L3. Programmation orientée objet. Cours 11

Marie-Pierre Béal (Cours de Cyril Nicaud)

Compléments : Algorithmique et structures de données en Java. Hachage.

>‘.’< Université
~" Gustave Eiffel

Algorithmique et structures de données en Java.

Algorithmique et structures de
données en Java.

Hachage

Requétes sur une structure de données non mutables

Une structure de données est une fagcon d’organiser la mémoire
pour y représenter un ensemble de données

Une structure de donnée est non mutable quand elle n’est pas
modifiée aprés son initialisation

Une requéte typique sur ce genre de structure consiste a parcourir
ses éléments pour : chercher un élément, ...

Si on considére que ses éléments sont de plus ordonnés, on peut
également demander accés au i-eme élément dans |'ordre : c'est le
cas pour les tableaux et les listes.

Requétes sur une structure de données non mutables

On va se focaliser pour le moment sur les deux requétes suivantes :
list.contains(x) : Est-ce que l'objet x est dans list ?
list.get (i) : Quel est I'objet en position i dans 1list?

ou list est une liste tableau non mutable.

‘contains get (i)
liste tableau | ©(n) O(1)

Et si la liste tableau est mutable ?

Nouveau cahier des charges

On veut une structure ordonnée list avec les requétes suivantes :
list.contains(x) : Est-ce que l'objet x est dans list ?
list.get (i) : Quel est I'objet en position i dans 1ist?
list.add(x) : Ajoute x a la fin de 1list
list.removeLast () : Supprime le dernier élément de 1list

ou list est une liste tableau mutable, une ArrayList

C’est une structure de données dynamique : elle évolue au cours du
temps avec les ajouts/suppressions.

Structures de données mutables

Regardons pour les ArrayList

Si on un tableau est assez grand (qui n'a pas a étre étendu)

0 1 2 3 4 5 6 7
(8]a]2|7|1]3 4|

utilisés inutilisés —

capacity=8
n=5

Les complexités sont encore en ©(1), sauf contains(x) en ©(n)

Structures de données mutables

Regardons pour les ArrayList
Si on a plus assez de place, on double la capacité.

Il faut ré-allouer un tableau et recopier les éléments.

Probleme : la complexité devient ©(n) quand on déclenche de
doublement de la capacité.

Complexité amortie

Définition version ©. Un algorithme est de complexité amortie O(t,)
quand n appels a cet algorithme se font en temps total ©(n x t,)

On ne regarde pas un seul appel a I'algorithme
On calcule la complexité cumulée de n appels

On divise par n le résultat pour avoir la complexité amortie

— Cela permet de quantifier qu'il ne peut pas y avoir beaucoup de
pires cas consécutivement

Définition version O. Un algorithme est de complexité amortie O(t,)
quand n appels a cet algorithme se font en temps total O(n x t,)

Complexité amortie et tableaux dynamiques

Définition version ©. Un algorithme est de complexité amortie O(t,)
quand n appels a cet algorithme se font en temps total ©(n x t,)

Théoréme. L’'ajout a la fin d'un tableau dynamique, a partir d’un
tableau vide, a une complexité amortie en ©(1).

‘ contains(x) get(i) add
tableaux dynamiques ‘ ©(n) ©(1) ©O(1) amortie

C’est une structure de données treés utilisée :
ArrayList en java
listes/tableaux de python

Complément : preuve du théoreme

Théoreme. L'ajout a la fin d'un tableau dynamique, a partir d'un
tableau vide, a une complexité amortie en O(1).

Preuve. On compte le nombre d’écritures dans un tableau, qui
correspond bien aux lignes les plus effectuées. On a deux cas selon la
taille t du tableau :
si t = 2K est une puissance de 2, alors redimensionner le tableau et
recopier les valeurs colite t écritures, plus 1 pour la nouvelle valeur
sinon, cela colite juste 1 écriture
Si on compte le nombre E, d'écritures pour n insertions, on a donc

m

E,=n+ Z2k, ou m = [log,(n)]
k=0

Comme Y7, 2k —2m+l _ 1 <2x2m<2n onakE,<3n
On a aussi E, > n, et donc la complexité de n insertions est en ©(n).

