Programmation orientée objet. Cours 1

Marie-Pierre Béal
UGE BUT 1

Programmation objet en Java. Records et objets.

Bref historique des langages de programmation

Langages
Dans les années 60 : COBOL, FORTRAN, LISP, ALGOL
Langages impératifs et structurés (années 70) : C, Pascal
Langages fonctionnels (années 80 et 90) : ML, OCaml, Haskell

Langages orientés objets (années 80 et 90) : Smalltalk, C++,
Objective C,

Langages multiparadigmes : Java, Python

Styles de programmation

Style impératif versus fonctionnel
Un langage impératif :
exécute des commandes
modifie un état (une case mémoire)
Un langage fonctionnel :

exécute des fonctions
la valeur de retour d'une fonction ne dépend que des valeurs des
parameétres

Style objet
Un programme est vu comme

une communauté de modules autonomes (objets)
disposant de leurs ressources propres
et de moyens d’interaction.

Utilise des classes pour décrire les structures et leur comportement.
Usage intensif des relations entre les objets.

Langages typiques : C++, Java, Ruby, Python, C+#...

Le langage Java

Java est un langage
typé statiquement

multi-paradigme (impératif, fonctionnel, orienté objet, générique,
déclaratif et réflexif)

avec encapsulation, sous-typage, liaison tardive

Histoire de Java

Versions de Java
Java 1.0 (1995), Orienté objet
Java 1.5 (2004), Types paramétrés
Java 1.8 (2014), Lambda
Java 17 (2021), Record + Sealed types
Java 21 (2023) Pattern Matching

Java 25 (2025) JEP 511 : import de module, JEP 512 : Classe
compacte et méthodes main

créé par James Gosling, Guy Steele et Bill Joy a SUN Microsystem en
1995. Il est basé sur C (syntaxe) et Smalltalk (machine virtuelle).

Open source depuis 2006 http://github.com/openjdk/jdk

http://github.com/openjdk/jdk

La plateforme Java

Write Once Run Anywhere

Environnement d’exécution
Machine Virtuelle / Runtime
Just In Time (JIT) compiler

Garbage Collectors

Modele d’exécution

Modéle du C

‘ Code Source Assembleur ‘

Modéle de Java

JIT
Code Source Bytecode Assembleur ‘
‘ ylecode 1S

interpreter

Modéle de JavaScript

=== A rssemew |

interpreter

‘Alacompilation ‘ ‘ Al'execution ‘

Critiques de Java

Java est trop verbeux. Java est le royaume des noms
Java préfere un code facile a lire

Java considere chaque classe comme une librairie (facile a utiliser
pour les utilisateurs)

Java est mort

Java est backward compatible donc il évolue doucement

Démarrer en Java

Démarrer en Java

Démarrer en Java

Java est rigide.

Pour permettre une lecture facile

Les choses sont rangées

Le code est rangé dans une fonction appelée méthode
Les méthodes sont rangées dans une unité appelée classe

Conventions de code
Un fichier s'écrit en CamelCase (majuscule au début) et finit par le

suffixe . java

Une méthode ou une variable s’écrit en camelCase (minuscule au

début)

Accolade de début d'une méthode en fin de ligne, accolade de fin
alignée avec le début du bloc

Si une classe a le nom Foo, alors elle est dans le fichier Foo. java

Premier programme

Dans un fichier HelloWorld. java on écrit une classe HelloWorld

class HelloWorld {
static void main() {
I0.println("Hello World!");
}
}

Le point d'entrée du programme est la méthode main

println est une méthode rangée dans une classe, la classe
java.io.IO.

Compiler et exécuter

On lance la compilation seule avec la commande javac suivi du
nom du fichier source

$ javac HelloWorld.java

Un fichier HelloWorld.class est créé.

$ 1s

HelloWorld.class HelloWorld. java

$

On lance I'exécution (I'interprétation du bytecode) par la machine
virtuelle Java avec la commande java suivi du nom du fichier sans
le suffixe . java.

$ java HelloWorld

Hello World!

Compiler en mémoire et exécuter

On peut compiler en mémoire et exécuter en une seule commande
avec java suivi du nom du fichier source.

$ java HelloWorld.java
Hello World!

Le résultat est sur la sortie standard.

Autre exemple

On écrit le code dans le fichier AdditionTest. java :

class AdditionTest {
static void main () {
var n = 100;
var m = 200;
I0.println(n + m);
}
}

On compile avec javac AdditionTest.java

On lance I'exécution avec java AdditionTest, on obtient 300.

