Programmation orientée objet. Cours 4

Marie-Pierre Béal

Interface.
Polymorphisme.

Interface

Interface

Le probleme

Supposons que I'on a plusieurs sortes de véhicules

public record Car(int seats) {}

public record Bus(long weight) {3}

Et que I'on veut les afficher

var list = List.of(new Car(3), new Bus(5_000));

for(var vehicle: list) {
I0.println(vehicle.toString());

}

// Car[seats=3]

// Bus[weight=5000]

Pourquoi ce code marche?

La liste est typée List<Object>
Car est un Object
Bus est un Object
et Object posseéde une méthode toString()

List<Object> list = List.of (new Car(3), new Bus(5_000));

for(Object vehicle: list) {
I0.println(vehicle.toString()); // Object.toString()

}

Et s'il y a une méthode commune ?

Ajoutons une fagon de calculer les taxes différentes.

public record Car(int seats) {
public long computeTax() { return seats * 50; }

3

public record Bus(long weight) {
public long computeTax() { return weight * 2; }
}

Et on veut faire la somme des taxes.

var list = List.of(new Car(3), new Bus(5_000));

var tax = OL;

for(var vehicle: list) {

tax = tax + vehicle.computeTax();

// ne compile pas ! Probléme de typage

} // il n’y a pas de méthode Object.computeTax()

I0.println(tax);
// il nous faut un type équivalent & "Car | Bus"
// qui posséde une méthode long computeTax()

Interface

Une interface permet de d’'écrire un super-type commun a plusieurs
classes. Les classes Car et Bus sont sous-types de Vehicle.

// dans fichier Vehicle.java
public interface Vehicle {}

// dans fichier Car.java
public record Car(int seats) implements Vehicle {
public long computeTax() { return seats * 50; }

}

// dans fichier Bus.java

public record Bus(long weight) implements Vehicle {
public long computeTax() { return weight * 2; }

}

"implements” indique que I'on est " une sorte de”

Mais pas suffisant ...

Le code ne marche toujours pas

List<Vehicle> list = List.of(new Car(3), new Bus(5_000));
var tax = OL;
for(Vehicle vehicle: list) {
tax = tax + vehicle.computeTax();
// ne compile pas !
// pas de méthode Vehicle.computeTax()
}
I0.println(tax);

Il faut aussi déclarer une méthode computeTax () dans l'interface
Vehicle!

Méthode abstraite

Une méthode abstraite
est une méthode sans code

force une classe qui implémente |'interface contenant une méthode
abstraite a fournir un code pour cette méthode

On ajoute une méthode abstraite computeTax () a Vehicle

public interface Vehicle {
public abstract long computeTax();
}

On demande a ce que la méthode abstraite soit implantée

Interface + méthode abstraite

On obtient le code suivant

public interface Vehicle {
long computeTax(); // dans une interface les méthodes
// sont public abstract par défaut

public record Car(int seats) implements Vehicle {
@0verride // @Override marche aussi avec 1’implantation
// de méthode abstraite, 1l’annotation n’est pas
// obligatoire mais elle rend le code plus lisible
public long computeTax() { return seats * 50; }
}

public record Bus(long weight) implements Vehicle {
Q@0verride
public long computeTax() { return weight * 2; }

}

Et ca marche!

Avec l'interface et la méthode abstraite, le code compile ET marche

List<Vehicle> list = List.of(new Car(3), new Bus(5_000));
var tax = OL;
for(Vehicle vehicle: list) {
tax = tax + vehicle.computeTax();
// appelle Vehicle.computeTax()
// Il y a de la magie ici, car la méthode
// Vehicle.computeTax() n’a pas de code !!
}
I0.println(tax);

Dynamic dispatch / Late binding

Liaison tardive en francais

Lorsque I'on appelle une méthode sur un type

A I'exécution, la machine virtuelle regarde la classe de I'objet sur
lequel la méthode est appelée et appelle la méthode de cette classe

A la com pilation

L'appel vehicle.computeTax () est typé
Vehicle: :computeTax()

A I'exécution
Si la variable vehicle contient

un objet de la classe Car, Car: :computeTax () est appelée
un objet de la classe Bus, Bus: : computeTax () est appelée

Pourquoi c'est intéressant ?

