
Programmation orientée objet. Cours 3

Marie-Pierre Béal
UGE BUT 1

Classes, encapsulation et visibilité

Classes

Classes

Avant propos

Une des idées de Java est qu’une personne sur mille (le mainteneur)
s’embête à écrire une librairie qui va aider les 999 autres (les
utilisateurs) à écrire leurs codes facilement.

Une librairie est un jar (un zip glorifié) qui contient des fichiers classes
(les .class).

Le site Maven Central contient

43 millions de jars

des millions d’artefacts

Le site est toujours en croissance exponentielle.

Compatibilité descendante

Pour éviter d’avoir à ré-écrire le code utilisateur à chaque nouvelle
version

Java demande la compatibilité descendante binaire (binary
backward compatibility)

On a le droit d’ajouter de nouvelle fonctionnalités mais on ne doit
pas casser les anciennes

Le langage sépare l’API publique

accessible par les utilisateurs

de l’implantation

accessible uniquement par les mainteneurs

Classes et membres d’une classe

Java manages to succeed, despite having almost all the defaults
wrong.
— Brian Goetz

Classe

Dans un fichier HelloWorld.java on met :

public class HelloWorld {

static void main() {

IO.println("Hello World!");

}

}

$ java HelloWorld.java

Hello World!

Classe

On définit ainsi une classe

Le nom de la classe doit être le nom du fichier (sans le suffixe
.java).

Le nom de la classe (et donc du fichier) doit commencer par une
majuscule.

Et lors de l’exécution, la méthode statique HelloWorld.main() est
appelée.

Membres d’une classe

Une classe contient

Des champs d’instance ou statiques

cases mémoire contenant une valeur

Des constructeurs (toujours d’instance)

méthodes d’initialisation des champs

Des méthodes d’instance ou statiques

Code à exécuter en fonction des paramètres et des valeurs des
champs

Visibilité

Les champs, constructeurs et méthodes peuvent être public ou private

S’ils sont public, alors ils font partie de l’API

Il y a d’autres visibilités en Java,

la visibilité de package (quand on écrit rien)

la visibilité protected

mais on verra plus tard car leurs cas d’utilisation sont plus confidentiels.

Champs

Champs

Champs à initialisation unique

Les champs peuvent

être initialisés une seule fois par le constructeur (final)

changer de valeur plusieurs fois

Utiliser des champs final rend le code plus maintenable, plus facile à
débugger.

si un champ final n’a pas la bonne valeur, alors la valeur envoyée
au constructeur n’est pas la bonne

Initialisation des champs

Un champ

final doit être initialisé dans le constructeur

pas final ne doit pas forcément être initialisé dans le constructeur.
Dans ce cas, il est initialisé à une valeur par défaut :

null pour les objets, 0 pour les entiers, 0.0 pour les doubles, false
pour les booléen, etc.

Attention à ne pas confondre les champs (les cases mémoires des
classes) et les variables locales (les cases mémoires des méthodes). Une
variable locale doit toujours être initialisée.

Exemple de code compliqué

Ne pas écrire une classe comme celle-ci

public class Person {

private /*pas final*/ String name;

private /*pas final*/ int age;

public Person(String name, int age) {

// le constructeur est FAUX

this.name = name; // cf plus tard

this.age = age;

}

public void updateAge() {

this.age++;

}

}

Exemple plus simple

public class Person {

private final String name;

private final int age;

public Person(String name, int age) {

// le constructeur est FAUX

this.name = name; // cf plus tard

this.age = age;

}

public void updateAge() {

this.age++; // ne compile pas !

}

}

...

var person = new Person("Ana", 32);

doSomething(person);

// person.name et person.age n’ont pas changé

// pas besoin de regarder le code de doSomething()

Faire des mutations

Et si on veut changer la valeur d’un objet

On fait comme dans String.toUpperCase(), on renvoie un
nouvel objet

Par exemple

public class Person {

private final String name;

private final int age;

public Person(String name, int age) { ... }

public Person updateAge() {

return new Person(name, age + 1);

}

}

Classe immutable

Une classe qui a tous ses champs final est une classe dite non mutable
ou immutable.

