
Programmation orientée objet. Cours 2

Marie-Pierre Béal
BUT 1

Listes
Types primitifs et leurs enveloppes

Records avancés
Packages et import

Méthodes d’instance vs. méthodes statiques



Listes

Un objet List définit une liste d’éléments

indexée par un entier

ordonnée par l’ordre d’insertion

L’API Java fournit plusieurs types de listes différentes.

Elles sont paramétrées par le type des objets qu’elles contiennent.

Chacune a des implantations modifiables et non modifiables



java.util.List

java.util.List



List.of vs ArrayList

Il y a deux implantations principales

List.of() pour les listes non modifiables

var list = List.of("hello", "collection");

ArrayList qui s’agrandit dynamiquement

var list = new ArrayList<String>();

list.add("hello");

list.add("collection");



java.util.List.of()

Liste non modifiable qui n’accepte pas null

List.of(E ...)

var empty = List.<String>of(); // on doit indiquer le type

var one = List.of(42);

var three = List.of(1, 5, 8);



list.isEmpty(), list.size()

list.isEmpty() renvoie true si la liste est vide

List.of("hello").isEmpty() // false

list.size() renvoie le nombre d’éléments

List.of("hello").size() // 1



list.get(), list.getFirst(), list.getLast()

list.get(index) renvoie le nième élément (à partir de 0)

List.of("hello", "list", "map").get(1) // list

Lève une exception IndexOutOfBoundsException si on sort des
bornes de la liste

Les listes sont dans des classes qui implémentent l’interface
SequencedCollection.

list.getFirst() renvoie le premier élément
list.getLast() renvoie le dernier élément

List.of("hello", "list").getFirst() // hello

List.of("hello", "list").getLast() // list

Lèvent une exception NoSuchElementException si la liste est vide



toString() / equals() / hashCode()

list.toString() renvoie une version textuelle

List.of(1, 2, 3).toString() // [1, 2, 3]

list.equals(list2) permet de comparer des listes même si ce n’est
pas la même implantation

var list = List.of(1, 2, 3);

IO.println(list.equals(list)); // true

var list2 = new ArrayList<Integer>();

list2.add(1);
list2.add(2);
list2.add(3);
IO.println(list.equals(list2)); // true

list.hashCode() renvoie une valeur résumée du contenu de la liste

List.of(1, 2, 3).hashCode() // 30817



Parcours avec for(:)

On peut utiliser la syntaxe for(:) sur les listes

var list = List.of(1, 2, 3);

for(var element: list) {

IO.println(element);

// 1

// 2

// 3

}

C’est la même syntaxe que pour les tableaux mais le code généré par le
compilateur n’utilise pas des indices (mais un Iterator, voir plus tard).



list.set()

list.set(index, element) change la valeur de l’élément à la nième
case

var list = new ArrayList<String>();

list.add("hello");

list.set(0, "bonjour");

IO.println(list.getFirst()); // bonjour



list.add() / list.remove()

list.add(element) ajoute un élément à la fin
list.addLast(element) ajoute un élément à la fin (appelle add)
list.addFirst(element) ajoute un élément au début

list.add("hello") // sur une liste où l’opération est supportée

list.remove(element) supprime le premier élément (en utilisant
element.equals())

list.remove("hello") // sur une liste où l’opération est
supportée

list.remove(index) supprime à l’index et renvoie l’élément
list.removeFirst() supprime le premier élément et renvoie l’élément
list.removeLast() supprime le dernier élément et renvoie l’élément

list.removeFirst() // les éléments sont décalés à gauche, sur
une liste où l’opération est supportée

lèvent une exception NoSuchElementException si la liste est vide



Listes non modifiables

Si la liste est non modifiable, les méthodes set(), add() et
remove(index)/remove(element)/removeFirst()/removeLast()

lèvent UnsupportedOperationException

List.of() construit une liste non modifiable

List.of("hello").set(0, "list") // lève
UnsupportedOperationException

List.of("hello").add("list") // lève
UnsupportedOperationException

List.of("hello").remove("hello") // lève
UnsupportedOperationException

List.of("hello").removeFirst() // lève
UnsupportedOperationException



conversion liste modifiable / non modifiable

List.copyOf(collection)

Prend une collection en paramètre et copie tous les éléments dans
une List non modifiable (la même que List.of())

new ArrayList<>(collection)