On a bien montré que la complexité amortie de I'insertion est en ©(1)

Sets & Maps

Cahier des charges pour représenter des ensembles :

new XXX<>() (on prendra new HashSet<>()) : initialise un
ensemble vide

set.add(x) : ajoute x a I'ensemble set s'il n'y est pas déja (pas
de doublon dans un ensemble)

set.contains(x) : teste si x est dans set

set.remove(x) : enléve x de I'ensemble set.

La structure n’est pas indexée : pas de j-eme élément

Cahier des charges pour les maps

Le cahier des charges pour représenter des maps :
new XXX<>() (on prendra new HashMap<>()) : initialise une map
sans clé

map.put (k, v) : attribue la valeur v a la clé k dans la map. S'il y
avait déja une valeur attribuée a la clé k, elle est changée

map.get (k) : renvoie la valeur associée a la clé k dans map
map.contains (k) : teste si la clé k est dans map

map.remove (k) : enléve la clé k (et la valeur associée) de map

La structure n'est pas ordonnée : pas de i-eme élément

Tableaux dynamiques/ HashMap

Si on cherche tous les mots différents d'un texte on utilisant des
ArrayList, le temps de calcul va étre élevé.

Le temps mis sur un roman de 524 kilo-octets est environ 2 secondes.

Pire encore si on veut compter le nombre de fois qu'apparait chaque
mot dans un texte avec des ArrayList de couple (k, v).

Pour le roman La Peste, cela prend prés de 32 secondes !

Avec une HashMap, au lieu de 32 secondes, cela prend maintenant 0.02
secondes !

Le miracle : le hachage

Hachage

Principe pour les ensembles

L'idée est d'utiliser
un tableau T, de longueur m, appelé la table

une fonction h qui associe a une clé k un entier positif h(k),
appelée la fonction de hachage

On souhaite implanter le cahier des charges de la facon suivante :
pour ajouter la clé x, on la met dans la case T[h(x)]
pour chercher si x est dans T, on regarde dans la case T[h(x)]
pour supprimer la clé x, on I'enleve de la case T[h(x)]

Remarque : h(x) peut étre trop grand, donc on utilise h(x) mod m
(quand on a une table de taille m)

Principe pour les ensembles

L'idée est d'utiliser
un tableau T, de longueur m, appelé la table
une fonction h qui associe a une clé k un entier positif h(k),
appelée la fonction de hachage

On souhaite implanter le cahier des charges de la facon suivante :
pour ajouter la clé x, on la met dans la case T[h(x)]
pour chercher si x est dans T, on regarde dans la case T[h(x)]
pour supprimer la clé x, on I'enléve de la case T[h(x)]

Remarque : h(x) peut étre trop grand, donc on utilise h(x) mod m
(quand on a une table de taille m)

AC

Eléments ajoutés : "AC" (4),

Principe pour les ensembles

L'idée est d'utiliser
un tableau T, de longueur m, appelé la table
une fonction h qui associe a une clé k un entier positif h(k),
appelée la fonction de hachage

On souhaite implanter le cahier des charges de la facon suivante :
pour ajouter la clé x, on la met dans la case T[h(x)]
pour chercher si x est dans T, on regarde dans la case T[h(x)]
pour supprimer la clé x, on I'enléve de la case T[h(x)]

Remarque : h(x) peut étre trop grand, donc on utilise h(x) mod m
(quand on a une table de taille m)

PR AC
0 1 2 3 4 5 6 7
Eléments ajoutés : "AC” (4), "PR" (1),

Principe pour les ensembles

L'idée est d'utiliser
un tableau T, de longueur m, appelé la table
une fonction h qui associe a une clé k un entier positif h(k),
appelée la fonction de hachage

On souhaite implanter le cahier des charges de la facon suivante :
pour ajouter la clé x, on la met dans la case T[h(x)]
pour chercher si x est dans T, on regarde dans la case T[h(x)]
pour supprimer la clé x, on I'enléve de la case T[h(x)]

Remarque : h(x) peut étre trop grand, donc on utilise h(x) mod m
(quand on a une table de taille m)

PR | VB AC
0 1 2 3 4 5 6 7
Eléments ajoutés : "AC" (4), "PR" (1), "VB" (10),

Principe pour les ensembles

L'idée est d'utiliser
un tableau T, de longueur m, appelé la table
une fonction h qui associe a une clé k un entier positif h(k),
appelée la fonction de hachage

