Programmation orientée objet. Cours 3

Marie-Pierre Béal
UGE BUT 1

Classes, encapsulation et visibilité



Classes

Classes



Avant propos

Une des idées de Java est qu'une personne sur mille (le mainteneur)
s'embéte a écrire une librairie qui va aider les 999 autres (les
utilisateurs) a écrire leurs codes facilement.

Une librairie est un jar (un zip glorifié) qui contient des fichiers classes
(les .class).

Le site Maven Central contient
43 millions de jars
des millions d'artefacts

Le site est toujours en croissance exponentielle.



Compatibilité descendante

Pour éviter d'avoir a ré-écrire le code utilisateur a chaque nouvelle
version

Java demande la compatibilité descendante binaire (binary
backward compatibility)

On a le droit d'ajouter de nouvelle fonctionnalités mais on ne doit
pas casser les anciennes

Le langage sépare I'API publique
accessible par les utilisateurs
de l'implantation

accessible uniquement par les mainteneurs



Classes et membres d'une classe

Java manages to succeed, despite having almost all the defaults
wrong.
— Brian Goetz



Classe

Dans un fichier HelloWorld. java on met :

public class HelloWorld {
static void main() {
I0.println("Hello World!");
}
}

$ java HelloWorld.java
Hello World!




Classe

On définit ainsi une classe
Le nom de la classe doit étre le nom du fichier (sans le suffixe
.java).
Le nom de la classe (et donc du fichier) doit commencer par une
majuscule.

Et lors de I'exécution, la méthode statique HelloWorld.main() est
appelée.



Membres d'une classe

Une classe contient
Des champs d'instance ou statiques
cases mémoire contenant une valeur
Des constructeurs (toujours d'instance)
méthodes d'initialisation des champs
Des méthodes d'instance ou statiques

Code a exécuter en fonction des parameétres et des valeurs des
champs



Visibilité

Les champs, constructeurs et méthodes peuvent &tre public ou private

S'ils sont public, alors ils font partie de I'API

Il'y a d'autres visibilités en Java,
la visibilité de package (quand on écrit rien)
la visibilité protected

mais on verra plus tard car leurs cas d'utilisation sont plus confidentiels.



Champs

Champs



Champs a initialisation unique

Les champs peuvent
étre initialisés une seule fois par le constructeur (final)

changer de valeur plusieurs fois

Utiliser des champs final rend le code plus maintenable, plus facile a
débugger.
si un champ final n'a pas la bonne valeur, alors la valeur envoyée
au constructeur n'est pas la bonne



Initialisation des champs

Un champ
final doit &tre initialisé dans le constructeur

pas final ne doit pas forcément &tre initialisé dans le constructeur.
Dans ce cas, il est initialisé a une valeur par défaut :
null pour les objets, 0 pour les entiers, 0.0 pour les doubles, false
pour les booléen, etc.

Attention a ne pas confondre les champs (les cases mémoires des
classes) et les variables locales (les cases mémoires des méthodes). Une
variable locale doit toujours étre initialisée.



Exemple de code compliqué

Ne pas écrire une classe comme celle-ci

public class Person {

}

private /*pas final*/ String name;
private /*pas final*/ int age;

public Person(String name, int age) {
// le constructeur est FAUX
this.name = name; // cf plus tard
this.age = age;

}

public void updateAge() {
this.age++;

}




Exemple plus simple

public class Person {
private final String name;
private final int age;

public Person(String name, int age) {
// le constructeur est FAUX
this.name = name; // cf plus tard
this.age = age;
}
public void updateAge() {
this.age++; // ne compile pas !
}
}

var person = new Person("Ana", 32);
doSomething(person) ;

// person.name et person.age n’ont pas changé

// pas besoin de regarder le code de doSomething()




Faire des mutations

Et si on veut changer la valeur d'un objet

On fait comme dans String.toUpperCase (), on renvoie un
nouvel objet

Par exemple

public class Person {
private final String name;
private final int age;

public Person(String name, int age) { ... }
public Person updateAge() {
return new Person(name, age + 1);
}
}




Classe immutable

Une classe qui a tous ses champs final est une classe dite non mutable
ou immutable.