Prend une collection en paramètre et copie tous les éléments dans
une ArrayList (modifiable)



contains() / indexOf() / lastIndexOf()

list.contains(element) renvoie si l’élément est contenu (en
utilisant element.equals())

List.of("foo", "bar").contains("bar") // true

list.indexOf(element) renvoie l’index du premier élément égal (en
utilisant element.equals()) ou -1

List.of("foo", "foo").indexOf("foo") // 0

list.lastIndexOf(element) renvoie l’index du dernier élément égal
(en utilisant element.equals()) ou -1

List.of("foo", "foo").lastIndexOf("foo") // 1



Lenteur de contains/remove/indexOf/lastIndex

Toutes ces méthodes ont une complexité en O(n), elles nécessitent
dans le pire cas de parcourir tous les éléments.

Il peut être plus efficace d’utiliser un dictionnaire (Map) pour avoir une
recherche plus rapide (voir cours suivants).



Types paramétrés

En Java, le type entre < > doit être un type objet.
Pour une liste d’entiers, le type des éléments de la liste doit être
Integer et pas int.

IO.println(List.of(1,2,3)); // [1, 2, 3]

C’est une List<Integer>.



Types primitifs et types enveloppes

Nom Taille Taille Exemples Enveloppe
en bits en octets

byte 8 1 1, -128, 127 java.lang.Byte

short 16 2 2, 300 java.lang.Short

int 32 4 234569876 java.lang.Integer

long 64 8 2L java.lang.Long

float 32 4 3.14, 3.1E12, 2e12 java.lang.Float

double 64 8 0.5d java.lang.Double

boolean 8 1 true ou false java.lang.Boolean

char 16 2 ’a’, ’\n’, ’\u0000’ java.lang.Character

Les caractères sont codés sur deux octets en Unicode.

Les types sont indépendants du compilateur et de la plate-forme.

Tous les types numériques sont signés sauf les caractères.

Un booléen n’est pas un nombre.

Les opérations sur les entiers se font modulo, et sans erreur :

byte b = 127; b += 1; // b = -128



Enveloppes des types primitifs

Une instance de la classe enveloppe encapsule une valeur du type
de base correspondant.

Chaque classe enveloppe possède des méthodes pour extraire la
valeur d’un objet (par exemple o.intValue() appliquée sur un
objet o de la classe Integer renvoie une valeur de type int).

Une méthode statique de chaque classe enveloppe renvoie un objet
enveloppant le primitif correspondant – par exemple
Integer.valueOf(int p).

Un objet enveloppant est non mutable : la valeur contenue dedans
ne peut pas être modifiée.

On transforme souvent les valeurs primitives en objets pour les
mettre dans les collections.



Conversions automatiques

Auto-boxing

Integer i = 3; // int --> Integer

Long l = 3L; // long --> Long

Long l = 3; // erreur, int --> Integer -/-> Long

// alors que long l = 3; fonctionne.

Auto-unboxing

Integer i = Integer.valueOf(3);

int x = i; // Integer --> int

Long lo = null;

long l = lo; // erreur : java.lang.NullPointerException :

// Cannot invoke "java.lang.Long.longValue()"

// because "lo" is null

Les conversions se font aussi pour les paramètres lors d’appels de
méthodes et pour les valeurs de retour des méthodes.



Record compléments

Record compléments



Un record public

// dans le fichier Point.java

public record Point(int x, int y) {}

// dans Test.java

class Test.java {

static void main() {

var point = new Point(3, 4);

IO.println(point.x()); // 3

}

}

Ici on a ajouté un modificateur de visibilité public qui signifie que le
record sera visible dans tout code situé dans n’importe quel répertoire.



Accesseurs publics

Dans un record, le compilateur ajoute des méthodes publiques de même
noms que les champs appelées accesseurs (ici x() et y()), avec comme
code, le code des méthodes x() et y() généré par le compilateur.
C’est comme si on écrivait

public record Point(int x, int y) {

public int x() { // il est inutile de l’écrire

return x;

}

}

inutile signifie qu’il ne faut pas l’écrire (points en moins aux examens si
vous l’écrivez).



Remplacer / Redéfinir les méthodes existantes

On peut changer l’implantation des accesseurs ou des méthodes
toString/equals/hashCode.

public record Pair(String first, String second) {

@Override

public String toString() {

return "Pair(" + first + ", " + second + ")";

}

}

// dans Test.java

class Test.java {

static void main() {

IO.println(new Pair("toto", "titi")); // Pair(toto, titi)

}

}

On utilise l’annotation @Override pour aider à la lecture, faire la
différence entre une nouvelle méthode et le remplacement d’une
méthode existante.



