrix has rank one.



If  $\sigma: A^* \to C^*$  is a substitution, we define

$$\ell(\sigma) = \sum_{a \in A} (|\sigma(a)| - 1). \tag{2}$$

We say that a decomposition  $\sigma = \alpha \circ \beta$  with  $\alpha \colon B^* \to C^*$  and  $\beta \colon A^* \to B^*$  is *trim* if

- (i)  $\alpha$  is non-erasing,
- (ii) for each  $b \in B$  there is an  $a \in A$  such that  $\beta(a)$  contains b.

#### **Proposition**

Let  $\sigma = \alpha \circ \beta$  with  $\alpha \colon B^* \to C^*$  and  $\beta \colon A^* \to B^*$  be a trim decomposition of  $\sigma$ . Then

$$\ell(\alpha \circ \beta) \ge \ell(\alpha) + \ell(\beta). \tag{3}$$



#### Proof.

Set  $\sigma = \alpha \circ \beta$ . We have

$$\ell(\sigma) - \ell(\beta) = \sum_{a \in A} (|\sigma(a)| - |\beta(a)|)$$

$$= \sum_{a \in A} \sum_{b \in B} (|\alpha(b)| |\beta(a)|_b - |\beta(a)|_b)$$

$$= \sum_{a \in A} \sum_{b \in B} (|\alpha(b)| - 1) ||\beta(a)|_b$$

$$= \sum_{b \in B} ((|\alpha(b)| - 1) \sum_{a \in A} |\beta(a)|_b).$$

Since every b occurs in some  $\beta(a)$ , every factor  $\sum_{a \in A} |\beta(a)|_b$  is positive, whence the conclusion.

#### Proposition

An elementary substitution  $\sigma: A^* \to C^*$  is injective on  $A^{\mathbb{N}}$ .

follows from:

#### **Proposition**

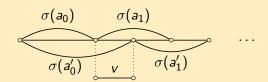
If a substitution  $\sigma \colon A^* \to C^*$  is not injective on  $A^{\mathbb{N}}$ , there is a trim decomposition  $\sigma = \alpha \circ \beta$  with  $\alpha \colon B^* \to C^*$  and  $\beta \colon A^* \to B^*$  such that  $\alpha$  is injective on  $B^{\mathbb{N}}$ ,  $\operatorname{Card}(B) < \operatorname{Card}(A)$  and every  $b \in B$  occurs as the first letter of  $\beta(a)$  for some  $a \in A$ .

### Proof

#### Proof.

Assume first that  $\sigma$  is non-erasing. We use an induction on  $\ell(\sigma)$ . If  $\ell(\sigma)=0$ , set  $B=\sigma(A)$ . Let  $\alpha$  be the identity on  $B^*$  and let  $\beta=\sigma$ . All conditions are clearly satisfied.

Assume now that the statement is true for  $\ell < \ell(\sigma)$ . Since  $\sigma$  is not injective on  $A^{\mathbb{N}}$ , we have  $\sigma(a_0a_1\cdots)=\sigma(a_0'a_1'\cdots)$  for some  $a_i,a_i'\in A$  with  $a_0\neq a_0'$ . We can assume that  $\sigma(a_0)$  is a prefix of  $\sigma(a_0')$ . Set  $\sigma(a_0')=\sigma(a_0)v$ . If v is empty, set  $B=A\setminus\{a_0\}$ . Let  $\alpha$  be the restriction of  $\sigma$  to B and let  $\beta$  be defined by  $\beta(a_0')=a_0$  and  $\beta(a)=a$  for  $a\neq a_0'$ . Clearly,  $\sigma=\alpha\circ\beta$ , and all conditions are satisfied.