String est non mutable

StringBuilder est la version mutable de String

Les records sont non mutables

Ces classes ont un comportement plus simple
Rend le code plus facile a lire/débugger
Donc plus maintenable
Mais changer une valeur entraine une allocation

Les GCs de Java sont prévus pour cela (cas ol les objets meurent
vite)



Constructeurs

Constructeurs



Constructeur

Un constructeur est une méthode d'instance qui initialise les champs
Ayant le méme nom que la classe
Sans type de retour (c'est toujours void)

Le premier parametre est this (souvent implicitement)

On ne peut pas créer un objet sans appeler un constructeur (point
d’entrée obligatoire)
Donc le constructeur doit vérifier que I'on ne crée pas des objets
faux (par exemple, une personne avec un age négatif)

Ceci aide a la maintenance



Préconditions

On appelle préconditions I'ensemble des conditions a vérifier pour que
I'objet ne soit pas faux.

public class Person {
private final String name;
private final int age;

public Person(String name, int age) { // this est implicite
Objects.requireNonNull (name, "name is null");
// précondition
if (age < 0) {
throw new IllegalArgumentException("age < 0");
// précondition
}
this.name = name;
this.age = age;




Constructeur généré

Le compilateur ajoute automatiquement un constructeur
pour un record, si aucun constructeur canonique (qui initialise tous
les champs) n'est défini, un constructeur canonique est ajouté

pour une classe, si aucun constructeur n’est défini, un constructeur
public sans paramétre est ajouté



Initialisation des champs a la déclaration

On peut initialiser des champs a la déclaration avec '=

public class Garage {
private final ArrayList<Car> cars = ...

}

Le code du '=" est recopié au début de tous les constructeurs

public class Garage {
private final ArrayList<Car> cars;

public Garage() {
this.cars = ...

}
}




Surcharge de constructeurs

La "surcharge” de constructeur est le fait d'avoir plusieurs
constructeurs
lls doivent avoir des parametres de types différents
On utilise this(...) pour appeler un autre constructeur

Astuce pour avoir des valeurs par défaut

public class Car {

private final String color;

public Car(String color) {

this.color = Objects.requireNonNull(color);
// precondition
}
public Car() {
this("red"); // appel Car(String)

X

}




Surcharge de constructeurs

La surcharge de constructeur est une pratique controversée.

Du point de vue de I'utilisateur lors de I'écriture du code, cela veut
dire qu'il faut faire un choix, donc lire la doc des multiples
constructeurs

Du point de vue du debugging, cela veut dire que |'on peut créer
un objet avec des arguments cachés (les valeurs par défaut) ce qui
n'aide pas a la compréhension du code

On préfére souvent avoir une fagon unique de créer une instance d'une
classe.



Méthodes d’instance

Méthodes d’'instance



Méthode d'instance

Une méthode d'instance est une méthode dont le premier parametre
est this (peut-&tre implicitement).

On a donc besoin d'une instance pour pouvoir |'appeler

public class CarRental {
public void rent() {

}
}

var rental = new CarRental(...);
rental.rent() // appel la méthode rent()
// avec rental en premier argument




toString(), equals() et hashCode()

toString(), equals()
et hashCode ()



toString ()

Méthode appelée automatiquement par la méthode I0.println ou par
un PrintStream (comme System.out ou System.err) pour
transformer un objet en String en vue de I'afficher

var object = ...
I0.println(object); // appel object.toString()




toString() et record

Rappel : dans un record, toString() est déja implementé et si on veut
son propre affichage, il faut redéfinir/remplacer la méthode
toString()

public record Author(String name, int books) {

@0verride
public String toString() { // remplace le toString() existant
return name + " " + books;
}
}

L'annotation @0verride demande au compilateur de vérifier que la
méthode que I'on veut remplacer existe bien




toString() et classe

Dans une classe, toString() donne un affichage par défaut qui en
général ne convient pas. Il faut redéfinir/remplacer la méthode
toString()

public class Author {
private final String name;
private final int books;

@0Override

public String toString() { // remplace le toString() existant
return name + " " + books;
}

}

static void main() {
var author = new Author("JRR Tolkien", 13);
I0.println(author); // JRR Tolkien 13
// sans redéfinition on aurait obtenu Author@702657cc

¥




equals(), hashCode() et record

JDK possede déja des structures de données, liste, table de hachage,
etc. Celles-ci demandent que equals() et hashCode () soient
implantées sur les éléments.