Constructeur canonique

Le constructeur est une méthode spéciale appelée lors du new pour
initialiser les champs.

Dans un record, le compilateur génère automatiquement le
constructeur canonique (celui qui initialise les champs).

public record Person(String name, int age) {

// généré automatiquement

public Person(String name, int age) {

this.name = name;

this.age = age;

}

}



Redéfinir le constructeur

Il est souvent nécessaire de remplacer le constructeur car on veut
empêcher de créer des objets avec des valeurs erronées

public record Person(String name, int age) {

public Person(String name, int age) {

Objects.requireNonNull(name);

// plante (lève une NullPointerException)

// si name est null

if (age < 0) {

throw new IllegalArgumentException("age < 0");

}

this.name = name;

this.age = age;

}

}

On vérifie les pré-conditions.



Redéfinir le constructeur compact

Le constructeur canonique a une version “compacte”

public record Person(String name, int age) {

public Person { // pas de parenthèses

Objects.requireNonNull(name, "name is null");

if (age < 0) {

throw new IllegalArgumentException("age < 0");

}

}

}

qui ne laisse apparâıtre que les pré-conditions.
Le compilateur ajoute les this.name = name; etc à la fin du
constructeur compact.



equals/hashCode/toString

Dans un record, le compilateur génère aussi les méthodes

equals() : indique si deux objets de type Point ont les mêmes
valeurs

static void main(String[] args) {

var point = new Point(2, 3);

var point2 = new Point(2, 3);

println(point.equals(point2)); // true

var point3 = new Point(4, 7);

IO.println(point.equals(point3)); // false

IO.println(point.hashCode()) // 65

}

hashCode() : renvoie un entier ”résumé”, cf cours suivants



equals/hashCode/toString

toString() : renvoie une représentation textuelle

static void main(String[] args) {

var point = new Point(2, 3);

IO.println(point.toString()); // Point[x = 2, y = 3]

IO.println(point); // Point[x = 2, y = 3]

}



Module, Package et import

Module, Package et import



Package

Une librarie Java (appelé un module) est composée de plusieurs
packages.

La librarie par défaut du langage Java est appelée java.base et
contient les packages :

Pour le JDK (la librairie par défaut de Java)

java.lang : classes de base du langage

java.util : classes utilitaires, structures de données

java.util.regex : expression régulière (cf cours 2)

java.io : pour faire des entrées/sorties

java.nio.file : entrées/sorties sur les fichiers

etc.



La directive import en Java

On peut faire une importation de tous les packages d’un module avec
import module (JEP 476).

En début de fichier, on écrit :

import module java.base; // ne pas oublier le ’;’

import n’importe pas de fichier au sens de Python/C mais dit que l’on
peut utiliser ArrayList à la place de java.util.ArrayList dans le code. Le
mot-clef devrait s’appeler “alias” pas “import”.



La directive import en Java

Ou bien, on spécifie des classes/records appartenant à des packages
que l’on veut utiliser

import java.util.ArrayList;



Exemple

import module java.base;

public class Hello {

static void main() {

var list = new ArrayList();

}

}

Le vrai nom de ArrayList est java.util.ArrayList et le package
java.util est importé car il est dans java.base.

Le code ci-dessus est équivalent au code sans import

public class Hello {

static void main() {

var list = new java.util.ArrayList();

}

}



Static

Champs et méthodes statiques



Champ static final

Un champ static final est une constante

public record Asset(long price) {

private static final long MAX_TAX = 1_000_000L;

public long computeTax() {

return Math.min(MAX_TAX, price / 10);

}

}

Aide à la lecture du code en remplaçant une valeur par un nom

Aide à la maintenance du code



Champ static pas final (à ne pas faire)

Un champ static qui n’est pas final est une sorte de variable globale
partagée par la classe ou le record.

Il ne faut pas en mettre sauf cas exceptionnel.



Méthodes statiques

Méthodes statiques



Méthodes d’instance et méthodes statiques

On appelle

une méthode d’instance sur une instance (avec un . après l’objet)

une méthode statique sans instance, sur la classe (avec un . après
le nom de la classe)

Lors de la déclaration

une méthode statique est précédée du mot static.