## Proof

#### Proof.

Next, assume that v is nonempty. Define  $\alpha_1\colon A^*\to C^*$  by  $\alpha_1(a_0')=v$  and  $\alpha_1(a)=\sigma(a)$  for  $a\neq a_0'$ . Next, define  $\beta_1\colon A^*\to A^*$  by  $\beta_1(a_0')=a_0a_0'$  and  $\beta_1(a)=a$  for  $a\neq a_0'$ . Then  $\sigma=\alpha_1\circ\beta_1$  since

$$\alpha_1 \circ \beta_1(a_0') = \alpha_1(a_0a_0') = \sigma(a_0)v = \sigma(a_0'),$$

and  $\alpha_1 \circ \beta_1(a) = \alpha_1(a) = \sigma(a)$  if  $a \neq a'_0$ . The substitution  $\beta_1$  is injective on  $A^{\mathbb{N}}$  because no word in  $\beta_1(A)$  begins with  $a'_0$ . Thus  $\alpha_1$  is not injective on  $A^{\mathbb{N}}$ . By Equation (3), since the decomposition is trim, we have  $\ell(\alpha_1) < \ell(\sigma)$ . By induction hypothesis, we have a decomposition  $\alpha_1 = \alpha_2 \circ \beta_2$  for  $\beta_2 : A^* \to B^*$  and  $\alpha_2 : B^* \to C^*$  with  $\operatorname{Card}(B) < \operatorname{Card}(A)$ , the substitution  $\alpha_2$  being injective on  $B^{\mathbb{N}}$  and every letter  $b \in B$  occurring as initial letter in the word  $\beta_2(a)$  for some  $a \in A$ . Note that, since  $\alpha_1$  is non-erasing,  $\beta_2$  is non-erasing.

#### Proof.

Set  $\beta=\beta_2\circ\beta_1$ . Since  $\beta_1,\beta_2$  are non-erasing,  $\beta$  is non-erasing. Then  $\sigma=\alpha_1\circ\beta_1=\alpha_2\circ\beta_2\circ\beta_1=\alpha_2\circ\beta$ . The decomposition  $\sigma=\alpha_2\circ\beta$  satisfies all the required conditions.

Indeed, let  $b \in B$ . Then there is  $a \in A$  such that b is the first letter of  $\beta_2(a)$ .

If  $a \neq a_0'$ , we have  $\beta_1(a) = a$  and thus b is the first letter of  $\beta(a)$ . Suppose next that  $a = a_0'$ . Since  $\sigma(a_0a_1\cdots) = \sigma(a_0'a_1'\cdots)$  and since  $\alpha_2$  is injective on  $B^{\mathbb{N}}$ , we have  $\beta(a_0a_1\cdots) = \beta(a_0'a_1'\cdots)$ . Since  $\beta_1(a_0) = a_0$  and  $\beta_1(a_0') = a_0a_0'$ , we obtain  $\beta_2(a_0)\beta(a_1\cdots) = \beta_2(a_0a_0')\beta(a_1'\cdots)$  and thus

$$\beta(a_1\cdots)=\beta_2(a_0')\beta(a_1'\cdots),$$

showing, since  $\beta$  is non-erasing, that b is the initial letter of  $\beta(a_1)$ .

### Proof

#### Proof.

Now consider a substitution  $\sigma$  such that the set  $B=\{a\in A\mid \sigma(a)\neq \varepsilon\}$  is strictly contained in A. Let  $\beta\colon A^*\to B^*$  be defined by  $\beta(a)=a$  if  $a\in B$  and  $\beta(a)=\varepsilon$  otherwise. Let  $\alpha$  be the restriction of  $\sigma$  to  $B^*$ . Then  $\sigma=\alpha\circ\beta$  and  $\alpha$  is non-erasing. If  $\alpha$  is injective on  $B^\mathbb{N}$ , we are done. Otherwise, by the first part of the proof, we have  $\alpha=\alpha_1\circ\beta_1$  with  $\alpha_1\colon B_1^*\to C^*$  and  $\beta_1\colon B^*\to B_1^*$  with  $\alpha_1$  injective on  $B_1^\mathbb{N}$ ,  $\mathrm{Card}(B_1)<\mathrm{Card}(B)$  and every  $b_1\in B_1$  occurs as the first letter of some  $\beta_1(b)$ . Then the decomposition  $\sigma=\alpha_1\circ(\beta_1\circ\beta)$  satisfies all the conditions.  $\square$ 

