Programmation orientée objet. Cours 2

Marie-Pierre Béal
BUT 1

Listes
Types primitifs et leurs enveloppes
Records avancés
Packages et import
Méthodes d'instance vs. méthodes statiques



Listes

Un objet List définit une liste d'éléments
indexée par un entier

ordonnée par |'ordre d'insertion

L'API Java fournit plusieurs types de listes différentes.
Elles sont paramétrées par le type des objets qu'elles contiennent.

Chacune a des implantations modifiables et non modifiables



java.util.List

java.util.List



List.of vs ArrayList

Il'y a deux implantations principales

List.of () pour les listes non modifiables

var list = List.of("hello", "collection");

ArrayList qui s'agrandit dynamiquement

var list = new ArrayList<String>();
list.add("hello");
list.add("collection");




java.util.List.of ()

Liste non modifiable qui n'accepte pas null
List.of(E ...)

var empty = List.<String>of(); // on doit indiquer le type
var one = List.of (42);
var three = List.of(1, 5, 8);




list.isEmpty(), list.size()

list.

isEmpty () renvoie true si la liste est vide

List.

of ("hello").isEmpty() // false

list.

size () renvoie le nombre d'éléments

List.

of ("hello").size() // 1




list.get(), list.getFirst(), list.getLast()

list.get(index) renvoie le nieme élément (a partir de 0)

List.of ("hello", "list", "map").get(1) // list

Léve une exception IndexOutOfBoundsException si on sort des
bornes de la liste

Les listes sont dans des classes qui implémentent |'interface
SequencedCollection.

list.getFirst () renvoie le premier élément
list.getLast () renvoie le dernier élément

List.of ("hello", "list").getFirst() // hello
List.of("hello", "list").getLast() // list

Levent une exception NoSuchElementException si la liste est vide




toString() / equals() / hashCode()

list.toString() renvoie une version textuelle

List.of(1, 2, 3).toString() // [1, 2, 3]

list.equals(1list2) permet de comparer des listes méme si ce n'est
pas la méme implantation

var list = List.of(1, 2, 3);
I0.println(list.equals(list)); // true
var list2 = new ArrayList<Integer>();
list2.add(1);

list2.add(2);

list2.add(3);
I0.println(list.equals(1list2)); // true

list.hashCode () renvoie une valeur résumée du contenu de la liste

List.of (1, 2, 3).hashCode() // 30817




Parcours avec for(:)

On peut utiliser la syntaxe for(:) sur les listes

var list = List.of (1, 2, 3);
for(var element: list) {
I0.println(element);
// 1
// 2
// 3

C'est la méme syntaxe que pour les tableaux mais le code généré par le
compilateur n'utilise pas des indices (mais un lterator, voir plus tard).




list.set()

list.set(index, element) change la valeur de I'élément a la nieme
case

var list = new ArrayList<String>();
list.add("hello");

list.set (0, "bonjour");
I0.println(list.getFirst()); // bonjour




list.add() / list.remove()

list.add(element) ajoute un élément a la fin
list.addLast (element) ajoute un élément a la fin (appelle add)
list.addFirst(element) ajoute un élément au début
list.add("hello") // sur une liste ou I'opération est supportée
list.remove (element) supprime le premier élément (en utilisant
element.equals())
list.remove("hello") // sur une liste ou I'opération est
supportée
list.remove(index) supprime a l'index et renvoie |'élément
list.removeFirst () supprime le premier élément et renvoie I'élément
list.removeLast () supprime le dernier élément et renvoie I'élément
list.removeFirst() // les éléments sont décalés a gauche, sur
une liste ol |'opération est supportée

levent une exception NoSuchElementException si la liste est vide



Listes non modifiables

Si la liste est non modifiable, les méthodes set (), add() et
remove (index) /remove (element) /removeFirst () /removelLast ()
levent UnsupportedOperationException

List.of() construit une liste non modifiable

List.of("hello").set(0, "list") // léve
UnsupportedOperationException

List.of ("hello").add("list") // leve
UnsupportedOperationException

List.of("hello") .remove("hello") // leve
UnsupportedOperationException

List.of("hello") .removeFirst() // léve
UnsupportedOperationException



conversion liste modifiable / non modifiable

List.copyOf (collection)
Prend une collection en parameétre et copie tous les éléments dans
une List non modifiable (la méme que List.of())

new ArrayList<>(collection)