Types et variables

Types et variables

Types

Java a deux sortes de types
Les types primitifs
boolean, byte, char, short, int, long, float, double
(en minuscule)

Les types objets
String, Date, Pattern, Stringl[], etc (en majuscule)

Variables de type

Les types primitifs sont manipulés par leur valeur

int i = 3;
int j =i; // copie 3

On peut aussi écrire

var i = 3;
var j = 1i; // copie 3

Les types objets sont manipulés par leur adresse en mémoire (référence)

String s = "hello";
String s2 = s; // copie 1l’adresse en mémoire

Il existe une référence spéciale null. On peut I'utiliser comme valeur
de n'importe quel type non primitif

En mémoire

Type primitif

int i = 3;
int j = i; // copie 3

Type objet

String s = "hello";
String s2 = s; // copie 1l’adresse en mémoire

Dans le bytecode les variables ne sont pas manipulées par des noms
mais par des numéros (0, 1, etc) par ordre d'apparition.

L'opérateur ==

L'opérateur == permet de tester si deux cases mémoire ont la méme
valeur

var i = 3;
var j = 4;
i == j // renvoie false
i ==1i // renvoie true

Attention avec les objets, cela teste si c'est la méme référence (méme
adresse en mémoire)

var s =

var s2 =

s == 82 // teste si c’est la méme adresse en mémoire,
// pas le méme contenu !

Variable locale

Déclaration

Type nom; // information pour le compilateur

// disparait a 1’exécution

Type nom = expression;

équivaut a

Type nom; // information pour le compilateur
nom = expression; // assignation a 1’exécution

var nom = expression;

demande au compilateur de calculer (inférer) le type de expression,
donc équivalent a

Type (expression) nom = expression;

Types primitifs et processeur

Les processeurs ont 4 types pour les opérations a I'exécution (donc sur
la pile), pas pour le stockage en RAM (sur le tas) : int 32bits, int
64bits, float 32bits et float 64bits. Donc boolean, byte, short, char sont
des int 32bits.

Le compilateur interdit les opérations numériques sur les boolean. Pour
les autres types, les opérations renvoient un int

short s = 3;
short s2 = s + s; // ne compile pas, le résultat est un int

Types numériques et processeur

Les types byte, short, int, long, float et double sont signés.
Il n'y a pas d'unsigned a part char.
On a des opérations spécifiques pour unsigned

Integer.compareUnsigned(int, int),
Integer.parseUnsignedInt(String),
Integer.toUnsignedString(int),
Byte.toUnsignedInt(byte),

etc

Entiers et processeur

Les int/long sont bizarres

Définis entre Integer .MIN_VALUE et Integer.MAX_VALUE sinon on a
un Overflow (passe dans les positifs/négatifs).

jshell> Integer .MIN_VALUE
$1 ==> -2147483648
jshell> Integer .MAX_VALUE
$2 ==> 2147483647

Donc
Integer .MAX_VALUE + 1 == Integer.MIN_VALUE
Integer .MIN_VALUE - 1 == Integer.MAX_VALUE
- Integer .MIN_VALUE == Integer .MIN_VALUE
Math.abs(Integer.MIN VALUE) == Integer.MIN VALUE
et 1 / 0 leve une ArithmeticException

Flottants et processeur

Les float/double sont bizarres aussi (différemment)
0.1 n'est pas représentable donc on a une valeur approchée
Imprécision dans les calculs 0.1 + 0.2!=10.3
1. / 0. est Double.POSITIVE_INFINITY,
-1. / 0. est Double.NEGATIVE INFINITY,

0. / 0. est Double.NaN (Not a Number)

Double.NaN est un nombre (en fait, plusieurs) qui n'est pas égal a
lui méme
Double.NaN == Double.NaN renvoie false
Double.isNaN(Double.NaN) renvoie true

En java on manipule des flottants avec le type double, pas float

On ne manipule jamais des prix avec des flottants

Record

Record

Les objets

Un objet (ou instance)
est un composant autonome,
qui a ses propres ressources (ses champs),

et des actions qu'il peut effectuer (ses méthodes).

Records

En Java on peut définir des objets avec des records ou des classes.

Un record est un tuple nommé non modifiable.
C'est un enregistrement de données.
Ces données sont stockées dans des champs qui portent des noms.

Les valeurs des champs ne peuvent pas étre modifiées.

Similaires aux tuples de Python et aux struct du C.

Record
Un record permet de déclarer des tuples nommés

Dans un fichier Point. java on met :

record Point(int x, int y){}

Dans un fichier PointTest. java on met :

class PointTest {
static void main() {
var pointl = new Point(2, 3);
var point2 = new Point(l, 4);
I0.println(pointl);
I0.println(point2);
}
}

On utilise new pour créer une instance (un objet). Il réserve ici un
espace mémoire suffisant pour stocker deux entiers (la mémoire est
gérée par le garbage collector).

