Master 2 Mathematics and Computer Science Symbolic Dynamics. Lecture 3

Marie-Pierre Béal

University Gustave Eiffel Laboratoire d'informatique Gaspard-Monge UMR 8049

One-sided shift spaces

One-sided shift spaces

Overview

- One-sided shift spaces
- Decidability of conjugacy of one-sided shifts of finite type

One-sided shift spaces

A *one-sided shift space* is a closed subset X of $A^{\mathbb{N}}$ such that $S(X) \subseteq X$.

One-sided shift spaces are usually defined as closed subsets such that S(X) = X, but we do not require this stronger condition here.

The set $A^{\mathbb{N}}$ itself is a one-sided shift space, called the *one-sided full shift*.

For a two-sided sequence $x \in A^{\mathbb{Z}}$, we define $x^+ = x_0 x_1 \cdots$. If X is a two-sided shift space, then the set $X^+ = \{x^+ \mid x \in X\}$ is a one-sided shift space.

One-sided shift spaces of finite type

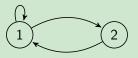
A one-sided shift space is *of finite type* if it is the set X_F of one-sided sequences over A avoiding all words of some finite set $F \subseteq A^*$.

A one-sided edge shift is the set X_G of right-infinite paths in a finite directed graph G. Note that the paths may start at any state.

One-sided shift spaces of finite type

Example

The one-sided edge shift X_G represented by the directed graph G:



is also defined by the adjacency matrix of G, that is, by the matrix

$$M = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
.

One-sided conjugacy

The one-sided (sliding) block map defined by f is the map $\varphi: X \to B^{\mathbb{N}}$ defined by $\varphi(x) = y$ if for every $i \in \mathbb{N}$, $y_i = f(x_{[i,i+n]})$, where $f: \mathcal{B}_{n+1}(X) \to B$.

n is the anticipation, and no memory is allowed.

$$x_0 \cdots x_{i-1} x_i \cdots x_{i+n} x_{i+n+1} \cdots$$
 $f \downarrow \\ y_0 \cdots y_{i-1} y_i y_{i+1} \cdots$

A one-sided conjugacy $\varphi \colon X \to Y$ is a bijective one-sided block map. Its inverse is also a block map.

One-sided edge shifts

Proposition

Any one-sided shift of finite type is conjugate to a one-sided edge shift.

Proof.

The same proof as for two-sided edge shifts.

Out-splitting (reminder, see Lecture 2)

Let X_G be a one-sided edge shift defined by a directed graph G=(V,E). We may assume that the graph is *trim*, that is, that each vertex has at least one outgoing edge.

An out-splitting of G is a transformation of G into a graph G' = (V', E') obtained by selecting a vertex s and partitioning the set of edges going out of s into two non-empty sets E_1 and E_2 .

- $V' = V \setminus \{s\} \cup \{s_1, s_2\}$,
- \bullet E' contains all edges of E neither starting at or ending in s,
- E' contains the edge (s_1, a, t) for each edge $(s, a, t) \in E_1$, and the edge (s_2, a, t) for each edge $(s, a, t) \in E_2$, so long as $t \neq s$,
- E' contains the edges (t, a, s_1) and (t, a, s_2) if (t, a, s) in E, when $t \neq s$,
- E' contains the edges (s_1, a, s_1) and (s_1, a, s_2) if (s, a, s) in E_1 , and the edges (s_2, a, s_1) and (s_2, a, s_2) if $(s, a, s) \in E_2$.

Out-splitting (reminder, see Lecture 2)

Example

The graph G' in the right part of the figure is an out-split of the graph G in the left part of the figure. Here, s=1, and the partition of the outgoing edges of 1 is $\{E_1, E_2\}$, where E_1 contains the loop around 1, and E_2 contains the two edges going from 1 to 2.

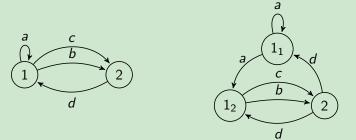


Figure: An out-splitting.

Out-merging

The inverse operation of an out-splitting is referred to as an out-merging. An out-merging of a directed graph G' = (V', E') can be performed if there are two vertices s_1, s_2 of G' such that the adjacency matrix M' satisfies:

• the column of index s_1 is equal to the column of index s_2 of M'.

The adjacency matrix of G is thus the matrix M obtained by adding the rows of index s_2 to the row of index s_1 of M' and then removing the column of index s_2 afterward.

The graph G is called an *elementary amalgamation* of G'. Notice that even if M' has 0-1 entries, M may not have 0-1 entries.

General amalgamation

Let M' be the adjacency matrix of a directed graph G', and (V_1, V_2, \ldots, V_k) be a partition of V' into classes such that if s, t belong to the same class, then the columns of indices s and t of M' are identical.

When at least one set of the partition has a size greater than 1, we can perform a *general merging*. We define a graph K of adjacency matrix N obtained by merging all states of each

 $V_i = \{s_{i,1}, \dots s_{i,k_i}\}$ into a single state $s_{i,1}$.

The row in N corresponding to $s_{i,1}$ is obtained by summing the rows of the states of V_i in M' and removing the columns $s_{i,2}, \dots, s_{i,k_i}$.

The graph K is called a *general amalgamation* of G'.

Decomposition theorem

Proposition (R. Williams 1973)

Let X (resp. Y) be a one-sided edge shift defined by an irreducible directed graph G (resp. H), Then X and Y are conjugate if and only if there is a sequence of out-splittings and out-mergings from G to H.

Proof.

The same proof as the proof for two-sided edge shifts. Here we use only out-splittings and out-mergings. \Box

Two out-merging transformations commute

Proposition (R. Williams 1973)

If G and H are amalgamations of a common directed graph L, then they have a common amalgamation K.

Proposition (R. Williams 1973)

Let G and H be irreducible directed graphs that define one-sided edge shifts X_G and X_H . Then X_G and X_H are conjugate if and only if G and H have the same total amalgamation.

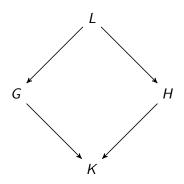
It also holds for one-sided edge shifts defined by trim directed graphs.

Decidability of conjugacy of one-sided shifts of finite type

Corollary (R. Williams 1973)

It is decidable whether two one-sided shifts of finite are conjugate.

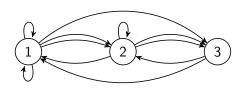
One-sided conjugacy



Two out-merging transformations commute.

There is a unique graph, up to a renaming of the vertices, obtained by performing elementary out-mergings until we cannot perform anymore. This graph is called the *total amalgamation* of G.

Total amalgamation



$$M = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 1 & 2 \\ 1 & 1 & 0 \end{bmatrix}$$

$$N = \begin{bmatrix} 3 & 3 \\ 1 & 0 \end{bmatrix}$$