By a symmetric version, an elementary substitution  $\sigma\colon A^*\to C^*$  is injective on  $A^{-\mathbb{N}}$ . Since a substitution which is injective on  $A^{\mathbb{N}}$  and on  $A^{-\mathbb{N}}$  is injective on  $A^{\mathbb{Z}}$ , we obtain the following corollary of Proposition 6.

#### **Proposition**

An elementary substitution  $\sigma: A^* \to C^*$  is injective on  $A^{\mathbb{Z}}$ .

## Recognizability for aperiodic points

A substitution  $\sigma \colon A^* \to B^*$  is recognizable in X for aperiodic points if **every aperiodic point**  $y \in B^{\mathbb{Z}}$  has at most one centered representation in X.

We say that  $\sigma$  is *fully recognizable for aperiodic points* if it is recognizable in the full shift for aperiodic points.

## Example

#### Example

The substitution  $\sigma$ :  $a \mapsto aa, b \mapsto ab, c \mapsto ba$  is not fully recognizable for aperiodic points.

Indeed, every sequence without occurrence of bb has two factorizations in words of  $\{aa, ab, ba\}$ .

#### Proposition

The family of substitutions that are fully recognizable for aperiodic points is closed under composition.

## Aperiodic substitution

A substitution  $\sigma$  is aperiodic if  $X(\sigma)$  contains no periodic point.

Theorem (B. Mossé 1992, B. Mossé 1996)

Any aperiodic substitution is recognizable in  $X(\sigma)$ .

## Recognizability for aperiodic points

Theorem (J. Karhumäki, J. Maňuch, W. Plandowski 2003)

An elementary substitution is fully recognizable for aperiodic points.

## Proof

A substitution  $\sigma \colon A^* \to B^*$  with no erasable letter is *left-marked* if each word  $\sigma(a)$ , for  $a \in A$ , begins with a distinct letter.

In particular, if  $\sigma$  is left-marked,  $\sigma$  is injective on A and  $\sigma(A)$  is a prefix code.

It is clear that a left-marked substitution is elementary.

#### Left-marked substitution

#### **Proposition**

If  $\sigma: A^* \to B^*$  is left-marked, then it is fully recognizable for aperiodic points.

#### Proof.

Assume that  $y \in B^{\mathbb{Z}}$  has two distinct  $\sigma$ -representations (x,k) and (x',k'). We may assume k=0. We will prove that y is periodic. Let P be the set of proper prefixes of the elements of  $U=\sigma(A)$ . For  $p \in P$  and  $a \in A$ , there is at most one  $q \in P$  such that  $p\sigma(a) \in U^*q$ . We write  $q=p \cdot a$  when such a q exists. Let  $p_0=y_{-k'}\cdots y_{-1}$  (with  $p_0=\varepsilon$  if k'=0). Since  $y=\sigma(x)=S^{k'}(\sigma(x'))$ , we have (see Figure)

$$\sigma(\cdots x'_{-2}x'_{-1})p_0 = \sigma(\cdots x_{-1}), \quad p_0\sigma(x_0x_1\cdots) = \sigma(x'_0x'_1\cdots).$$

As a consequence, there exists, for each  $n \in \mathbb{Z}$ , a word  $p_n \in P$  such that  $p_n \cdot x_n = p_{n+1}$ .



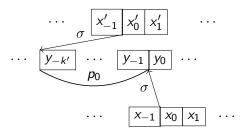


Figure: The two centered  $\sigma$ -representations of y.