Record

$ javac Point.java PointTest.java

$ 1s

Point.class Point.java PointTest.class PointTest.java
$ java PointTest

Point [x=2, y=3]

Point [x=1, y=4]

Méthodes d’instance

A l'intérieur d'un record, on peut définir des méthodes (fonction rangée
dans un record)

record Point(int x, int y) {
double distanceToOrigin() {
return ...
}
}

class PointTest {
static void main() {
var point = new Point(2, 3);
var distance = point.distanceToOrigin();
}
}

Méthodes d’instance

record Point(int x, int y) {
double distanceToOrigin() {
return Math.sqrt(x * x + y * y);
}
}

class PointTest {
static void main() {
var point = new Point(2, 3);
var distance = point.distanceToOrigin();
}
}

Lors de I'appel point.distanceToOrigin() ;, on appelle la méthode
distanceToOrigin() de Point sur point

$ java PointTest.java
3.605551275463989

Accesseurs

Dans un record, le compilateur ajoute des méthodes accesseurs
automatiquement. Ce sont des méthodes de méme noms que les
champs.

record Point(int x, int y){}

class PointTest {
static void main() {
var point = new Point (2, 3);
I0.println(point.x());
3
}

$ java PointTest.java
2

Méthode equals

Dans un record, le compilateur ajoute une méthode equals qui dit si
deux objets ont le méme contenu

record Point(int x, int y){}

class PointTest {
static void main() {
var pointl = new Point(2, 3);
var point2 = new Point(1l, 4);
var point3 = new Point(2, 3);;
I0.println(pointl.equals(point3));
I0.println(pointl.equals(point2));

$ java PointTest.java
true
false

Les objets et leurs références

Un objet est un module situé dans une zone mémoire.
On le manipule par son adresse appelée référence (ou pointeur, mais
sans arithmétique).

class Test {
static void main() {
var pointl = new Point(5, 6);
var point2 = new Point(5, 6);
}
3

pointl point2
/75 /75
& &

En java, il existe une référence spéciale null. On peut I'utiliser comme
"non" valeur de n'importe quelle variable d'un type objet. Dans ce cas,
il n'y a pas de zone mémoire réservée.

L'opérateur ==

Il sert a tester I'égalité des primitifs.
Sur des objets, I'opérateur == permet uniquement de tester
I'égalité des références (c'est-a-dire, I'adresse de I'objet).

class Test {
static void main() {

var pointl = new Point(5, 6);
var point2 = new Point(5, 6);
var point3 = pointl;
I0.println(point2.equals(pointl)); // true
I0.println(point2 == pointl); // false
I0.println(point3 == pointl); // true

pointl point2

& &/

Exercices

Exercices

Exercice 1 Syntaxe

class Mystery {
static void main() {
var n = 42; // ou n’importe quelle autre valeur
if (n <= 1) {
I0.println(n);

} else {
var i = 0;
var j = 1;
var k = 1;

while (k < n) {
var tmp = i;
i=j;
j =1 + tmp;
k++;

b

I0.println(j);

Exercice 1 Syntaxe

Quelles sont les différences que vous avez remarquées entre Java
et Python dans cet exemple de code?

Comment s'appelle le fichier qui contient ce programme?

Que fait ce programme?
Il existe une boucle for en Java dont la forme générale est :

for (initialisation; terminaison; increment) {
instructions;

}

L'initialisation est une instruction exécutée une seule fois, avant le
début de la boucle. La terminaison est une expression booléenne;
si elle est fausse, la boucle s’arréte. L'incrément est une instruction
appelée a la fin de chaque tour de boucle.

Ré-écrivez la boucle while de I'exemple en utilisant une boucle for.

Exercice 2 Premiers records

Ecrire un record Bird pour représenter des oiseaux. Un oiseau a
un nom (name) et une envergure (wingspan) en cm. Quels types
peut-on utiliser pour définir ces champs?

Ecrire une classe BirdTest qui contient une méthode main qui
crée 2 oiseaux et les affiche.

Ajouter de quoi afficher true si ces deux oiseaux sont identiques
et false sinon.

Ajouter de quoi afficher true si ces deux oiseaux ont la méme
envergure et false sinon.

Ajouter une méthode sameWingSpan qui permet de tester si deux
oiseaux ont la méme envergure. Ou doit-on |'écrire 7 Que doit-elle
prendre en paramétre ?

Ajouter une méthode sameName qui permet de tester si deux
oiseaux ont le méme nom.

Exercice 3 Boucles

La méthode Math.random permet de tirer un nombre aléatoire dans
I'intervalle [0.0, 1.0].
Ecrire un programme qui tire un nombre aléatoire et I'affiche 2 fois
de suite.
Ecrire un programme qui tire un nombre aléatoire et affiche " plus
grand” s'il est plus grand que 0.5 et " plus petit” sinon.
Ecrire un programme qui affiche 100 nombres aléatoires...
... en utilisant une boucle while;
... en utilisant une boucle for;
Ecrire un programme qui tire 100 nombres aléatoires et affiche le
maximum de ces 100 nombres.