Un record implante automatiquement equals() et hashCode ()

public record Author(String name, int books) {...}

var list = List.of(new Author("JRR Tolkien", 13));
list.contains(new Author("JRR Tolkien", 13)) // true




equals (), hashCode () et classe

Contrairement a un record, une classe n'implémente pas
equals/hashCode correctement (il faut implémenter les deux!!)

public class Author {

private final String name;

private final int books;

public Author() { ... } // obvious code
X

var list = List.of(new Author("JRR Tolkien", 13));
list.contains(new Author("JRR Tolkien", 13)) // false




Implanter equals(Object)

Remplacer boolean equals(Object)
m |l faut que la méthode que I'on définit ait la méme signature
(méme visibilité, mémes parametres, méme type de retour)

public class Author {
private final String author;
private final int books;

@0verride
public boolean equals(Object o) {
// Attention : ne prend pas un Author en paramétre
// vérifier que ’0’ est bien un Author et
// tester les champs avec == (primitif)
// ou equals (objet)
}
Q@0verride
public int hashCode() { ...
}




Ecrire equals(Object)

L'opérateur instanceof permet de tester a |'exécution si I'Object pris en
parameétre est bien un Author

public class Author {
private final String name;
private final int books;

Q@0verride
public boolean equals(Object o) {
return o instanceof Author author
&& books == author.books
&& name.equals(author.name) ;
// On teste le primitif d’abord car == est plus rapide
// que equals() et && est paresseux
3
@0verride
public int hashCode() {
}




Implanter hashCode () (le contrat objet)

Si deux objets sont égaux au sens de equals()
ol.equals(02) == true

alors ils doivent avoir la méme valeur de hashCode()
ol.hashCode() == 02.hashCode()

public class Author {
private final String author;
private final int books;

@0verride
public boolean equals(Object o) {
3

@0verride
public int hashCode() {

}




Ecrire hashCode O

Il'y a deux fagons de combiner des hashCodes

Si on a deux valeurs, on utilise * (le "ou exclusif’) entre les deux
hashCode

Si on a plus de deux valeurs, on utilise
java.util.Objects.hash()

public class Author {
private final String name;
private final int books;

@0verride
public int hashCode() {
return name.hashCode() ~ Integer.hashCode(books) ;
// return Objects.hash(name, books);
// marche aussi mais plus lent
}
}




Et si on n'implante pas equals correctement

Si on écrit equals (Author) au lieu de equals(Object) et on oublie
le @verride

public class Author {
private final String name;
private final int books;

public boolean equals(Author author) { ...
}
}

Le code compile (ahh) mais ne marche pas correctement.

Pour Java, il y a deux méthodes equals : equals(Object) qui est
toujours la et equals(Author). Donc il y a surcharge et pas
redéfinition.
equals (Author) ne sera jamais appelé car le code de java.util
appelle equals(Object).
Toujours mettre @0verride qui vérifie que I'on remplace bien la
méthode.




En mettant tout ensemble

Si on veut qu'une classe puisse étre utilisée dans les structures de
données prédéfinies de Java, il faut écrire equals et hashCode (les
deux!!)

public class Car {

}

private final String color;

private final int seats;

private final boolean fancy;
// obvious constructor

@0verride
public boolean equals(Object o) {
return o instanceof Car car && fancy == car.fancy
&& seats == car.seats && color.equals(car.color);
}
@0verride

public int hashCode() {
return Objects.hash(color, seats, fancy);

}




Encapsulation

Encapsulation



Encapsulation

L'encapsulation, c'est le fait de cacher les détails d'implantation pour
faciliter la maintenance du code.

Les utilisateurs de la classe voient I'API qui ne bouge pas

Les mainteneurs de la classe changent I'implantation tout en
restant compatible avec I'API

Capsule de protection

—

Détails d'implantation




Classe vs record

Un record ne permet pas |I'encapsulation car les composants d'un record
sont visibles par tous. On y a accés avec les méthodes accesseurs.

Contrairement a un record, une classe permet de séparer I'API et
I'implantation

record == classe — encapsulation



Résumé

Une classe définit des champs (cases mémoire), un constructeur (point
d'entrée d'initialisation) et des méthodes (fonctions liées a la classe)

Une classe
Utilise I'encapsulation (privé/public)
Doit &tre écrite non mutable par défaut (champs final et private)

Vérifie les préconditions dans les constructeurs publics et les
méthodes publiques

Ne modifie pas la signature des membres public d’'une version a
I"autre



Résumé

Un record définit des champs (cases mémoire), un constructeur (point
d’entrée d'initialisation) et des méthodes (fonctions liées au record)

Un record
Ne permet pas I'encapsulation
A ses champs tous privés et final mais il y a des accesseurs publics
a ces champs
A un constructeur canonique déja défini mais qui ne vérifie pas les
pré-conditions. Il faut écrire un constructeur compact pour vérifier
les pré-conditions.
A des méthodes equals, hashCode, toString déja définies
avec un bon comportement.