Consider the labeled graph G with P as set of vertices and edges (p,a,q) if  $p\cdot a=q$ . Since  $\sigma$  is left-marked, there is for every nonempty  $p\in P$  at most one  $a\in A$  such that  $p\cdot a$  exists. In particular, since all edges going out of  $\varepsilon$  end in  $\varepsilon$ , G is a disjoint union of simple cycles in  $P\setminus\{\varepsilon\}$  and loops on  $\varepsilon$ . As a consequence, either the path is a cycle, and thus x and y are periodic, or k'=0 and thus x=x' since  $\sigma$  is left-marked.

## Example

#### Example

The Thue-Morse substitution  $\sigma\colon a\to ab, b\to ba$  is left-marked. Thus, it is fully recognizable for aperiodic points. The graph used in the proof is:

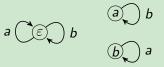


Figure: The graph associated with the Thue-Morse substitution.

# An elementary substitution is fully recognizable for aperiodic points

#### Proof.

Let  $\sigma\colon A^*\to B^*$  be an elementary substitution. We use an induction on  $\ell(\sigma)=\sum_{a\in A}(|\sigma(a)|-1)$  (see (2)). Since  $\sigma$  is elementary, it has no erasable letter, and the minimal possible value of  $\ell(\sigma)$  is 0. In this case,  $\sigma$  is a bijection from A into B, and thus it is fully recognizable.

Assume now that  $\sigma$  is not fully recognizable for aperiodic points. Thus, there exist  $x, x' \in A^{\mathbb{Z}}$ ,  $a' = x'_0 \in A$  and w with  $0 < |w| < |\sigma(x_0)|$  such that  $\sigma(x) = w\sigma(x')$  for some proper suffix w of  $\sigma(a')$ . Set  $\sigma(a') = vw$  (see Figure). We can then write  $\sigma = \sigma_1 \circ \tau_1$  with  $\tau_1 \colon A^* \to A_1^*$  and  $\sigma_1 \colon A_1^* \to B^*$  and  $A_1 = A \cup \{a''\}$  where a'' is a new letter. We have  $\tau_1(a') = a'a''$  and  $\tau_1(a) = a$  otherwise. In particular,  $\tau_1$  is left-marked. Next  $\sigma_1(a') = v$ ,  $\sigma_1(a'') = w$  and  $\sigma_1(a) = \sigma(a)$  otherwise. Since  $\ell(\tau_1) > 0$ , we have  $\ell(\sigma_1) < \ell(\sigma)$  by Equation (3).

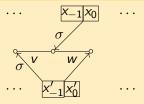


Figure: The words v, w.

#### Since

$$\sigma_1(a'')\sigma_1(\tau_1(x')) = \sigma_1(\tau_1(x)),$$

and since  $\tau_1(x_0)$  does not begin with a'',  $\sigma_1$  is not injective on  $A_1^{\mathbb{N}}$ .

By Proposition 7, we can write  $\sigma_1 = \sigma_2 \circ \tau_2$  with  $\sigma_2 : A_2^* \to B^*$  and  $\tau_2 : A_1^* \to A_2^*$  for some alphabet  $A_2$  such that  $\operatorname{Card}(A_2) < \operatorname{Card}(A_1)$  and that every letter  $c \in A_2$  appears as the first letter of some  $\tau_2(a)$  for  $a \in A_1$ . Then, by Equation (3), we have

$$\ell(\sigma_1) \ge \ell(\sigma_2) + \ell(\tau_2). \tag{4}$$

Moreover, since  $\sigma_1$  is non-erasing,  $\tau_2$  is non-erasing and thus  $\ell(\tau_2) \geq 0$ . This implies  $\ell(\sigma_1) \geq \ell(\sigma_2)$ .

Since  $\sigma$  is elementary, we have  $\operatorname{Card}(A_2) \geq \operatorname{Card}(A)$ . Since  $\operatorname{Card}(A_2) < \operatorname{Card}(A_1) = \operatorname{Card}(A) + 1$ , this forces  $\operatorname{Card}(A_2) = \operatorname{Card}(A)$ . We may also assume that  $\sigma_2$  and  $\tau_2 \circ \tau_1$  are elementary since otherwise  $\sigma$  is not elementary.