String est non mutable

StringBuilder est la version mutable de String

Les records sont non mutables

Ces classes ont un comportement plus simple

Rend le code plus facile à lire/débugger

Donc plus maintenable

Mais changer une valeur entrâıne une allocation

Les GCs de Java sont prévus pour cela (cas où les objets meurent
vite)

Constructeurs

Constructeurs

Constructeur

Un constructeur est une méthode d’instance qui initialise les champs

Ayant le même nom que la classe

Sans type de retour (c’est toujours void)

Le premier paramètre est this (souvent implicitement)

On ne peut pas créer un objet sans appeler un constructeur (point
d’entrée obligatoire)

Donc le constructeur doit vérifier que l’on ne crée pas des objets
faux (par exemple, une personne avec un age négatif)

Ceci aide à la maintenance

Préconditions

On appelle préconditions l’ensemble des conditions à vérifier pour que
l’objet ne soit pas faux.

public class Person {

private final String name;

private final int age;

public Person(String name, int age) { // this est implicite

Objects.requireNonNull(name, "name is null");

// précondition

if (age < 0) {

throw new IllegalArgumentException("age < 0");

// précondition

}

this.name = name;

this.age = age;

}

}

Constructeur généré

Le compilateur ajoute automatiquement un constructeur

pour un record, si aucun constructeur canonique (qui initialise tous
les champs) n’est défini, un constructeur canonique est ajouté

pour une classe, si aucun constructeur n’est défini, un constructeur
public sans paramètre est ajouté

Initialisation des champs à la déclaration

On peut initialiser des champs à la déclaration avec ’=’

public class Garage {

private final ArrayList<Car> cars = ...

}

Le code du ’=’ est recopié au début de tous les constructeurs

public class Garage {

private final ArrayList<Car> cars;

public Garage() {

this.cars = ...

}

}

Surcharge de constructeurs

La ”surcharge” de constructeur est le fait d’avoir plusieurs
constructeurs.

Ils doivent avoir des paramètres de types différents
On utilise this(...) pour appeler un autre constructeur

Astuce pour avoir des valeurs par défaut

public class Car {

private final String color;

public Car(String color) {

this.color = Objects.requireNonNull(color);

// precondition

}

public Car() {

this("red"); // appel Car(String)

}

}

Surcharge de constructeurs

La surcharge de constructeur est une pratique controversée.

Du point de vue de l’utilisateur lors de l’écriture du code, cela veut
dire qu’il faut faire un choix, donc lire la doc des multiples
constructeurs

Du point de vue du debugging, cela veut dire que l’on peut créer
un objet avec des arguments cachés (les valeurs par défaut) ce qui
n’aide pas à la compréhension du code

On préfère souvent avoir une façon unique de créer une instance d’une
classe.

Méthodes d’instance

Méthodes d’instance

Méthode d’instance

Une méthode d’instance est une méthode dont le premier paramètre
est this (peut-être implicitement).

On a donc besoin d’une instance pour pouvoir l’appeler

public class CarRental {

...

public void rent() {

...

}

}

...

var rental = new CarRental(...);

rental.rent() // appel la méthode rent()

// avec rental en premier argument

toString(), equals() et hashCode()

toString(), equals()

et hashCode()

toString()

Méthode appelée automatiquement par la méthode IO.println ou par
un PrintStream (comme System.out ou System.err) pour
transformer un objet en String en vue de l’afficher

var object = ...

IO.println(object); // appel object.toString()

toString() et record

Rappel : dans un record, toString() est déjà implementé et si on veut
son propre affichage, il faut redéfinir/remplacer la méthode
toString()

public record Author(String name, int books) {

@Override

public String toString() { // remplace le toString() existant

return name + " " + books;

}

}

L’annotation @Override demande au compilateur de vérifier que la
méthode que l’on veut remplacer existe bien

toString() et classe

Dans une classe, toString() donne un affichage par défaut qui en
général ne convient pas. Il faut redéfinir/remplacer la méthode
toString()

public class Author {

private final String name;

private final int books;

....

@Override

public String toString() { // remplace le toString() existant

return name + " " + books;

}

}

static void main() {

var author = new Author("JRR Tolkien", 13);

IO.println(author); // JRR Tolkien 13

// sans redéfinition on aurait obtenu Author@702657cc

}

equals(), hashCode() et record

JDK possède déjà des structures de données, liste, table de hachage,
etc. Celles-ci demandent que equals() et hashCode() soient
implantées sur les éléments.

Un record implante automatiquement equals() et hashCode()

public record Author(String name, int books) {...}

...

var list = List.of(new Author("JRR Tolkien", 13));

list.contains(new Author("JRR Tolkien", 13)) // true

equals(), hashCode() et classe

Contrairement à un record, une classe n’implémente pas
equals/hashCode correctement (il faut implémenter les deux ! !)

public class Author {

private final String name;

private final int books;

public Author() { ... } // obvious code

}

...

var list = List.of(new Author("JRR Tolkien", 13));

list.contains(new Author("JRR Tolkien", 13)) // false

Implanter equals(Object)

Remplacer boolean equals(Object)
Il faut que la méthode que l’on définit ait la même signature
(même visibilité, mêmes paramètres, même type de retour)

public class Author {

private final String author;

private final int books;

...

