Master 2 Mathematics and Computer Science Symbolic Dynamics. Lecture 1

Marie-Pierre Béal

University Gustave Eiffel Laboratoire d'informatique Gaspard-Monge UMR 8049

Overview

- Shift spaces. Shifts of finite type. Sofic shifts.
- Irreducible sofic shifts. Minimal deterministic presentation.

Words and languages

Let A be a finite alphabet. The elements of A are called letters or symbols.

A word on A is a finite sequence of elements of A, denoted by $a_0 a_1 \cdots a_{n-1}$.

The set of words on A is denoted by A^* , the *empty word* by ε , and he set of nonempty words by A^+ .

A word u occurs in a word w, or is a block of w if w = pus for some words p, s.

A language is a set of words.

Sequences

Let A be a finite alphabet.

A two-sided sequence is a sequence $x = (x_n)_{n \in \mathbb{Z}} \in A^{\mathbb{Z}}$.

For $i \leq j$, we write

$$x_{[i,j]} = x_i x_{i+1} \cdots x_j$$
 and $x_{[i,j)} = x_i x_{i+1} \cdots x_{j-1}$.

A word u occurs in a sequence x if $u = x_{[i,j)}$ for some i,j. One also says that u is a block of x, and that the integer i is an occurrence of u in x.

Topology and shift transformation

The set $A^{\mathbb{Z}}$ of two-sided infinite sequences of elements of A is a metric space for the distance defined for $x \neq y$ by $d(x,y) = 2^{-r(x,y)}$ where

$$r(x,y) = \inf\{|n| \mid n \in \mathbb{Z}, x_n \neq y_n\}. \tag{1}$$

The topology induced by this metric coincides with the product topology on $A^{\mathbb{Z}}$, using the discrete topology on A. Since a product of compact spaces is compact, $A^{\mathbb{Z}}$ is a compact metric space.

Let S denote the *shift transformation*, defined for $x \in A^{\mathbb{Z}}$ by S(x) = y if $y_n = x_{n+1}$ for $n \in \mathbb{Z}$. It is continuous and one-to-one from $A^{\mathbb{Z}}$ to itself.

Shift spaces

A set $X \subseteq A^{\mathbb{Z}}$ is *shift-invariant* if S(X) = X (or, equivalently $S^{-1}(X) = X$).

A *shift space* on the alphabet A is a subset of $A^{\mathbb{Z}}$ which is

- (i) topologically closed,
- (ii) shift-invariant.

For a language $F \subseteq A^*$, the set of sequences $x \in A^{\mathbb{Z}}$ such that no word of F occurs in it is denoted by X_F .

Shift spaces

Proposition

A set $X \subseteq A^{\mathbb{Z}}$ is a shift space if and only if $X = X_F$ for some $F \subseteq A^*$.

Proof.

Exercise.

Solution

Assume first that X is a shift space on A and let F be the set of words on A that do not occur in the elements of X. Then $X \subseteq X_F$. Conversely, let $x \in X_F$. For every $n \ge 1$, the word $x_{[-n,n]}$ is not in F and is thus a block of some $y^{(n)} \in X$. Since X is shift-invariant, we may choose $y^{(n)}$ such that $y_{[-n,n]}^{(n)} = x_{[-n,n]}$. The sequence $y^{(n)}$ converges to x, and since X is closed, this implies $x \in X$.

Conversely, consider $X = X_F$. Then X is clearly closed and shift-invariant, and thus it is a shift space.

Examples

The full shift $A^{\mathbb{Z}}$.

The golden mean shift is the set X of two-sided infinite sequences on $A = \{a, b\}$ with no consecutive b.

In other terms, $X = X_F$ with $F = \{bb\}$.

Shifts of finite type and sofic shifts

A shift of finite type is a shift $X = X_F$ for some finite set F. The golden mean shift is a shift of finite type.

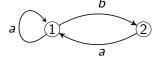
An easy way to define a shift space is to use a finite graph \mathcal{A} with edges labeled by letters in A. Then the set $X(\mathcal{A})$ of labels of two-sided infinite paths in \mathcal{A} is easily seen to be shift-invariant.

It can be shown to be also closed (Exercise).

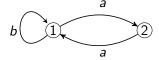
Thus, it is a shift space, called a sofic shift.

A shift of finite type is sofic but the converse is not true (Exercise).

Example of a shift of finite type: the golden mean shift



Example of a sofic shift: the even shift



X(A) is a shift space: Solution

Let A be a graph with edges labeled by letters in A.

Let E be the set of edges of the graph A. The set of bi-infinite paths in A is the shift X_F on the alphabet E, with F being the words of length 2 of the form ef, where e, f are not consecutive. Thus, it is a shift space.