Prend une collection en parameétre et copie tous les éléments dans
une ArrayList (modifiable)



contains() / index0f() / lastIndex0f ()

list.contains(element) renvoie si I'élément est contenu (en
utilisant element.equals())

List.of ("foo", "bar").contains("bar") // true

list.index0f (element) renvoie |'index du premier élément égal (en
utilisant element.equals()) ou -1

List.of ("foo", "foo").index0f("foo") // 0

list.lastIndex0f (element) renvoie l'index du dernier élément égal
(en utilisant element.equals()) ou -1

List.of ("foo", "foo").lastIndex0f("foo") // 1



Lenteur de contains/remove/index0f/lastIndex

Toutes ces méthodes ont une complexité en O(n), elles nécessitent
dans le pire cas de parcourir tous les éléments.

Il peut étre plus efficace d'utiliser un dictionnaire (Map) pour avoir une
recherche plus rapide (voir cours suivants).



Types paramétrés

En Java, le type entre < > doit &tre un type objet.
Pour une liste d'entiers, le type des éléments de la liste doit étre
Integer et pas int.

I0.println(List.of(1,2,3)); // [1, 2, 3]

C'est une List<Integer>.




Types primitifs et types enveloppes

Nom Taille Taille Exemples Enveloppe
en bits | en octets

byte 8 1 1, -128, 127 java.lang.Byte
short 16 2 2, 300 java.lang.Short
int 32 4 234569876 java.lang.Integer
long 64 8 2L java.lang.Long
float 32 4 3.14, 3.1E12, 2el2 java.lang.Float
double 64 8 0.5d java.lang.Double
boolean 8 1 true ou false java.lang.Boolean
char 16 2 ’a’, ’\n’, ’\u0000°’ | java.lang.Character

Les caracteres sont codés sur deux octets en Unicode.
Les types sont indépendants du compilateur et de la plate-forme.
Tous les types numériques sont signés sauf les caracteres.

Un booléen n'est pas un nombre.
Les opérations sur les entiers se font modulo, et sans erreur :

byte b = 127; b += 1; // b = -128




Enveloppes des types primitifs

Une instance de la classe enveloppe encapsule une valeur du type
de base correspondant.

Chaque classe enveloppe posséde des méthodes pour extraire la
valeur d'un objet (par exemple o.intValue() appliquée sur un
objet o de la classe Integer renvoie une valeur de type int).

Une méthode statique de chaque classe enveloppe renvoie un objet
enveloppant le primitif correspondant — par exemple
Integer.valueOf (int p).

Un objet enveloppant est non mutable : la valeur contenue dedans
ne peut pas étre modifiée.

On transforme souvent les valeurs primitives en objets pour les
mettre dans les collections.



Conversions automatiques

Auto-boxing

Integer i = 3; // int --> Integer

Long 1 = 3L; // long --> Long

Long 1 = 3; // erreur, int --> Integer -/-> Long
// alors que long 1 = 3; fonctionne.

Auto-unboxing

Integer i = Integer.valueOf(3);

int x = i; // Integer -—> int

Long lo = null;

long 1 = lo; // erreur : java.lang.NullPointerException :
// Cannot invoke "java.lang.Long.longValue()"
// because "lo" is null

Les conversions se font aussi pour les parameétres lors d'appels de
méthodes et pour les valeurs de retour des méthodes.




Record compléments

Record compléments



Un record public

// dans le fichier Point.java
public record Point(int x, int y) {}

// dans Test.java
class Test.java {
static void main() {
var point = new Point(3, 4);
I0.println(point.x()); // 3
}
}

Ici on a ajouté un modificateur de visibilité public qui signifie que le
record sera visible dans tout code situé dans n'importe quel répertoire.




Accesseurs publics

Dans un record, le compilateur ajoute des méthodes publiques de méme
noms que les champs appelées accesseurs (ici x() et y()), avec comme

code, le code des méthodes x() et y() généré par le compilateur.
C'est comme si on écrivait

public record Point(int x, int y) {
public int x() { // il est inutile de 1’écrire
return Xx;

}
}

inutile signifie qu'il ne faut pas I'écrire (points en moins aux examens si
vous |'écrivez).