Since  $\sigma_2$  is elementary and since  $\ell(\sigma_2) \leq \ell(\sigma_1) < \ell(\sigma)$ , by the induction hypothesis,  $\sigma_2$  is fully recognizable for aperiodic points. The decomposition  $\sigma = \sigma_1 \circ (\tau_2 \circ \tau_1)$  is trim. Indeed,  $\sigma_2$  is elementary and thus non-erasing. Next, every letter of  $A_2$  appears in some  $\tau_2(a)$  and, by definition of  $\tau_1$ , it appears also in some  $\tau_2 \circ \tau_1(a)$ . Thus, we have also

$$\ell(\sigma) \ge \ell(\sigma_2) + \ell(\tau_2 \circ \tau_1). \tag{5}$$

Thus, if  $\ell(\sigma_2) > 0$ , the inequality  $\ell(\tau_2 \circ \tau_1) < \ell(\sigma)$  holds. Since  $\tau_2 \circ \tau_1$  is elementary, we obtain that  $\tau_2 \circ \tau_1$  is fully recognizable for aperiodic points by induction hypothesis. Since the family of substitutions that are fully recognizable for aperiodic points is closed under composition, we get that that  $\sigma$  is fully recognizable for aperiodic points.

Let us finally assume that  $\ell(\sigma_2)=0$ . Since  $\sigma_1(a'')=w$  is a prefix of  $\sigma(x_0)=\sigma_1(\tau_1(x_0))=\sigma_1(x_0)$  with  $x_0\in A$ , and since  $\sigma_2$  is a bijection from  $A_2$  onto B, the first letter of  $\tau_2(a'')$  is equal to the first letter of  $\tau_2(x_0)$ . Further, each letter of  $A_2$  appears as the first letter of  $\sigma_2(c)$  for some letter  $c\in A_1$ . Thus, each letter of  $\sigma_2(c)$  for some letter  $\sigma_2(c)$  for some  $\sigma_2(c)$  for some letter  $\sigma_2(c)$  for some  $\sigma_2(c)$  for some  $\sigma_2(c)$  for some  $\sigma_2(c)$  for some letter  $\sigma_2(c)$  for some  $\sigma_2(c)$  for some  $\sigma_2(c)$  for some  $\sigma_2(c)$  for some letter  $\sigma_2(c)$  for some  $\sigma_2(c)$  for some  $\sigma_2(c)$  for some  $\sigma_2(c)$  for some  $\sigma_2(c)$  for some letter  $\sigma_2(c)$  for some  $\sigma_2(c)$  for som

## Recognizability for aperiodic points

## Recognizability for aperiodic points

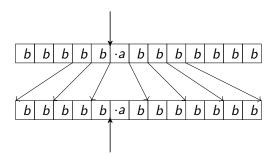
Theorem (Berthé et al. 2018 for non-erasing substitutions, B. et al. 2022)

Any morphism  $\sigma \colon A^* \to A^*$  is recognizable for aperiodic points in  $X(\sigma)$ .

## Recognizability for aperiodic points

#### Example

Let  $\sigma: a \mapsto bab, b \mapsto bb$ .



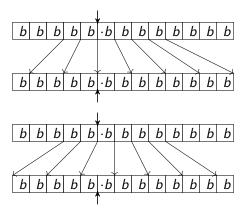
The point  $y = \cdots bbbb \cdot abbbb \cdots = S(\sigma(y))$  has a unique centered  $\sigma$ -representation (y, 1).



## Example

## Example

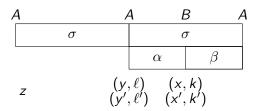
Let  $\sigma: a \mapsto bab, b \mapsto bb$ .



The point  $y = \cdots bbbb \cdot bbbbb \cdots = \sigma(y) = S(\sigma(y))$  has a two centered  $\sigma$ -representation (y,0) and (y,1).