The set X(A) is the image of X_F under the map which assigns to a path its label. Since this map is continuous, the conclusion follows.

A shift of finite type is sofic: solution

Let $X=X_F$ with $F\subseteq A^*$ a finite set. Let $\mathcal{A}=(Q,I,T)$ be a trim automaton recognizing the language $A^*\setminus A^*FA^*$. The set of labels of two-sided infinite paths in \mathcal{A} is equal to X.

The automaton is trim if every state is accessible and coaccessible. Note: the proof holds when F is only regular.

A shift of finite type is sofic: another solution

Let $X = X_F$ with $F \subseteq A^*$ a finite set.

Let n be the maximal size of words in F.

Let A be the graph whose states are the words of length n-1 that do not contain any word of F, and with edges

$$a_0a_1\ldots a_{n-2}\xrightarrow{a_0}a_1\ldots a_{n-2}a,$$

where $a_0 a_1 \dots a_{n-2} a$ does not contain any word of F. The set of labels of two-sided infinite paths in A is equal to $X = X_F$.

Example with $F = \{bb\}$ on the board.

The even shift is not of finite type: solution

Assume that $X = X_F$ with $F \subseteq A^*$ formed of words of length at most n.

Then every block of length n of $x = {}^{\omega}a \cdot ba^{2n+1}ba^{\omega}$ is in $\mathcal{B}_n(X)$, and thus x has no block in F, a contradiction since $x \notin X$.

Language of a shift space

If X is a shift space, the set of blocks of sequences in X is denoted by $\mathcal{B}(X)$. The set of blocks of length n of sequences in X is denoted by $\mathcal{B}_n(X)$.

A language L is called *factorial* if it contains the words occurring as blocks in its elements, that is, if $uvw \in L$, then $v \in L$. It is *extendable* if every $u \in L$ is *extendable*, that is, there are letters $a, b \in A$ such that $aub \in L$.

Proposition

The language of a shift space is factorial and extendable. Conversely, for every factorial and extendable language L, there is a unique shift space X such that $\mathcal{B}(X) = L$. It is the set X(L) of sequences $X \in A^{\mathbb{Z}}$ with all their blocks in L. For every factorial and extendable language L and every shift space X, the following equalities hold: $\mathcal{B}(X(L)) = L$, and $X(\mathcal{B}(X)) = X$.

Solution

Let L be a factorial extendable language. Let X(L) be the set of all sequences with all their blocks in L. Clearly, X(L) is a shift space and $\mathcal{B}(X(L)) \subseteq L$.

For $u \in L$, since L is extendable, there are sequences $(a_n)_{n\geq 0}$ and $(b_n)_{n\geq 0}$ such that $a_n\cdots a_0ub_0\cdots b_n\in L$. Since L is factorial, the sequence $\cdots a_0\cdot ub_0b_1\cdots$ is in X(L). This shows that $L\subseteq \mathcal{B}(X(L))$, and thus that $\mathcal{B}(X(L))=L$.

The second equality holds because for any $x \in X(\mathcal{B}(X))$, one has $x_{[-n,n]} \in \mathcal{B}(X)$ and thus x belongs to the closure of X, whence to X. Thus, the map $L \mapsto X(L)$ is the inverse of the map $X \mapsto \mathcal{B}(X)$.

Example

Find an example of a language L such that $\mathcal{B}(X(L)) \neq L$.

Solution

Set $L = a^*ba^*$. Then L is not factorial and X(L) is empty.

Cylinders

Let X be a shift space. For two words u, v such that $uv \in \mathcal{B}(X)$, the set

$$[u \cdot v]_X = \{x \in X \mid x_{[-|u|,|v|)} = uv\}$$

is nonempty. It is called the *cylinder* with basis (u, v). For $v \in \mathcal{B}(X)$, we also define

$$[v]_X = \{ x \in X \mid x_{[0,|v|)} = v \}$$

in such a way that $[v]_X = [\varepsilon \cdot v]_X$. The set $[v]_X$ is called the *right* cylinder with basis v.

The open sets contained in X are the unions of cylinders and the clopen sets are the finite unions of cylinders (Exercises).

Solutions

Every cylinder is an open set, and thus every union of cylinders is open. Next, in any metric space, every open set is a union of open balls. But the open balls in X are cylinders.

Every cylinder is a clopen set because the complement of $[u \cdot v]$ is the union of the cylinders $[u' \cdot v']$ with $u' \neq u$ of the same length as u and v = v', or u' = u and $v' \neq v$ of the same length as v. Conversely, if U is clopen, it is, as an open set, a union of cylinders $[u \cdot v]$ for a set of pairs (u, v) such that $uv \in \mathcal{B}(X)$. Since U is closed, it is compact. Thus, there is a finite set of pairs (u, v) such that the union is equal to U.