On souhaite implanter le cahier des charges de la facon suivante :
pour ajouter la clé x, on la met dans la case T[h(x)]
pour chercher si x est dans T, on regarde dans la case T[h(x)]
pour supprimer la clé x, on I'enléve de la case T[h(x)]

Remarque : h(x) peut étre trop grand, donc on utilise h(x) mod m
(quand on a une table de taille m)

PR | VB AC MvdB
o 1 2 3 4 5 6 7
Eléments ajoutés : "AC" (4), "PR” (1), "VB" (10), "MvdB" (15),

Principe pour les ensembles

L'idée est d'utiliser
un tableau T, de longueur m, appelé la table
une fonction h qui associe a une clé k un entier positif h(k),
appelée la fonction de hachage

On souhaite implanter le cahier des charges de la facon suivante :
pour ajouter la clé x, on la met dans la case T[h(x)]
pour chercher si x est dans T, on regarde dans la case T[h(x)]
pour supprimer la clé x, on I'enléve de la case T[h(x)]

Remarque : h(x) peut étre trop grand, donc on utilise h(x) mod m
(quand on a une table de taille m)

PR | VB AC MvdB
0 1 2 3 4 5 6 7
"PR"€ T : on calcule h(PR) =1 et on le trouve en T[1]

Principe pour les ensembles

L'idée est d'utiliser
un tableau T, de longueur m, appelé la table
une fonction h qui associe a une clé k un entier positif h(k),
appelée la fonction de hachage

On souhaite implanter le cahier des charges de la facon suivante :
pour ajouter la clé x, on la met dans la case T[h(x)]
pour chercher si x est dans T, on regarde dans la case T[h(x)]
pour supprimer la clé x, on I'enléve de la case T[h(x)]

Remarque : h(x) peut étre trop grand, donc on utilise h(x) mod m
(quand on a une table de taille m)

PR | VB AC MvdB
0 1 2 3 4 5 6 7
"GR"¢ T : on calcule h(GR) =11 et il n'est pas en T[3]

Trois points a régler

PR

VB

AC

MvdB

Trois points a régler

PR | VB AC MvdB

Que faire si on veut ajouter dans une case déja occupée? Par
exemple la clé "CN" avec h(CN) =47

Comment choisir la fonction de hachage h?

Comment choisir la taille m de la table T ?

Gestion des collisions

Définition. On dit qu'il y a une collision quand deux clés sont envoyées
sur la méme case de la table. Mathématiquement : h(x) = h(y)
mod m pour deux clés x # y

Il existe deux facons principales de gérer les collisions
Externe : chaque case contient une liste chainée des clés.

Interne : si une autre clé est déja présente, on insere ailleurs dans
la table (un peu plus loin)

python utilise du hachage interne, java du hachage externe

Et les maps?

Question : On n'a vu que les sets, peut-on utiliser les tables de
hachages pour les maps?

Et les maps?

Question : On n'a vu que les sets, peut-on utiliser les tables de
hachages pour les maps?

OUI! il suffit de
Stocker des paires [k, v], ol k est la clé et v la valeur
Manipuler les fonctions de hachage uniquement sur les clés k
.. .et ca fonctionne pareil

PR | VB AC MvdB
17 | -8 7 9

0 1 2 3 4 5 6 7

h(AC)=4 h(PR)=1 h(VB)=10 h(MvdB)=15

Pareil pour le hachage externe, on stocke les paires [k, v] dans les listes
chaTnées ou dans les tableaux dynamiques

Table de hachage externe en Java : les HashSet

En fait, en Java un HashSet est implémenté avec une HashMap

public class HashSet<E> ... {
HashMap<E,Object> map;
// Dummy value to associate with an Object in the backing Map
static final Object PRESENT = new Object();

public HashSet() {
map = new HashMap<>();

}

public boolean contains(Object o) {
return map.containsKey (o) ;

}

public boolean add(E e) {
return map.put(e, PRESENT)==null;

}

public boolean remove(Object o) {
return map.remove (o)==PRESENT;

}

Table de hachage externe en Java : les HashMap

(AC,7) (PR,17) (VB,-8) (MvdB,9)
hash(AC) =4 hash(PR) =1 hash(VB) =1 hash(MvdB) =7

0 null

1 | PR, 17] VB, -8 F— null

2 null

3 ki, v1 { ka2, v2 } @—) null

4 AC, 7 — null

5

6 null

7 ——>{ MvdB, 9 | null

table

table[i] : liste chainée des couples (k, v) tels que hash(k) = i.