#### Lemma

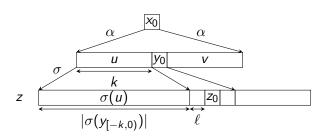
Let  $\sigma: A^* \xrightarrow{\sigma} A^*$  be a substitution and  $A^* \xrightarrow{\beta} B^* \xrightarrow{\alpha} A^*$  such that  $\sigma = \alpha \circ \beta$ . If  $\sigma$  is not recognizable in  $X(\sigma)$ , then  $\sigma \circ \alpha$  is not fully recognizable. The same statement holds for the recognizability for aperiodic points.



#### Proof of the lemma

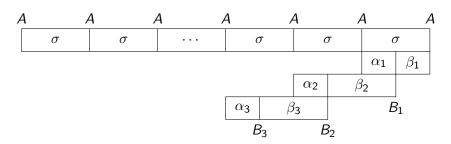
If  $\sigma$  is not recognizable in  $X(\sigma)$  then there exists  $z \in X(\sigma)$  with two centered  $\sigma$ -representations  $(y,\ell) \neq (y',\ell')$  in  $X(\sigma)$ . Let (x,k) and (x',k') be centered  $\alpha$ -representations in  $B^{\mathbb{Z}}$  of y and y' respectively (They exist since (x,k) and (x',k') have  $\sigma$ -representations in  $X(\sigma)$ ).

Then  $(x, |\sigma(y_{[-k,0)})| + \ell)$  and  $(x', |\sigma(y'_{[-k',0)})| + \ell')$  are centered  $\sigma \circ \alpha$ -representations of z in  $B^{\mathbb{Z}}$ .



#### Proof of the lemma

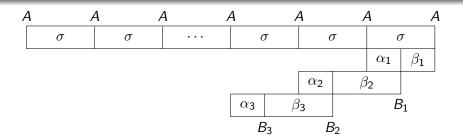
If  $(x, |\sigma(y_{[-k,0)})| + \ell) = (x', |\sigma(y'_{[-k',0)})| + \ell')$ , then x = x', u = u',  $y_0 = y'_0$ , v = v'. Thus, k = k',  $\ell = \ell'$ , and y = y'. Further, if z is aperiodic, y also since  $z = S^{\ell}(y)$ .



#### Proof of the theorem

Let  $\sigma: A^* \to A^*$  be a substitution.

Let us assume that  $\sigma$  is not recognizable in  $X(\sigma)$  for aperiodic points.



#### Proof of the theorem

Let  $\sigma: A^* \to A^*$  be a substitution.

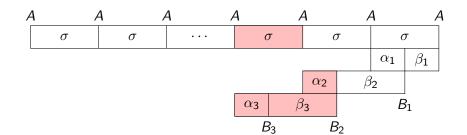
Let us assume that  $\sigma$  is not recognizable in  $X(\sigma)$  for aperiodic points.

We define  $\alpha_0 \colon A^* \to A^*$  as the identity substitution.

Thus,  $\sigma = \sigma \circ \alpha_0$  is not elementary. We decompose it into  $\alpha_1 \circ \beta_1$  through  $B_1$  such that  $Card(B_1) < Card(A)$ .

Then,  $\sigma \circ \alpha_1$  is not fully recognizable for aperiodic points by the above lemma.

Thus,  $\sigma \circ \alpha_1$  is not elementary.



#### Proof of the theorem

We decompose it into  $\sigma \circ \alpha_1 = \alpha_2 \circ \beta_2$  through  $B_2$  such that  $Card(B_2) < Card(B_1)$ .

Again,  $\sigma \circ \alpha_2$  is not fully recognizable for aperiodic points and thus not elementary.

Inductively, we define  $\sigma \circ \alpha_i = \alpha_{i+1} \circ \beta_{i+1}$  through  $B_{i+1}$  such that  $Card(B_{i+1}) < Card(B_i)$ .

We get a contradiction since  $Card(A) < \infty$ .