Irreducible shift

A nonempty shift space X is *irreducible* if, for every $u, v \in \mathcal{B}(X)$, there is a word w such that $uwv \in \mathcal{B}(X)$.

Example

The golden mean shift X is irreducible. Indeed, if $u, v \in \mathcal{B}(X)$, then $uav \in \mathcal{B}(X)$.

Reducible shift

Example

The shift X formed of the labels of two-sided infinite paths in the graph below is reducible. Indeed, there is no word u such that $bua \in \mathcal{B}(X)$.

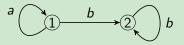


Figure: A reducible shift.

Uniformly recurrent shift

A nonempty shift space X is *uniformly recurrent* if for every $w \in \mathcal{B}(X)$ there is an integer $n \geq 1$ such that w occurs in every word of $\mathcal{B}_n(X)$.

As an equivalent definition, a shift space X is uniformly recurrent if for every $n \ge 1$ there is an integer $N = R_X(n)$ such that every word of $\mathcal{B}_N(X)$ occurs in every word of $\mathcal{B}_N(X)$. The function R_X is called the *recurrence function* of X.

Example

Example

The golden mean shift X is not uniformly recurrent since b is in $\mathcal{B}(X)$ although b does not occur in any $a^n \in \mathcal{B}(X)$.

Deterministic automaton in symbolic dynamics

An automaton $\mathcal{A} = (Q, E)$ is a finite directed (multi)graph with edges labeled on A. The set of edges is included in $Q \times A \times Q$.

It is *trim* if each state has at least one outgoing edge and at least one incoming edge.

It is (uncomplete) *deterministic* if, for each state $p \in Q$ and each letter $a \in A$, there is at most one edge labeled by a going out of p.

It is irreducible if its graph is strongly connected.

It is a *presentation* of a sofic shift X if X is the set of labels of bi-infinite paths of A.

Proposition

Every sofic shift has a trim deterministic presentation.

Proposition

Every irreducible sofic shift has a unique minimal deterministic presentation (irreducible deterministic and with the fewest number of states among these presentations).

Deterministic automaton in symbolic dynamics

Proposition

Every sofic shift has a trim deterministic presentation.

Proof.

Start with a trim presentation $\mathcal{A}=(Q,E)$. Apply the subset construction: $\mathcal{D}=(\mathfrak{P}(Q)\setminus\emptyset,\Delta)$. There is an edge $P\stackrel{a}{\to}P'$ in Δ is $P'=\{q\in Q\mid\exists p\in P,p\stackrel{a}{\to}q\}$. Start from P=Q.

Proposition

Every irreducible sofic shift has a unique minimal deterministic presentation.

Start with a trim deterministic presentation $\mathcal{A} = (Q, E)$ of X.

Proof.

of X.

For $q \in Q$, let $\operatorname{Fut}(q) = \{w \in A^* \mid \text{there is a path labeled by } w \text{ starting at } q\}$. We say that \mathcal{A} is reduced if $p \neq q$ implies $\operatorname{Fut}(p) \neq \operatorname{Fut}(q)$. If \mathcal{A} is not reduced, there are two states $p \neq q$ with $\operatorname{Fut}(p) = \operatorname{Fut}(q)$. Merge p, q: let $\mathcal{A}' = (Q', E')$ with $Q' = Q \setminus \{p, q\} \cap \{(p, q)\}$, where (p, q) is a new state and E' is the set of edges $(\pi(r), a, \pi(s))$ with (r, a, s) in E, $\pi(t) = t$ if $t \neq p, q$, $\pi(p) = \pi(q) = (p, q)$. The automaton \mathcal{A}' is still a trim deterministic presentation

proof continued.

Let A be a reduced trim deterministic presentation of X.

The automaton $\mathcal A$ has a *synchronizing word*: a word w such that all paths labeled by w end in the same state q_w .

Indeed, let

 $rank(w) = Card\{q \mid \exists \text{ a path labeled by } w \text{ ending in } q\}.$

Let w be a word of minimal non-null rank. Let us show that rank(w) = 1.

If rank(w) > 1, let (p, w, q), (p', w, q') be two paths with $q \neq q'$.

Since $Fut(q) \neq Fut(q')$, let u be a word such that

 $u \in \operatorname{Fut}(q) \setminus \operatorname{Fut}(q')$ (or the converse).

Then, rank(wu) < rank(w) and $rank(wu) \neq 0$.

proof continued.