Donc une méthode statique est une méthode que l’on appelle sur la
classe indépendamment d’une instance.



Méthodes d’instance et méthodes statiques

java.io.IO.println est une méthode statique

static void main(){

IO.println("Hello");

}

Il existe aussi une méthode non statique System.out.println()

static void main(){

System.out.println("Hello");

}



Méthodes d’instance et méthodes statiques

IO.readln et Integer.parseInt sont des méthodes statiques

static void main(){

var s = IO.readln("Enter an integer \n");

IO.println(Integer.parseInt(s));

}

$ java ParseIntTest.java

Enter an integer

234

234



Méthodes d’instance et méthodes statiques

public record Taxi(boolean uber) {

String name() {

return this.uber? "Uber": "Hubert?";

}

static String bar() {

return "Hello Taxi";

}

}

static void main() {

IO.println(new Taxi(true).name()); // name méthode d’instance

IO.println(Taxi.bar()); // bar méthode statique

}

$ java TaxiTest.java

Uber

Hello Taxi



Et le main ?

Si on veut un main static, il faut le déclarer "static".

Dans un fichier HelloWorld.java on met :

static void main(){

IO.println("Hello World!");

}

$ java HelloWorld.java

Hello World!

appelle HelloWorld().main().



Exercices

Exercices



Exercice 1 Calcul de maximum

1 Écrire une méthode statique maxList qui prend en argument une
listes d’entiers et renvoie le maximum de la liste.

2 Écrire une méthode statique maxListIndex qui prend en
argument une listes d’entiers et renvoie l’indice d’un élément
maximal de la liste.



Exercice 2 Poissons

1 Écrire un record Fish pour représenter des poissons. Un poisson a
une espèce représentée par une châıne de caractères species, un
booléen seaFish qui indique si c’est un poisson de mer ou pas et
une longueur length en cm.

2 Modifier le constructeur canonique pour qu’il lève une exception si
l’espèce est null ou si la longueur n’est pas comprise entre 0 et
300 (on renverra une IllegalArgumentException dans ce cas).

3 Ajouter un constructeur qui permet de créer un poisson de mer à
partir de son espèce et de sa longueur.

4 Ajouter une méthode ifIsSeaFish qui renvoie le poisson auquel
on l’applique si c’est un poisson de mer, et null sinon.



Exercice 3 Liste de poissons

1 Écrire une classe FishTest qui contient une méthode main qui
crée 3 poissons.

2 Créer et afficher une liste non modifiable list1 contenant ces 3
poissons.

3 Créer et afficher une liste modifiable list2 contenant ces 3
poissons.

4 Est-il possible d’ajouter un Fish dans list1. Pourquoi ?

5 Est-il possible d’ajouter un Bird dans list2. Pourquoi ?

6 Ajouter une méthode allSeaFishes qui prend une ArrayList de
poissons en paramètre et renvoie true si tous les poissons qu’elle
contient sont des poissons de mer, et false sinon. Quelle est la
particularité de cette méthode ?
Remarque : vous pouvez consulter la documentation des
ArrayList ici :
https://docs.oracle.com/en/java/javase/25/docs/api/java.base/

java/util/ArrayList.html.

https://docs.oracle.com/en/java/javase/25/docs/api/java.base/java/util/ArrayList.html
https://docs.oracle.com/en/java/javase/25/docs/api/java.base/java/util/ArrayList.html


Exercice 3 Liste de poissons suite

1 Écrire une méthode allSeaFishes2 qui fait la même chose que la
précédente mais qui utilise la boucle for-each aperçue vu en cours
(c’est la même chose qu’en Python, sans oublier le typage).

2 Ajouter une méthode removeSeaFishes qui prend une liste de
poissons en paramètre et supprime tous les poissons de mer qu’elle
contient.

3 Ajouter une méthode withoutSeaFishes qui prend une liste de
poissons en paramètre et renvoie une liste qui contient les mêmes
poissons, mais sans les poissons de mer. À votre avis, quelle
méthode est meilleure : celle-ci ou la précédente ?

4 Ajouter une méthode sameFishes qui prend deux listes de
poissons en paramètre et renvoie true si les listes contiennent
exactement les mêmes poissons, et false sinon.

5 À quel(s) endroit(s) aurait-on pu utiliser des listes non modifiables
dans le code que vous venez d’écrire ?