Table de hachage externe en Java : les HashMap

Le opérations principales sur une HashMap sont

map.get (k). On calcule i = hash(k). On parcourt la liste
table[i] pour chercher la clé k dans cette liste. Si on la trouve
on renvoie a valeur associée a k

map.put(k, v). On calcule i = hash(k). On parcourt la liste
table[i] pour chercher la clé k dans cette liste. Si on la trouve
on remplace sa valeur associée par v. Sinon on ajoute le couple

(k, v) alafin de la liste.

https://github.com/openjdk/jdk/blob/master/src/java.
base/share/classes/java/util/HashMap. java#L281

https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/java/util/HashMap.java#L281
https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/java/util/HashMap.java#L281

Table de hachage externe en Java : les HashMap

public class HashMap<K,V> ...{

static final int hash(Object key) {
int h;
return (key == null) 7 0 : (h = key.hashCode()) =~ (h >>> 16);
}

static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;

}
Node<K,V>[] table;

Table de hachage externe en Java : les HashMap

public V get(Object key) {
Node<K,V> e;
return (e = getNode(key)) == null ? null : e.value;
}
final Node<K,V> getNode(Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int m, hash; K k;
if ((tab = table) != null && (m = tab.length) > 0 &&
(first = tab[(m - 1) & (hash = hash(key))]) != null) {
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
} // version simplifiée

Table de hachage externe en Java : les HashMap

public V put(K key, V value) {

}
v

}

return putVal(hash(key), key, value, false, true);

putVal(int hash, K key, V value, ...) {

Node<K,V>[] tab; Node<K,V> p; int m, ij;

if ((tab = table) == null || (m = tab.length) == 0)
m = (tab = resize()).length;

if ((p = tab[i = (m - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);

else {
Node<K,V> e; K k;

if (p.hash == hash && ((k = p.key) == key || (key !'= null && key.equals (k)
e = p;

else {
for (int binCount = 0; ; ++binCount) {
}

}

}
if (++size > threshold) resize();
return null;

// version simplifiée

)))

Table de hachage externe en Java : les HashMap

if ((e = p.next) == null) { // la clé n’est pas trouvée on ajoute au j

if (e.hash == hash && ((k = e.key) == key || (key != null && key.equal

V putVal(int hash, K key, V value, ...) {
else {
for (int binCount = 0; ; ++binCount) {
p.next = newNode(hash, key, value, null);
break;
break;
p=e;

}

} // si la clé est trouvée on renvoie l’ancienne valeur

if (e != null) {
V oldValue = e.value;

return oldValue;

}

} // version simplifiée

associée

out

Table de hachage externe en Java

On calcule hash := hash(key) mod m et une opération effectue
le parcours de la liste chainée table [hash]

Les complexités (sauf la construction de table) sont en ©(¢), ou
{ est la taille de la liste chainée table [hash]

Il est tres important que hash(key) donne toujours la méme
valeur (quand on I'utilise dans une put ou dans un get).

Comme hash(key) est calculé a partir du hashCode de la clé, les
clés doivent étre non mutables.

Fonction de hachage

Ce qu'on veut pour la fonction de hachage :
Qu’elle répartisse bien les clés : deux clés différentes, méme trés
similaires doivent avoir des valeurs de hachage trés différentes
Qu’elle se calcule rapidement : on va avoir besoin de calculer la
valeur de hachage souvent

= |déalement, on voudrait que h(x) mod m soit un entier au hasard
(uniforme) de {0,...,m — 1}, mais on ne peut pas utiliser le hasard,
car il faut que h(x) soit constant (qu'on puisse retrouver x apres)

On veut donc une fonction de hachage qui soit rapide a calculer et
qui se comporte comme si on avait tiré au sort chaque valeur, mais
déterministe (sans effectuer de tirage au sort pour avoir toujours le
méme résultat) c'est compliqué !