Résumé : classes ou records, que choisir ?

Si I'encapsulation n'est pas nécessaire, on prend un record. Par
exemple pour définir un type qui a des champs non mutables
(Point, Car, ...)

Si un des champs est mutable, par exemple une liste modifiable
(Garage, ...), on prend une classe. Attention, méme si un champ

liste est défini private final, |'acces a la liste permet d’ajouter
des éléments dedans.



Exercices

Exercices



Exercice 1

Le but de ces exercices est d'écrire des classes pour représenter un
magasin de vétements de sport.

On souhaite définir un type Clothing qui modélise des vétements de
sport. Chaque vétement a

une catégorie category de type String.

une marque (brand) de type String

une taille size (un int)

un prix price (un int).
Les tailles devront étre comprises entre 1 et 5, et le prix doit étre
positif ou nul. Les champs ne seront pas modifiés.

Ecrire un record Clothing avec le constructeur compact qui teste
les pré-conditions.

Ecrire un deuxiéme constructeur qui prend en argument la
catégorie, la marque et le prix et crée le vétement en taille 1.
Pourquoi prend-on un record plutét qu'une classe ?



Exercice 1

Le code suivant devra fonctionner :

static void main() {
var polo = new Clothing("polo", "Colmar", 3, 40);
I0.println(polo);
var polo2 = new Clothing("polo", "Colmar", 40);
I0.println(polo2);

}

Sortie attendue :

Clothing[category=polo, brand=Colmar, size=3, price=40]
Clothing[category=polo, brand=Colmar, size=1, price=40]




Exercice 2

Ecrire une classe SportsShop qui modélise un magasin de sport.

Un magasin aura un champ name de type String et il contiendra une
liste d'articles qui seront des vétements de sport. Les articles pourront
figurer plusieurs fois dans la liste.

Ecrire une méthode add pour ajouter un vétement dans le
magasin. On pourra ajouter plusieurs fois un méme vétement dans
la liste.

Pourquoi prend-on une classe plutot qu'un record pour
SportsShop ?



Exercice 3

Ecrire une méthode toString dans SportsShop qui permet
d'afficher le magasin. On affichera le nom du magasin sur une
ligne puis chaque article sur une ligne. Il ne devra pas y avoir de
passage a la ligne a la fin. On devra utiliser un StringBuilder.



Exercice 3

Le code suivant devra donc fonctionner :

static void main() {
var polo = new Clothing("polo", "Colmar", 2, 40);
var shirtl = new Clothing("tshirt", "Burton", 4, 50);
var shirt2 = new Clothing("tshirt", "Burton", 4, 50);
var shopl = new SportsShop("Italie2");
shopl.add(polo);
shopl.add(shirtl);
shopl.add(shirt2) ;
I0.println(shopl);

}

Sortie attendue :

Italie2

Clothing[category=polo, brand=Colmar, size=2, price=40]
Clothing[category=tshirt, brand=Burton, size=4, price=50]
Clothing[category=tshirt, brand=Burton, size=4, price=50]




Exercice 4

Ecrire une méthode public int totalPrice() qui calcule le
prix total de tous les vétements du magasin. La méthode devra
renvoyer O si le magasin est vide.

I0.println(shopl.price());
// 140




Exercice b

Un magasin souhaite proposer des vétements en solde. Pour cela,
on écrira une méthode onSale qui renvoie une liste non modifiable
des articles du magasin qui vont étre soldés.

Les articles soldés seront les vétements dont la taille est supérieure

ou égale a 3.

I0.println(shopl.onSale());
// [[Clothing[brand=Burton, size=4, price=50],
// Clothing[brand=Burton, size=4, price=50]]




Exercice 6

Ecrire une méthode isIncluded(SportsShop shopl,
SportsShop shop2) qui teste si tous les articles du magasin
shop1 sont aussi des articles du magasin shop2. Quelle est la
particularité de cette méthode ?

Ecrire une méthode sameItems (SportsShop shopl,
SportsShop shop2) qui teste si les magasins shopl et shop2
contiennent les mémes articles, sans tenir compte des éventuelles
répétitions et de I'ordre dans les listes.

var shop2 = new SportsShop("Jaude");

shop2.add (shirt?2);

shop2.add(polo);
I0.println(SportsShop.sameItems (shopl, shop2));
// true