Remplacer / Redéfinir les méthodes existantes

On peut changer I'implantation des accesseurs ou des méthodes
toString/equals/hashCode.

public record Pair(String first, String second) {
@0Override
public String toString() {
return "Pair(" + first + ", " + second + ")";
}
}

// dans Test.java
class Test.java {
static void main() {
I0.println(new Pair("toto", "titi")); // Pair(toto, titi)
}
}

On utilise I'annotation @0verride pour aider a la lecture, faire la
différence entre une nouvelle méthode et le remplacement d’'une
méthode existante.




Constructeur canonique

Le constructeur est une méthode spéciale appelée lors du new pour
initialiser les champs.

Dans un record, le compilateur génere automatiquement le
constructeur canonique (celui qui initialise les champs).

public record Person(String name, int age) {
// généré automatiquement
public Person(String name, int age) {
this.name = name;
this.age = age;
¥
}




Redéfinir le constructeur

Il est souvent nécessaire de remplacer le constructeur car on veut
empécher de créer des objets avec des valeurs erronées

public record Person(String name, int age) {
public Person(String name, int age) {

}
}

Objects.requireNonNull (name) ;
// plante (léve une NullPointerException)

// si name est null
if (age < 0) {
throw new IllegalArgumentException("age < 0");
}
this.name = name;
this.age = age;

On vérifie les pré-conditions.




Redéfinir le constructeur compact

Le constructeur canonique a une version “compacte”

public record Person(String name, int age) {
public Person { // pas de parenthéses
Objects.requireNonNull (name, "name is null");
if (age < 0) {
throw new IllegalArgumentException("age < 0");
}
}
}

qui ne laisse apparaitre que les pré-conditions.
Le compilateur ajoute les this.name = name; etc a la fin du
constructeur compact.




equals/hashCode/toString

Dans un record, le compilateur génére aussi les méthodes

equals() : indique si deux objets de type Point ont les mémes
valeurs

static void main(String[] args) {
var point = new Point(2, 3);
var point2 = new Point(2, 3);
println(point.equals(point2)); // true
var point3 = new Point(4, 7);
I0.println(point.equals(point3)); // false
I0.println(point.hashCode()) // 65

hashCode () : renvoie un entier "résumé”, cf cours suivants



equals/hashCode/toString

toString() : renvoie une représentation textuelle

static void main(String[] args) {
var point = new Point(2, 3);
I0.println(point.toString()); // Point[x = 2, y = 3]
I0.println(point); // Point[x = 2, y = 3]

}




Module, Package et import

Module, Package et import



Package

Une librarie Java (appelé un module) est composée de plusieurs
packages.

La librarie par défaut du langage Java est appelée java.base et
contient les packages :

Pour le JDK (la librairie par défaut de Java)
java.lang : classes de base du langage
java.util : classes utilitaires, structures de données
java.util.regex : expression réguliere (cf cours 2)
java.io : pour faire des entrées/sorties
java.nio.file : entrées/sorties sur les fichiers

etc.



La directive import en Java

On peut faire une importation de tous les packages d'un module avec
import module (JEP 476).

En début de fichier, on écrit :

import module java.base; // ne pas oublier le ’;’

import n'importe pas de fichier au sens de Python/C mais dit que I'on
peut utiliser ArrayList a la place de java.util. ArrayList dans le code. Le
mot-clef devrait s’appeler “alias” pas “import”.




La directive import en Java

Ou bien, on spécifie des classes/records appartenant a des packages
que 'on veut utiliser

import java.util.ArrayList;




Exemple

import module java.base;
public class Hello {
static void main() {
var list = new ArrayList();
}
}

Le vrai nom de ArrayList est java.util.ArrayList et le package
java.util est importé car il est dans java.base.

Le code ci-dessus est équivalent au code sans import

public class Hello {
static void main() {
var list = new java.util.ArrayList();
}
}




Static

Champs et méthodes statiques



Champ static final

Un champ static final est une constante

public record Asset(long price) {
private static final long MAX_TAX = 1_000_OO0OOL;

public long computeTax() {
return Math.min(MAX_TAX, price / 10);
}
}

Aide a la lecture du code en remplacant une valeur par un nom

Aide a la maintenance du code




Champ static pas final (a ne pas faire)

Un champ static qui n'est pas final est une sorte de variable globale
partagée par la classe ou le record.

Il ne faut pas en mettre sauf cas exceptionnel.



Méthodes statiques

Méthodes statiques



Méthodes d'instance et méthodes statiques

On appelle
une méthode d'instance sur une instance (avec un . apres |'objet)

une méthode statique sans instance, sur la classe (avec un . apres
le nom de la classe)

Lors de la déclaration
une méthode statique est précédée du mot static.