Let $\mathcal B$ be the irreducible part of $\mathcal A$ containing q_w . Then $\mathcal B$ is an irreducible deterministic presentation of X that is reduced. Indeed, let u be a block in $\mathcal B(X)$. There are blocks v,v' such that $wvuv'w\in \mathcal B(X)$. Hence, there is a path in $\mathcal A$ labeled vuv'w from q_w to q_w , implying that u is the label of a path in $\mathcal B$. Conversely, labels of bi-infinite paths of $\mathcal B$ belong to X.

Finally, let C = (Q', E') be another reduced irreducible deterministic presentation of X.

Let w be a synchronizing word for \mathcal{B} and w' be a synchronizing word for \mathcal{C} . There is a word u such that $wuw' \in \mathcal{B}(X)$. Thus z = wuw' is a synchronizing word for both \mathcal{B} and \mathcal{C} .

We define a bijection f from Q to Q' as follows: $f(q_z) = q'_z$. If $q \in Q$ and u is the label of a path from q_z to q, we define f(q) as the end of the unique path labeled by u going out of q'_z in C.

Local automaton

A deterministic automaton $\mathcal{A}=(Q,E)$ is *local* if there is an integer n such that, for each word w of length n, all paths labeled by w end in the same state q_w .

Proposition

An irreducible shift X is of finite type if and only if its minimal deterministic automaton is local.

Proof.

Exercise.

solution

Proof.

Let $X = X_F$ be an irreducible shift of finite type. Without loss of generality, we may assume that all words of F have the same length n.

Let $\mathcal{A}=(Q,E)$, where Q is the set of words of length n-1 with edges

$$a_0a_1\ldots a_{n-2}\stackrel{a}{\to}a_1\ldots a_{n-2}a,$$

where $a_0 a_1 \dots a_{n-2} a \notin F$. We keep only the trim part of this automaton.

Then \mathcal{A} is deterministic and irreducible. Indeed, let $p=u,\ q=v$. Then $u,\ v$ are blocks of X (say why). Since X is irreducible, there is a word w such that $uwv \in \mathcal{B}(X)$. By construction, there is a path from p to q in \mathcal{A} labeled by wv.

solution

Proof.

The automaton A is local. Indeed, by construction, any path labeled by w of length n-1 ends in the state w.

Since \mathcal{A} is local, after a reduction (two states with the same future are identified), it remains local.

The (unique) minimal deterministic automaton of X can be obtained with a reduction of A. It is thus local.

Conversely, if the minimal deterministic automaton $\mathcal B$ of X is local: there is an integer $k\geq 0$ such that for each w of length k, all paths of $\mathcal B$ labeled by w end in the same state q_w .

Let F be the set of words of length k+1 that do not label any path in \mathcal{B} .

Then $X = X_F$ (say why).

Local automaton

Proposition

An irreducible deterministic automaton is local if and only if it has at most one cycle with a given label.

Proof.

Exercise.

cycle: path $p = p_0 \xrightarrow{a_0} p_1 \xrightarrow{a_1} p_2 \dots \xrightarrow{a_{m-1}} p_m = p$. m is the length of the cycle.

Solution

Proof.

Let A be a deterministic irreducible automaton. If A has two cycles sharing the same label w.

$$p = p_0 \xrightarrow{a_0} p_1 \xrightarrow{a_1} p_2 \dots \xrightarrow{a_{m-1}} p_m = p',$$

$$p' = p'_0 \xrightarrow{a_0} p'_1 \xrightarrow{a_1} p'_2 \dots \xrightarrow{a_{m-1}} p'_m = p'.$$

We have $p_i \neq p'_i$ for some $0 \leq i < m$.

Since \mathcal{A} is deterministic, $p_i \neq p'_i$ for all $0 \leq i < m$.

Then, for any n = k|w| + j, $0 \le j < |w|$, $w^k w_{[0,j)}$ is the label of a path ending in p_j and of a path ending in $p_j' \ne p_j$.

Thus, A cannot be local.

Solution

Proof.

Conversely, if A is not local, then, for any integer n there are two paths labeled by a word $w^{(n)}$ of length n ending in distinct states. We choose $n = (\text{Card } Q)^2$. These two paths are

$$p = p_0 \xrightarrow{a_0} p_1 \xrightarrow{a_1} p_2 \dots \xrightarrow{a_{n-1}} p_n = p',$$

$$p' = p'_0 \xrightarrow{a_0} p'_1 \xrightarrow{a_1} p'_2 \dots \xrightarrow{a_{n-1}} p'_n = p'.$$

If $p_i = p_i'$ for some $0 \le i < n$, then p = p', a contradiction. Hence $p_i \ne p_i'$ for all $0 \le i < n$. By the pigeonhole principle, there are $0 \le i < j < n$ such that $(p_i, p_i') = (p_j, p_j')$, implying the existence of two cycles sharing the same label.