Fonction de hachage

Ce qu'on veut pour la fonction de hachage :
Qu’elle répartisse bien les clés : deux clés différentes, méme trés
similaires doivent avoir des valeurs de hachage trés différentes
Qu’elle se calcule rapidement : on va avoir besoin de calculer la
valeur de hachage souvent

= |déalement, on voudrait que h(x) mod m soit un entier au hasard
(uniforme) de {0,...,m — 1}, mais on ne peut pas utiliser le hasard,
car il faut que h(x) soit constant (qu'on puisse retrouver x apres)

On veut donc une fonction de hachage qui soit rapide a calculer et
qui se comporte comme si on avait tiré au sort chaque valeur, mais
déterministe (sans effectuer de tirage au sort pour avoir toujours le
méme résultat) c'est compliqué !

Reégle d’or : ne faites pas vous-méme vos fonctions de hachage,
utilisez celle intégrées dans le langage ou trouvées dans des livres

Complexité des opérations (hachage externe)

On utilise n pour le nombre de clés dans la table de hachage, et m
pour la taille de la table.

Pour le hachage externe :

Dans le pire cas, toutes les clés ont la méme valeur de hachage,
les opérations (hors création de la table) sont en ©(n), on travaille
avec une seule liste < le pire cas n'est pas pertinent ici

Complexité des opérations (hachage externe)

On utilise n pour le nombre de clés dans la table de hachage, et m
pour la taille de la table.

Pour le hachage externe :

Dans le pire cas, toutes les clés ont la méme valeur de hachage,
les opérations (hors création de la table) sont en ©(n), on travaille
avec une seule liste < le pire cas n'est pas pertinent ici

Une fonction de hachage idéale est modélisée par des valeurs

aléatoires et avec ce modele on obtient que les opérations sont en
n

©(;>) en moyenne

Théoréme. Si o := - est borné par une constante et que |'on ne
redimensionne pas la table, alors les opérations dans une table de
hachage externe ont une complexité moyenne ©(1).

C'est pour ¢a que c'est tres efficace en pratique

Bilan complexité et choix de m

On redimensionne la table si le taux de remplissage o = -
dépasse un certain seuil g fixé a I'avance, en doublant la taille
par exemple

Comme la complexité pire cas n'est pas pertinente, on modélise la
fonction de hachage par une fonction aléatoire

On obtient ainsi des complexités en ©(1) amortie en moyenne
pour les opérations add, remove et contains

C'est vrai pour le hachage externe et le hachage interne
En pratique :

Si on suit la regle d’or et donc qu’on utilise des bonnes fonctions
de hachage, le modele aléatoire décrit bien le comportement
On a des opérations add, remove et contains trés efficaces

Les table de hachage sont des structures de données tres
efficaces et tres utilisées

Complexité des opérations (hachage externe)

Théoreme. Les opérations dans une table de hachage externe ont
une complexité amortie en moyenne ©(1).

En pratique on garde o < o avec g € [0.66, 5] pour le hachage
externe

Si, en ajoutant des clés, « devient supérieur a ag, alors on
redimensionne la table en doublant m. Et on ré-insére toutes les
clés (on est obligé a cause du mod m).

Important : précision sur la complexité

Les opérations add/put, remove et contains sur les HashSet et
HashMap ont une complexité amortie en moyenne ©(1).

Attention : ce théoreme considére que les opérations élémentaires sur
les clés se font en temps constant ©(1).

En réalité il faut/faudrait prendre en compte le temps de calcul de la
valeur de hachage, qui n'est par exemple pas constant pour une chaine
(méme s'il est rapide). Le temps de calcul de la comparaison de deux
clés n'est pas non plus constant pour des chaines.

Pour la véritable complexité on peut dire qu'une opération colfite :
m un appel a la fonction de hachage

m O(1) appels, en amortie et en moyenne, a la fonction de
comparaison des clés.

En résumé

Vous devez savoir

Ce qu’est un tableau dynamique, comment il fonctionne
algorithmiquement, notamment le redimensionnement

Ce qu'est la complexité amortie

La notion d'ensemble (set) et de fonction (map)
Comment fonctionnent les tables de hachage externe
Ce qu'on attend d'une bonne fonction de hachage

Que les complexités sont en ©(1) amortie en moyenne si on utilise
le redimensionnement pour garder un « en dessous d'un seuil ag.