@Override

public boolean equals(Object o) {

// Attention : ne prend pas un Author en paramètre

// vérifier que ’o’ est bien un Author et

// tester les champs avec == (primitif)

// ou equals (objet)

}

@Override

public int hashCode() { ...

}

}

Écrire equals(Object)

L’opérateur instanceof permet de tester à l’exécution si l’Object pris en
paramètre est bien un Author

public class Author {

private final String name;

private final int books;

...

@Override

public boolean equals(Object o) {

return o instanceof Author author

&& books == author.books

&& name.equals(author.name);

// On teste le primitif d’abord car == est plus rapide

// que equals() et && est paresseux

}

@Override

public int hashCode() { ...

}

}

L’opérateur instanceof renvoie vrai et remplit la variable (“author”) si
l’objet est bien un Author à l’exécution, ou renvoie false sinon

Implanter hashCode() (le contrat objet)

Si deux objets sont égaux au sens de equals()

o1.equals(o2) == true

alors ils doivent avoir la même valeur de hashCode()

o1.hashCode() == o2.hashCode()

public class Author {

private final String author;

private final int books;

...

@Override

public boolean equals(Object o) {

...

}

@Override

public int hashCode() {

...

}

}

Écrire hashCode()

Il y a deux façons de combiner des hashCodes

Si on a deux valeurs, on utilise ˆ (le ”ou exclusif”) entre les deux
hashCode

Si on a plus de deux valeurs, on utilise
java.util.Objects.hash()

public class Author {

private final String name;

private final int books;

...

@Override

public int hashCode() {

return name.hashCode() ^ Integer.hashCode(books);

// return Objects.hash(name, books);

// marche aussi mais plus lent

}

}

Et si on n’implante pas equals correctement

Si on écrit equals(Author) au lieu de equals(Object) et on oublie
le @Override

public class Author {

private final String name;

private final int books;

...

public boolean equals(Author author) { ...

}

}

Le code compile (ahh) mais ne marche pas correctement.

Pour Java, il y a deux méthodes equals : equals(Object) qui est
toujours là et equals(Author). Donc il y a surcharge et pas
redéfinition.

equals(Author) ne sera jamais appelé car le code de java.util
appelle equals(Object).
Toujours mettre @Override qui vérifie que l’on remplace bien la
méthode.

En mettant tout ensemble

Si on veut qu’une classe puisse être utilisée dans les structures de
données prédéfinies de Java, il faut écrire equals et hashCode (les
deux ! !)

public class Car {

private final String color;

private final int seats;

private final boolean fancy;

... // obvious constructor

@Override

public boolean equals(Object o) {

return o instanceof Car car && fancy == car.fancy

&& seats == car.seats && color.equals(car.color);

}

@Override

public int hashCode() {

return Objects.hash(color, seats, fancy);

}

}

Encapsulation

Encapsulation

Encapsulation

L’encapsulation, c’est le fait de cacher les détails d’implantation pour
faciliter la maintenance du code.

Les utilisateurs de la classe voient l’API qui ne bouge pas

Les mainteneurs de la classe changent l’implantation tout en
restant compatible avec l’API

Détails d’implantationDétails d’implantation

Capsule de protection

Classe vs record

Un record ne permet pas l’encapsulation car les composants d’un record
sont visibles par tous. On y a accès avec les méthodes accesseurs.

Contrairement à un record, une classe permet de séparer l’API et
l’implantation

record == classe − encapsulation

Résumé

Une classe définit des champs (cases mémoire), un constructeur (point
d’entrée d’initialisation) et des méthodes (fonctions liées à la classe)

Une classe

Utilise l’encapsulation (privé/public)

Doit être écrite non mutable par défaut (champs final et private)

Vérifie les préconditions dans les constructeurs publics et les
méthodes publiques

Ne modifie pas la signature des membres public d’une version à
l’autre

Résumé

Un record définit des champs (cases mémoire), un constructeur (point
d’entrée d’initialisation) et des méthodes (fonctions liées au record)

Un record

Ne permet pas l’encapsulation

A ses champs tous privés et final mais il y a des accesseurs publics
à ces champs

A un constructeur canonique déjà défini mais qui ne vérifie pas les
pré-conditions. Il faut écrire un constructeur compact pour vérifier
les pré-conditions.