Le code qui utilise I'interface est un code générique

public static long sumAllTaxes(List<Vehicle> vehicles) {
var tax = OL;
for(var vehicle: vehicles) {
tax = tax + vehicle.computeTax();
}

return tax;

}

Et en méme temps, spécialisé, car la "bonne” méthode computeTax ()
est appelée.

En résumé

Une interface permet de créer un super-type commun.

Un sous-type doit déclarer qu'il implémente I'interface avec le mot
clé implements

Une méthode abstraite "foo" dans une interface force a avoir une
méthode commune a tous les sous-types.

La notation o.foo() appelle la méthode de la classe de la référence
"0" a I'exécution automatiquement (dynamic dispatch).

Cela permet d’écrire des méthodes génériques, spécialisées et
extensibles.

En terme de design

Lorsque I'on écrit une librairie/application, on raisonne souvent dans
I"autre sens.
Créer une interface et essayer de tous rentrer dedans ne marche
pas comme approche

On regarde les endroits ou I'on va gérer des objets différents de la
méme facon
Pour cet endroit, on va créer une interface que I'on passe en
parameétre
Le code qui utilise I'interface est plus important que l'interface en
elle-méme

Sous-typage multiple

Sous-typage multiple

Implanter plusieurs interfaces

Une classe peut implanter plusieurs interfaces. Cela permet d'utiliser
une méme classe dans plusieurs contextes.

public interface Displayable {
void display(Screen screen);

}

public interface Collidable {
boolean collideWith(Collidable c);

}

public class SpaceShip implements Displayable, Collidable {

}

Sous-typage multiple

Une méme instance peut alors &tre vue comme une instance d'une
interface ou une instance de I'autre interface.

public class Game {
private final ArraylList<Displayable> displayables;
private final ArraylList<Collidable> collidables;

public void add(SpaceShip spaceShip) {
Objects.requireNonNull (spaceShip) ;
displayables.add(spaceShip) ;
collidables.add(spaceShip);
}
}

Membre d'une interface

Une interface, comme une classe ou un record, peut contenir des
membres :

les membres sont public par défaut et peuvent étre déclarés private
(mais pas d'autre visibilité)

Elle contient

des champs, mais toujours static
des méthodes d'instance, abstract par défaut

méthodes abstract : elles doivent &tre implantées
méthodes default (par défaut) : peuvent &tre remplacées
méthodes private

des méthodes static

Méthodes par défaut

Dans une interface, une méthode par défaut (default) est une méthode
d'instance pas abstraite qui est utilisée si une sous-classe ne déclare pas
la méthode

public interface Investment {
default boolean gambling() { return true; }
}

public record House() implements Investment {
Q@0verride
public boolean gambling() { return false; }
// remplace la méthode

public record BitCoin() implements Investment {
// pas de méthode gambling,
// donc celle de Investment est utilisée

3

Comment ca marche en mémoire

Comment ca marche en mémoire

public interface Vehicle { long computeTax(); }

public record Car(int seats) implements Vehicle { long computeTax(Car this) { ... } }
public record Bus(long weight) implement Vehicle { long computeTax(Bus this) { ... } }

Car vtable
0: ——» toString(Car this) {
1: ———» equals(Car this, ...) {
2: —— hashCode(Car this) {
3: —— seats(Car this) {
class Vehicle-itable |0: —— computeTax(Car this) {
seats |)
Bus vtable

———> toString(Bus this) {

class };'/ 0:
weight | 5_000) :

———> equals(Bus this, ...) {

—— hashCode(Bus this) {

——> weight(Bus this) {

1
2:
3:
Vehicle-itable | 0

— computeTax(Bus this) {

for(Vehicle vehicle: vehicles) {
vehicle.computeTax() // vehicle.Vehicle_itable[0]

Le type enum

Le type enum est un type de données spécial qui permet d'assigner a
une variable une valeur choisie dans un ensemble de constantes
prédéfinies.

public enum WeekDay {
MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY

}

public record Day(WeekDay weekDay) {
@Override
public String toString() {
return switch (weekDay) {
case MONDAY -> "Monday";
case TUESDAY -> "Tuesday";
case WEDNESDAY -> "Wednesday";
case THURSDAY -> "Thursday";
case FRIDAY -> "Friday";
case SATURDAY -> "Saturday";
case SUNDAY -> "Sunday";