Donc une méthode statique est une méthode que I'on appelle sur la
classe indépendamment d’une instance.



Méthodes d'instance et méthodes statiques

java.io.I0.println est une méthode statique

static void main(){
I0.println("Hello");
}

Il existe aussi une méthode non statique System.out.println()

static void main(){
System.out.println("Hello");
}




Méthodes d'instance et méthodes statiques

I0.readln et Integer.parselnt sont des méthodes statiques

static void main(){
var s = I0.readln("Enter an integer \n");
I0.println(Integer.parselnt(s));

}

$ java ParselIntTest.java
Enter an integer

234

234




Méthodes d'instance et méthodes statiques

public record Taxi(boolean uber) {
String name() {
return this.uber? "Uber": "Hubert?";
}
static String bar() {
return "Hello Taxi';
}
}

static void main() {
I0.println(new Taxi(true).name()); // name méthode d’instance
I0.println(Taxi.bar()); // bar méthode statique

}

$ java TaxiTest.java
Uber
Hello Taxi



Et le main?

Si on veut un main static, il faut le déclarer "static".

Dans un fichier HelloWorld. java on met :

static void main(){
I0.println("Hello World!");

}

$ java HelloWorld.java
Hello World!

appelle HelloWorld () .main().




Exercices

Exercices



Exercice 1 Calcul de maximum

Ecrire une méthode statique maxList qui prend en argument une
listes d'entiers et renvoie le maximum de la liste.

Ecrire une méthode statique maxListIndex qui prend en
argument une listes d'entiers et renvoie I'indice d’'un élément
maximal de la liste.



Exercice 2 Poissons

Ecrire un record Fish pour représenter des poissons. Un poisson a
une espece représentée par une chaine de caractéres species, un
booléen seaFish qui indique si c'est un poisson de mer ou pas et
une longueur length en cm.
Modifier le constructeur canonique pour qu'il leve une exception si
I'espéce est null ou si la longueur n'est pas comprise entre 0 et
300 (on renverra une I1legalArgumentException dans ce cas).
a

Ajouter un constructeur qui permet de créer un poisson de mer
partir de son espece et de sa longueur.

Ajouter une méthode ifIsSeaFish qui renvoie le poisson auquel
on |'applique si c'est un poisson de mer, et null sinon.



Exercice 3 Liste de poissons

Ecrire une classe FishTest qui contient une méthode main qui
crée 3 poissons.

Créer et afficher une liste non modifiable 1ist1 contenant ces 3
poissons.

Créer et afficher une liste modifiable 1ist2 contenant ces 3
poissons.

Est-il possible d'ajouter un Fish dans list1. Pourquoi?

Est-il possible d’ajouter un Bird dans 1ist2. Pourquoi?

Ajouter une méthode allSeaFishes qui prend une ArrayList de
poissons en parametre et renvoie true si tous les poissons qu'elle
contient sont des poissons de mer, et false sinon. Quelle est la
particularité de cette méthode ?

Remarque : vous pouvez consulter la documentation des
ArrayList ici :
https://docs.oracle.com/en/java/javase/25/docs/api/java.base/
java/util/ArrayList.html.


https://docs.oracle.com/en/java/javase/25/docs/api/java.base/java/util/ArrayList.html
https://docs.oracle.com/en/java/javase/25/docs/api/java.base/java/util/ArrayList.html

Exercice 3 Liste de poissons suite

Ecrire une méthode allSeaFishes2 qui fait la méme chose que la
précédente mais qui utilise la boucle for-each apercue vu en cours
(c’est la méme chose qu’en Python, sans oublier le typage).

Ajouter une méthode removeSeaFishes qui prend une liste de
poissons en parametre et supprime tous les poissons de mer qu'elle
contient.

Ajouter une méthode withoutSeaFishes qui prend une liste de
poissons en parameétre et renvoie une liste qui contient les mémes
poissons, mais sans les poissons de mer. A votre avis, quelle
méthode est meilleure : celle-ci ou la précédente?

Ajouter une méthode sameFishes qui prend deux listes de
poissons en parametre et renvoie true si les listes contiennent
exactement les mémes poissons, et false sinon.

A quel(s) endroit(s) aurait-on pu utiliser des listes non modifiables
dans le code que vous venez d’écrire?