A des méthodes equals, hashCode, toString déjà définies
avec un bon comportement.

Résumé : classes ou records, que choisir ?

Si l’encapsulation n’est pas nécessaire, on prend un record. Par
exemple pour définir un type qui a des champs non mutables
(Point, Car, ...)

Si un des champs est mutable, par exemple une liste modifiable
(Garage, ...), on prend une classe. Attention, même si un champ
liste est défini private final, l’accès à la liste permet d’ajouter
des éléments dedans.

Exercices

Exercices

Exercice 1

Le but de ces exercices est d’écrire des classes pour représenter un
magasin de vêtements de sport.
On souhaite définir un type Clothing qui modélise des vêtements de
sport. Chaque vêtement a

une catégorie category de type String.

une marque (brand) de type String

une taille size (un int)

un prix price (un int).

Les tailles devront être comprises entre 1 et 5, et le prix doit être
positif ou nul. Les champs ne seront pas modifiés.

1 Écrire un record Clothing avec le constructeur compact qui teste
les pré-conditions.

2 Écrire un deuxième constructeur qui prend en argument la
catégorie, la marque et le prix et crée le vêtement en taille 1.
Pourquoi prend-on un record plutôt qu’une classe ?

Exercice 1

Le code suivant devra fonctionner :

static void main() {

var polo = new Clothing("polo", "Colmar", 3, 40);

IO.println(polo);

var polo2 = new Clothing("polo", "Colmar", 40);

IO.println(polo2);
}

Sortie attendue :

Clothing[category=polo, brand=Colmar, size=3, price=40]

Clothing[category=polo, brand=Colmar, size=1, price=40]

Exercice 2

Écrire une classe SportsShop qui modélise un magasin de sport.

Un magasin aura un champ name de type String et il contiendra une
liste d’articles qui seront des vêtements de sport. Les articles pourront
figurer plusieurs fois dans la liste.

1 Écrire une méthode add pour ajouter un vêtement dans le
magasin. On pourra ajouter plusieurs fois un même vêtement dans
la liste.

2 Pourquoi prend-on une classe plutôt qu’un record pour
SportsShop ?

Exercice 3

1 Écrire une méthode toString dans SportsShop qui permet
d’afficher le magasin. On affichera le nom du magasin sur une
ligne puis chaque article sur une ligne. Il ne devra pas y avoir de
passage à la ligne à la fin. On devra utiliser un StringBuilder.

Exercice 3

Le code suivant devra donc fonctionner :

static void main() {

var polo = new Clothing("polo", "Colmar", 2, 40);

var shirt1 = new Clothing("tshirt", "Burton", 4, 50);

var shirt2 = new Clothing("tshirt", "Burton", 4, 50);

var shop1 = new SportsShop("Italie2");

shop1.add(polo);
shop1.add(shirt1);
shop1.add(shirt2);
IO.println(shop1);

}

Sortie attendue :

Italie2

Clothing[category=polo, brand=Colmar, size=2, price=40]

Clothing[category=tshirt, brand=Burton, size=4, price=50]

Clothing[category=tshirt, brand=Burton, size=4, price=50]

Exercice 4

1 Écrire une méthode public int totalPrice() qui calcule le
prix total de tous les vêtements du magasin. La méthode devra
renvoyer 0 si le magasin est vide.

IO.println(shop1.price());
// 140

Exercice 5

1 Un magasin souhaite proposer des vêtements en solde. Pour cela,
on écrira une méthode onSale qui renvoie une liste non modifiable
des articles du magasin qui vont être soldés.
Les articles soldés seront les vêtements dont la taille est supérieure
ou égale à 3.

IO.println(shop1.onSale());
// [[Clothing[brand=Burton, size=4, price=50],

// Clothing[brand=Burton, size=4, price=50]]

Exercice 6

1 Écrire une méthode isIncluded(SportsShop shop1,

SportsShop shop2) qui teste si tous les articles du magasin
shop1 sont aussi des articles du magasin shop2. Quelle est la
particularité de cette méthode ?

2 Écrire une méthode sameItems(SportsShop shop1,

SportsShop shop2) qui teste si les magasins shop1 et shop2
contiennent les mêmes articles, sans tenir compte des éventuelles
répétitions et de l’ordre dans les listes.

var shop2 = new SportsShop("Jaude");

shop2.add(shirt2);
shop2.add(polo);
IO.println(SportsShop.sameItems(shop1, shop2));
// true