Le type enum

public class Main {
public void main() {
var day = new Day(WeekDay.MONDAY) ;
I0.println(WeekDay.MONDAY) ;
I0.println(day) ;
I0.println(WeekDay.MONDAY.ordinal());
for(var weekDay : WeekDay.values()) {

I0.println(weekDay.ordinal() + " : " + weekDay);

}

}
}
// MONDAY
// Monday
// 0
// O : MONDAY
// 1 : TUESDAY
// 2 : WEDNESDAY
// 3 : THURSDAY
// 4 : FRIDAY
// 5 : SATURDAY
// 6 : SUNDAY

En résumé

En résumé

En résumé

Une interface est un type abstrait qui permet de considérer plusieurs
classes de la méme facon.

Une interface définit des méthodes abstraites qui doivent étre
implémentées par les sous-classes

Une sous-classe indique qu'elle implante I'interface avec le mot-clé
implements

Implémenter une interface implique le sous-typage, le fait de
pouvoir utiliser une sous-classe a tous les endroits ol I'on demande
I'interface.

Lorsqu’on appelle une méthode abstraite sur une interface, a
I'exécution le dynamic dispatch regarde quelle est la classe de I'objet
pour appeler la bonne méthode.

Exercices

Exercices

Exercice 1

On reprend I'exercice sur le magasin d'articles de sport du cours 3.
On souhaite définir un type ShoePair qui modélise une paire de
chaussures. Chaque paire de chaussures a

une couleur color de type String.

une marque (brand) de type String

une taille size (un int)

un prix price (un int).
Les tailles devront étre comprises entre 35 et 45, et le prix doit €tre
positif ou nul. Les champs ne seront pas modifiés.

Ecrire un record ShoePair avec le constructeur compact qui teste
les pré-conditions.

Exercice 2

Le magasin d’articles de sport doit pouvoir maintenant contenir des
vétements et des chaussures de sport.

On aura besoin d'un type commun pour les articles de sport,
Sportswear.

Ecrire I'interface Sportwear et changer les records pour qu'ils
implémentent I'interface. Dans un premier temps, on ne met
aucune méthode dans l'interface.

Modifier la classe SportsShop pour qu’elle contienne une liste de
Sportswear.

Modifier la méthode add.

Exercice 3

La méthode totalPrice marche-t-elle ? Pourquoi ?

Faites les modifications nécessaires pour qu'elle marche.

Exercice 4

Modifier la méthode onSale de SportsShop pour qu’elle renvoie
une liste des articles soldés.

Les articles soldés sont
les vétements dont la taille est supérieure ou égale a 3.
les chaussures de pointures inférieures ou égales a 36 ou supérieures
ou égales a 44.

Exercice b

Le code suivant devra fonctionner :

static void main() {
var polo = new Clothing("polo", "Devred", 2, 40);
I0.println(polo);
var polo2 = new Clothing("popo", "Devred", 40);
I0.println(polo2);
var shirtl = new Clothing("shirt", "Burton", 4, 50);
var shirt2 = new Clothing("shirt", "Burton", 4, 50);
var shopl = new SportsShop("Italie2");
shop1l.add(polo);
shopl.add(shirtl);
shopl.add(shirt2);
var shop2 = new SportsShop("Jaude");
shop2.add(shirt?2) ;
shop2.add(polo);
shopl.add(new ShoePair("red", "Nike", 40, 300));
I0.println(shopl);
I0.println(shop2) ;
I0.println(shopl.totalPrice());
I0.println(shopl.onSale());
// 1I0.println(SportsShop.sameltems(shopl, shop2));

Exercice b

Sortie attendue

Clothing[category=polo, brand=Devred, size=2, price=40]

Clothing[category=popo, brand=Devred, size=1, price=40]
Italie2

Clothing[category=polo, brand=Devred, size=2, price=40]

Clothing[category=shirt, brand=Burton, size=4, price=50]

Clothing[category=shirt, brand=Burton, size=4, price=50]

ShoePair[color=red, brand=Nike, size=40, price=300]

Jaude

Clothing[category=shirt, brand=Burton, size=4, price=50]
Clothing[category=polo, brand=Devred, size=2, price=40]
440

[Clothing[category=shirt, brand=Burton, size=4, price=50],
Clothing[category=shirt, brand=Burton, size=4, price=50]]

